URGENT MESSAGE: Time is running out. Click here to find out why.
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for Educators
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Fillow Quarry (Branchville Quarry; Branchville Mica Mine; Smith Mine), Branchville, Redding (Reading), Fairfield Co., Connecticut, USA

This page kindly sponsored by Stamford Mineralogical Society
Key
Lock Map
Latitude & Longitude (WGS84): 41° 16' 4'' North , 73° 26' 21'' West
Latitude & Longitude (decimal): 41.26778,-73.43917
GeoHash:G#: dr7fbbe4p
Locality type:Quarry
Köppen climate type:Cfa : Humid subtropical climate


A lithium-rich granite pegmatite most famous for its manganese phosphates (Brush and Dana (1878, 1879, 1890)) and alteration of spodumene (Brush and Dana (1880)), which occurs in scattered crystals in a matrix of cleavelandite. About 40 percent of the spodumene is unaltered; the remainder is altered in various degrees - by very fine-grained, parallel fibers of albite and eucryptite or by further alteration to “cymatolite” - fine-grained, parallel fibers of albite and muscovite. Extreme alteration resulted in replacement by yellow, fine-granular microcline or greasy, greenish "killinite" or "pinite". Individual crystals may show in cross-section a continuum of these states of alterations.

The manganese phosphates, of which lithiophilite is the most common, occur in rare, scattered concentrations within the cleavelandite-spodumene unit. There are two kinds of concentrations: (1) those in which lithiophilite and manganapatite are the sole manganese phosphates, and (2) those in which three or more phosphate minerals are present. Yellowish-brown lithiophilite occurs in isolated ellipsoidal nodules ranging from ¼ inch to more than 1 foot in length. The nodules are invariably coated with bluish-black manganese oxide.

The discoverer of the new minerals is controversial, but research by Januzzi (1997) indicates that original quarrier Abijah Fillow set some of the unusual minerals aside in 1876-7. In the late summer of 1877, James D. Dana took some of them back to Yale. The following year George J. Brush announced the discovery of a new mineral that the Reverend (and mineralogist) John Dickinson had found at the quarry in 1877. Following this, Brush and Edward S. Dana worked the quarry with Fillow for specimens of new minerals, and Dickinson donated additional specimens from his first visits in 1877. Clearly, both Dickinson and Fillow deserve credit and were given so with new mineral names.

According to Cameron et al (1954):

The property is owned by David Schornick of Branchville. The first excavation was made in 1876 by A. Fillow of Branchville, who quarried the pegmatite for mica, abandoning it before 1878. G. B. Brush and E. S. Dana, of Yale University, mined the pegmatite in 1878 and 1879 with funds furnished by Yale. The Union Porcelain Works of Greenpoint, N. Y., bought the property in 1880 and operated it for feldspar and quartz until at least 1890. The Bridgeport Wood Finishing Co. is reported to have operated it for quartz and feldspar prior to 1920. Fred and Joseph Burrough and Carlo Rusconi, all of North Branford, operated the mine for mica from September 1943 to November 1944. The Sandy Ridge Mica & Mining Co., 927 15th Street NW., Washington, D. C., worked the mine in November and December 1944.


Januzzi (1997) reports that when the Union Porcelain Works operated the quarry in 1880-90 it was known as the Smith Mine. During that time three to four thousand tons of feldspar and four thousand tons of quartz were shipped.

Elwell (1937) reported that in 1934:

a few blasts [were] put in for sample purposes. Operations lasted only three weeks; the men were not paid and then all activities ceased; the quarry is once more filled with water and abandoned.


The quarry and underground workings have been inactive since 1944 and most of it is flooded.

Cameron et al (1954) state that:

The main working (pl. 42) is an opencut 240 feet long, 50 to 85 feet wide and 60 feet in maximum depth. A crosscut 20 feet long has been driven into the north wall of the cut, and from this one drift extends 75 feet northwest and another 57 feet southeast. Both open cut and drifts are partly backfilled. About 2,300 tons of rock was moved between September 1943 and December 1944.

The pegmatite is composed chiefly of quartz and cleavelandite with subordinate muscovite. It has a striking internal structure. The following units are found successively inward from the wall: quartz-oligoclase zone, muscovite-quartz zone, cleavelandite-quartz unit, cleavelandite unit, cleavelandite-spodumene unit and quartz core.


Another detailed description of the pegmatite's structure is given by Shainin (1946).

In the late 1970s, an attempt was made to open the site to educational mineral collecting (as opposed to a mine or quarry). The town government decided such an operation should be regulated like a school, placing so many obstacles on what should have been a very simple program that the attempt was abandoned.

Note that the quarry is located in the Town of Redding, but that the village of Branchville, situated immediately southwest of the quarry, is actually in the neighboring Town of Ridgefield. Because of the long history of the use of "Branchville" as a place name for this locality, it is included in the hierarchy.

Alternative Label Names

This is a list of additional names that have been recorded for mineral labels associated with this locality in the minID database. This may include previous versions of the locality name hierarchy from mindat.org, data entry errors, and it may also include unconfirmed sublocality names or other names that can only be matched to this level.

Branchville, CT
Fillow Quarry, Branchville, Redding, Fairfield Co., Connecticut, USA

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded at this locality.


Mineral List


69 valid minerals. 9 (TL) - type locality of valid minerals. 8 erroneous literature entries.

Detailed Mineral List:

Albite
Formula: Na(AlSi3O8)
Habit: blocky, equant
Colour: white to pale gray
Fluorescence: lavender, magenta-pink
Description: Besides a major constituent of the pegmatite, crystals in small pockets reach up to about 2 cm, often in dense clusters, also as overgrowth on microcline on cleavelandite and psuedomorphous after muscovite in the wall zone.
Reference: [www.johnbetts-fineminerals.com]; Cameron et al (1954) USGS Prof Paper 255; Rocks & Minerals (1995) 70:396-409
Albite var: Cleavelandite
Formula: Na(AlSi3O8)
Habit: tabular prisms
Colour: white
Fluorescence: reddish magenta to lavender
Description: as irregular aggregates of small subhedral crystals, often in very aesthetic arrangements, and as veins 1/8 to ¼ inch wide and as much as 6 feet long
Reference: Cameron et al (1954) USGS Prof Paper 255, Ronald Januzzi collection
Albite var: Oligoclase
Formula: (Na,Ca)[Al(Si,Al)Si2O8]
Reference: Rocks & Minerals (1981) 56:67-69
Alluaudite ?
Formula: (Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Habit: pseudomorph after triphylite?
Description: From Januzzi (1994): "Alluaudite, collected and recently identified by the author as occurring at Branchville (confirmation by Kampf, Los Angeles County Museum of Natural History), is evidently a pseudomorph after euhedral crystals of triphylite." Needs confirmation.
Reference: Januzzi, Ronald. E. (1994): Mineral Data Book - Western Connecticut and Environs. Mineralogical Press, Danbury, Connecticut.
Almandine
Formula: Fe2+3Al2(SiO4)3
Habit: trapezohedral
Colour: maroon
Description: small crystals a few mm concentrated in layers in the metamorphic rock around the pegmatite.
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State, p. 273.
Amblygonite
Formula: LiAl(PO4)F
Description: Penfield's 1879 analysis of a Branchville specimen showed an OH:F ratio of 1.02, making this specimen montebrasite as now defined. Many references are not specific to species, back then all of the massive lithium phosphate of this series was generically called "amblygonite". It is now known that the amblygonite species is incredibly uncommon even in localities which have fluorite, massive fluorapatite, and topaz. Therefore, specimens from this locality are most likely montebrasite.
Reference: Januzzi, Ronald E. (1959): The Minerals of Western Connecticut and Southeastern New York. The Mineralogical Press, Danbury, Connecticut.
Annite
Formula: KFe2+3(AlSi3O10)(OH)2
Habit: subhedral tabular
Colour: black
Fluorescence: none
Description: fka biotite: found radiating from cyrtolite/quartz/muscovite aggregates
Reference: Cameron et al (1954) USGS Prof Paper 255; Shainin (1946)
'Apatite'
Habit: aggregates of elongated, crude prisms
Colour: white
Description: Reportedly the carbonate-rich variety. In small pockets in cleavelandite.
Reference: Ronald Januzzi collection
Autunite
Formula: Ca(UO2)2(PO4)2 · 11H2O
Description: "autunite" mentioned as an accessory by Cameron et al (1954), but probably dehydrated to meta-autunite
Reference: Cameron et al (1954)
Bertrandite
Formula: Be4(Si2O7)(OH)2
Habit: tabular to equant
Colour: colorless
Description: drusy micro crystals coating cavities, also probably pseudomorphous after beryl
Reference: Henderson (1975) Bertrandites of Connecticut; Januzzi, 1976. Mineral Localities of CT and Southeastern NY State
Beryl
Formula: Be3Al2(Si6O18)
Habit: tapered to columnar aggregates
Colour: yellow-green, green, gray
Description: columnar aggregates up to 2 feet long.
Reference: Cameron et al (1954) USGS Prof Paper 255; Rocks & Minerals (1995) 70:396-409
Beryl var: Aquamarine
Formula: Be3Al2Si6O18
Reference: Rocks & Minerals. Vol. 70. No. 6; Rocks & Minerals (1995) 70:396-409
Beryl var: Goshenite
Formula: Be3Al2(Si6O18)
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State
Beryl var: Heliodor
Formula: Be3Al2(Si6O18)
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State
Beryl var: Morganite
Formula: Be3Al2(Si6O18)
Colour: pink
Reference: Rocks & Minerals. Vol. 70. No. 6; Rocks & Minerals (1995) 70:396-409
Bismuth
Formula: Bi
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State
Bismutite
Formula: (BiO)2CO3
Habit: earthy alteration of bismuthinite
Colour: white, gray, yellow
Description: in cleavelandite as an alteration of bismuthinite, associated with wulfenite, pyromorphite and cerussite
Reference: Januzzi. (1976). Mineral Localities of CT and Southeastern NY State; Januzzi. (1994). Mineral Data Book
Brazilianite ?
Formula: NaAl3(PO4)2(OH)4
Habit: spheroidal aggregate with a radial, coarse fibrous structure
Description: according to Januzzi (1976 & 1994): micro-crystal found in the outer altered portion of an amblygonite crystal
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State, p.228.
Calcite
Formula: CaCO3
Habit: anhedral grains
Description: veins in the border zone, rarely as micro crystals in small pockets.
Reference: Cameron et al (1954) USGS Prof Paper 255
Cerussite
Formula: PbCO3
Description: micros occur in cavities in cleavelandite associated with altered bismuthinite, pyromorphite and wulfenite
Reference: Januzzi. (1976). Mineral Localities of CT and Southeastern NY State; Januzzi. (1994). Mineral Data Book
Chabazite-Ca
Formula: (Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
Habit: Rhombohedra, also embedded grains in lithiophilite.
Colour: brownish-orange to reddish brown
Description: Extremely rare. Chemical analysis by Brush and Dana (1879b) show this material is chabazite-Ca of modern nomenclature. Their description is: "This species occurs of a dark yellowish to reddish brown color, in irregular masses disseminated though quartz, and sometimes imbedded directly in the green chloritic material, and also in the massive manganesian carbonate [rhodochrosite] occurring with the lithiophilite. A few small crystals 1/4 to 1/2 inch, were found in cavities." One specimen of these crystals remains in the Yale collection (025313). Massive material shows a resinous, translucent orange-colored cores with lighter colored aureoles. The article provides additional data regarding the mineral and a complete wet chemical analysis corresponding with the accepted limits of chabazite.
Reference: Brush and Dana (1879 b)
Columbite-(Fe)
Formula: FeNb2O6
Habit: masses and well developed tabular to prismatic crystals & parallel groups
Colour: black
Description: Crystals and groups reached “remarkable size”. Yale has crystals and groups to over 10 cm. 500 pounds were mined between 1880-90.
Reference: Januzzi.(1976). Mineral Localities of CT and Southeastern NY State; Cameron et al (1954). USGS Prof Paper 255.
'Cymatolite'
Habit: pseudomorphs after spodumene
Colour: white to pale gray
Description: oriented intergrowth of very fine-grained, elongated albite and muscovite. Grains are oriented perpendicular to the spodumene c axis and give a columnar, silky appearance to the inside of a fractured specimen. Crystals pseudomorphs after spodumene at Yale to 32 x 70 cm.
Reference: Brush and Dana (1880); Shainin, V., 1946, The Branchville Pegmatite, American Mineralogist, v. 31, p. 329-345.; USGS Prof Paper 255; Rocks & Minerals (1995) 70:396-409
Dickinsonite-(KMnNa) (TL)
Formula: {KNa}{Mn2+◻}{Ca}{Na3}{Mn2+13}{Al}(PO4)12(OH)2
Habit: foliated crystalline masses, almost micaceous, radiating or stellated curved laminae
Colour: oil to olive green, dark to grass-green
Description: Intimately associated with quartz, eosphorite, triploidite and rhodochrosite
Reference: Brush and Dana (1878).; Shainin, V. (1946) The Branchville, Connecticut, Pegmatite. American Mineralogist: 31: 329-345.; Palache, C., Berman, H., & Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 671, 718, 855.; Moore, P.B., Ito, J. (1979) Alluaudites, wyllieites, arrojadites: crystal chemistry and nomenclature. Mineralogical Magazine: 43: 227-235.; Weber, Marcelle H. and Earle C. Sullivan (1995) Connecticut Mineral Locality Index. Rocks & Minerals (Connecticut Issue): 70(6) (November/December): 396-409.; Daltry, V.D.C. and von Knorring, O. (1998) Type-mineralogy of Rwanda with particular reference to the Buranga pegmatite. Geologica Belgica: 1: 9-15 (referring to Moore & Ito, 1979).
Elbaite
Formula: Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Habit: massive
Colour: blue
Description: A small ~1.5 cm nodule of massive blue elbaite, rimmed by muscovite, embedded in granular albite was found by Marcelle Weber in 1957. Labeled as "muscovite after triphylite". Despite the abundance of Li at this locality, this may be the only specimen of elbaite from here.
Reference: Ted Johnson collection
Eosphorite (TL)
Formula: Mn2+Al(PO4)(OH)2 · H2O
Habit: mostly massive, rare prismatic crystals
Colour: pale pink, grayish-, bluish-, and yellowish-white, white
Description: Intimately associated with quartz, dickinsonite, triploidite and rhodochrosite. Pink, translucent, prismatic crystals to around 1 cm long show rough striae parallel to the long axis, associated with micro encrusting quartz and apatite.
Reference: Brush and Dana (1878); American Mineralogist (1946): 31: 329-345; Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 671, 718, 855, 938.; Rocks & Minerals (1995) 70:396-409
Eucryptite (TL)
Formula: LiAlSiO4
Habit: pseudomorphous after spodumene
Colour: white to slightly greenish-white or pale gray
Fluorescence: red
Description: oriented intergrowth with very fine-grained, elongated albite. Grains are oriented perpendicular to the spodumene c axis and give an indistinct fibrous to columnar structure, this being always at right angles to the adjoining surface of the original mineral. Fractured surface typically has a frosty appearance.
Reference: Brush and Dana (1880); AmMin 31:329-345 (1946); USGS Prof Paper 255; Rocks & Minerals (1995) 70:396-409; Ronald Januzzi collection
Fairfieldite (TL)
Formula: Ca2Mn2+(PO4)2 · 2H2O
Habit: foliated to lamellar masses, radiating masses consisting of curved foliated or fibrous aggregations
Colour: white to pale straw-yellow
Description: One variety cccurs filling cavities in the reddingite, and covering the distinct crystals of this mineral. It is uniformly clear and transparent, and is highly lustrous, showing entire absence of even incipient alteration. It is generally foliated to lamellar, although sometimes of a somewhat radiated structure. A second variety occurs in masses of considerable size interpenetrated rather irregularly with quartz, and quite uniformly run through with thin seams and lines of a black manganesian mineral of not very clearly defined character. Typically friable to the touch and lacks something of the brilliant luster of the first variety, it also shows greater difference of structure, passing from the distinct crystals to the massive and radiated form. Also occurs in small particles in fillowite and in masses of some size immediately associated with eosphorite, triploidite, and dickinsonite.
Reference: Brush and Dana (1878); Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 671, 721; NJMM (1957), 78; Lapis (1984): 2: 5.; Rocks & Minerals (1995) 70:396-409
Fillowite (TL)
Formula: {Mn2+}{Na8}{Ca4Na4}{(Mn2+,Fe2+)43}(PO4)36
Habit: granular aggregates, rare micro rhombohedra in tiny pockets
Colour: honey-yellow, wax-yellow, also yellowish to reddish-brown
Description: Reddingite is very commonly associated with fillowite, and in many cases it is not easy to distinguish the two minerals.
Reference: Brush and Dana (1878); American Mineralogist (1946): 31: 329-345; Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 720.; Rocks & Minerals (1995) 70:396-409
Fluorapatite
Formula: Ca5(PO4)3F
Habit: hexagonal prisms
Colour: colorless, white, pale to dark blue-green
Fluorescence: yellow
Description: Crystals frozen in matrix are generally subhedral and opaque, generally the paler colored crystals or portions fluoresce much better than the darker color. Micro crystals in pockets in albite can be clear, colorless and euhedral with bright yellow fluorescence that helps locate them. Also chabazite, quartz, and fluorapatite crystallized in cavities in rhodochrosite associated with clove-brown lithiophilite, quartz, fluorapatite, and dickinsonite.
Reference: Brush and Dana (1879b); Cameron et al (1954) USGS Prof Paper 255; Ronald Januzzi collection
Fluorapatite var: Mn-bearing Fluorapatite
Formula: (Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Reference: AmMin 31:329-345 (1946); USGS Prof Paper 255
Fluorite
Formula: CaF2
Description: an accessory in the wall zone
Reference: Cameron et al (1954) USGS Prof Paper 255
Fluorite var: Chlorophane
Formula: CaF2
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State
'Garnet Group'
Formula: X3Z2(SiO4)3
Habit: trapezohedral pseudomorph
Colour: rusty
Description: micaceous, spongy, rusty pseudomorph after an unknown garnet species in the pegmatite
Reference: Ronald Januzzi collection
Goethite
Formula: α-Fe3+O(OH)
Habit: pseudomorphous after pyrite
Colour: brown
Description: forms pseudomorphs after micro pyrite crystals in cleavelandite
Reference: Ronald Januzzi collection
Greenockite
Formula: CdS
Habit: coating
Colour: yellow
Description: Yellow coating on sphalerite.
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State
'Gummite' ?
Habit: encrustations
Colour: yellow
Description: Material labeled "gummite" in the Yale collection appears as yellow encrustations on cleavelandite and columbite. Portions fluoresce weakly or strongly in SW UV so appear more likely to be uranophane and meta-autunite.
Reference: Januzzi. (1976). Mineral Localities of CT and Southeastern NY State
Hematite
Formula: Fe2O3
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State
Heterosite
Formula: (Fe3+,Mn3+)PO4
Description: The cited reference used by Seaman is false. Lithiophilite may be leached and oxidized to purpurite. The process does not materially alter the Mn:Fe ratio of the parent material (Paulus Brian Moore, personal communication).
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 676; Seaman, 1976. Pegmatite Minerals of the World
'Heulandite subgroup'
Description: Despite this mineral's having been widely re-cited after Januzzi (1976) examination of Januzzi's only specimen shows that it merely consists of iron-stained angular albite crystals. The identification, based on the original specimen, was in error, although re-listed in Tschernich (1992). This mineral is NOT mentioned in: Shainin, V., 1946, The Branchville Connecticut, Pegmatite, American Mineralogist, v. 31, p. 329-345.
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State
'Hornblende'
Description: constituent mineral of the amphibolite bordering the pegmatite mentioned in Cameron et al (1954)
Reference: Cameron et al (1954) USGS Prof Paper 255
Hureaulite
Formula: (Mn,Fe)5(PO4)2(HPO4)2 · 4H2O
Habit: short prismatic to tabular, in parallel growth
Colour: typically white to pink, pale violet to reddish brown and deep orange-red
Description: Massive, sub-resinous, white to pale material in the Yale collection reminiscent of massive scapolite. Tiny crystals in small vugs. Formed from an alteration of lithiophilite, intimately associated with dickinsonite, eosphorite, fairfieldite, reddingite, fillowite, triploidite. Difficult to distinguish from reddingite.
Reference: Brush and Dana (1890); Shainin (1946) American Mineralogist 31: 329-345; Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 671, 702.; Rocks & Minerals (1995) 70:396-409
Hydroxylapatite
Formula: Ca5(PO4)3(OH)
Habit: elongated hexagonal prisms with rounded edges and terminations
Colour: pale yellow with frosty terminations
Fluorescence: none
Description: Frosty, translucent, pale yellow micro crystals encrusting pocket quartz, cleavelandite, and a much larger, glassy fluorapatite crystal. Originally labeled as calcite, but does not react to HCl, has hardness 5, no visible cleaveage, and does not fluoresce.
Reference: Ronald Januzzi collection
Ilmenite
Formula: Fe2+TiO3
Habit: subhedral tabular
Colour: steel gray
Description: mentioned in Cameron et al (1954) as an accessory mineral of the surrounding amphibolite; crude crystals in quartz core of the pegmatite with annite near the contact with surrounding rock (Januzzi collection)
Reference: Cameron et al (1954): USGS Prof Paper 255; Ronald Januzzi collection
Landesite ?
Formula: Mn2+3-xFe3+x(PO4)2(OH)x · (3-x)H2O
Habit: alteration
Colour: dark brown
Description: "Landesite may occur as a dark brown alteration product of reddingite at Branchville."
Reference: Januzzi (1994) Mineral Data Book
Lazulite ?
Formula: (Mg,Fe2+)Al2(PO4)2(OH)2
Colour: blue
Description: "(?) This occurrence, unlike the vivianite, was observed embedded in altered rim of amblygonite (montebrasite). Not enough material for positive ID." Januzzi (1994)
Reference: Januzzi (1994) Mineral Data Book
'Limonite'
Formula: (Fe,O,OH,H2O)
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State
Lithiophilite (TL)
Formula: LiMn2+PO4
Habit: irregular blocky to rounded masses
Colour: bright salmon, honey-yellow, yellowish-brown to umber-brown
Description: The anhedral to subhedral masses are typically 1 to 3 inches in diameter and coated with a black alteration. Alteration sometimes has penetrated deep into the mass so that original color is only in the core. Secondary Mn phosphates are associated. Original type material analyzed in Brush and Dana (1878) had Mn/Mn + Fe ratio of about 0.9. Landes (1925) analyzed lithiophilite from this locality and found the Mn/Mn + Fe ratio was 0.72
Reference: Brush and Dana (1878); Shainin (1946) American Mineralogist 31: 329-345; Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 667, 671, 855, 938.; USGS Prof Paper 255; Rocks & Minerals (1995) 70:396-409
Magnetite
Formula: Fe2+Fe3+2O4
Description: as an accessory in a small granite dike cross-cut by the pegmatite
Reference: Cameron et al (1954) USGS Prof Paper 255
'Manganese Oxides'
Habit: dendritic
Colour: black
Description: In fractures and coating various minerals.
Reference: Ted Johnson collection
'Manganese Oxides var: Manganese Dendrites'
Habit: dendritic
Colour: black
Description: In fractures and coating various minerals.
Reference: Ted Johnson collection
Marcasite
Formula: FeS2
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State
Meta-autunite
Formula: Ca(UO2)2(PO4)2 · 6-8H2O
Habit: flakes and coatings
Colour: pale yellow
Fluorescence: green
Description: "autunite" mentioned as an accessory by Cameron et al (1954), but probably dehydrated to meta-autunite. Material labeled "gummite" in the Yale collection appears identical to other specimens labeled "autunite".
Reference: Cameron et al (1954) USGS Prof Paper 255
Metaswitzerite
Formula: Mn2+3(PO4)2 · 4H2O
Description: Januzzi reported it as switzerite, which dehydrates to metaswitzerite according to Zanazzi (1986). Januzzi reference provides no details. Caption for http://www.mindat.org/photo-199679.html indicates confirmation by unknown methods.
Reference: Zanazzi et al. (1986), Deyhdration from switzerite cf. American Mineralogist: 71: 1224-8.; Januzzi, Ronald E. (1976), Mineral Localities of Connecticut and Southeastern New York State. Taylor Associates - Mineralogical Press, Danbury: 235.
Metatorbernite
Formula: Cu(UO2)2(PO4)2 · 8H2O
Habit: flakes to tabular, square prisms
Colour: green
Description: "torbernite" mentioned as an accessory by Cameron et al (1954), but probably dehydrated to metatorbernite
Reference: Cameron et al (1954) USGS Prof Paper 255
'commodity:Mica'
Reference: From USGS MRDS database
Microcline
Formula: K(AlSi3O8)
Habit: prismatic, anhedral, rarely pseudomorphous after spodumene
Colour: grayish white to light buff-brown, yellow
Fluorescence: red, pale blue
Description: Perthitic crystals 1 to 5 feet long, some partly replaced and veined with albite and other minerals. Pocket crystals uncommon but typically etched and partly replaced/overgrown by albite. Rarely as a yellow, granular pseudomorph after spodumene
Reference: Cameron et al (1954); Brush and Dana (1880)
Microlite Group
Formula: A2-mTa2X6-wZ-n
Habit: octahedral
Colour: dark brown
Description: "small, dark brown, octahedral crystals in albite (cleavelandite)"
Reference: Januzzi (1994) Mineral Data Book
Mitridatite
Formula: Ca2Fe3+3(PO4)3O2 · 3H2O
Habit: coatings
Colour: greenish yellow
Description: Greenish yellow coatings on the phosphate minerals in the Yale collection, some are labeled as mitridatite.
Reference: Januzzi (1994) Mineral Data Book
Montebrasite
Formula: LiAl(PO4)(OH)
Habit: massive and columnar or blocky subhedral
Colour: white
Description: Penfield's 1879 analysis of a Branchville specimen showed an OH:F ratio of 1.02, making this specimen montebrasite as now defined. Many references are not specific to species, back then all of the massive lithium phosphate of this series was generically called "amblygonite". It is now known that the amblygonite species is incredibly uncommon even in localities which have fluorite, massive fluorapatite, and topaz. Therefore, specimens from this locality are most likely montebrasite.
Reference: Penfield, Samuel L. (1879): On the Chemical Compositon of Amblygonite. American Journal of Science. Series 3, Vol 18, pp. 295-301.
Montmorillonite
Formula: (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Habit: pseudohexagonal tabular prisms, curved subparallel aggregates (ballpeen habit)
Colour: silver, gray
Description: The "ball peen" habit of radiating, curved crystals is particularly well developed. Tabular crystals range from 1 to 24 inches in diameter and 1/8 to 12 inches in thickness. Most of the books are about 5 inches in diameter and 1 inch thick. About 15 percent of the muscovite visible in the wall zone is pseudomoorphed by what appears to be albite and quartz. Perfect pseudomorphs after muscovite have been formed. The replacement was limited to certain parts of the zone; these are irregular in outline and appear distributed without relation to the original structural or mineralogical features of the zone. Within these parts practically all the muscovite adjacent to the wall rock contact, including that in the border zone, has been replaced, but mica in the inner one-third or one-fourth of the wall zone is mostly unaffected. Large books that extend across the full thickness of the zone grade from unaltered muscovite in the inner part to pseudomorphs in the outer part.
Reference: Cameron et al (1954) USGS Prof Paper 255; Shainin (1946); Rocks & Minerals (1995) 70:396-409
Muscovite var: Damourite
Formula: KAl2(AlSi3O10)(OH)2
Description: Brush and Dana (1878) (first paper) state that they found "a hydro-mica near damourite having a peculiar concentric spherical structure" [emphasis added]. They did not actually identify damourite.
Reference: Brush and Dana (1878) first paper
Natrophilite (TL)
Formula: NaMn2+PO4
Habit: massive, local alterations within lithiophilite
Colour: deep, wine-yellow
Description: Small regions within lithiophilite nodules. Description of type material from Brush and Dana (1890): "The luster is brilliant resinous to nearly adamantine; it was, in fact, the brilliancy of the luster which first attracted our attention, and which is, so far as the eye is concerned, its most distinguishing character. The mineral itself is perfectly clear and transparent, but the masses are much fractured and rifted. The surfaces are often covered by a very thin scale of an undetermined mineral, having a fine fibrous form, a delicate yellowish color and silky luster. This same mineral penetrates the masses wherever there is a fracture surface of cleavage or otherwise. What the exact nature of this mineral is we are unable to say, since the amount is too small to admit of a satisfactory determination - it appears to be a manganesian phosphate. It is evidently an alteration-product and would seem to imply that natrophilite is rather subject to easy chemical change. In any case this silky film is one of the characteristic features of the mineral, and directs attention to it at once even over the surface of a hand specimen where it is associated with lithiophilite and perhaps three or four other of these phosphates."
Reference: Brush and Dana (1890); Shainin (1946): American Mineralogist 31: 329-345; Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 671.; Am Min 50:1096-1097; Rocks & Minerals (1995) 70:396-409
Opal
Formula: SiO2 · nH2O
Description: "Excellent specimens have been found" Januzzi (1994)
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State; Januzzi (1994) Mineral Data Book
Opal var: Opal-AN
Formula: SiO2 · nH2O
Description: "Excellent specimens have been found" Januzzi (1994)
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State; Januzzi (1994) Mineral Data Book
Phosphuranylite
Formula: (H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 876; Januzzi (1976) Mineral Localities of CT and Southeastern New York State
Purpurite
Formula: (Mn3+,Fe3+)PO4
Habit: encrustations, coatings
Colour: purple
Description: "Supergene alteration resulted in the formation of manganese oxide and purpurite from lithiophilite" Shainin (1946). Yale collection has a few specimens that show purple coating on black exterior of altered lithiophilite nodules.
Reference: Shainin (1946): AmMin 31:329-345
Pyrite
Formula: FeS2
Description: an accessory in the wall zone
Reference: Cameron et al (1954) USGS Prof Paper 255
Pyrolusite
Formula: Mn4+O2
Description: No manganese dendrite or staining in a granite pegmatite in the world has been verified as pyrolusite. The name was a mistake in the nineteenth century which has been widely publicized.
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State
Pyromorphite ?
Formula: Pb5(PO4)3Cl
Description: Januzzi reports micros occur in cavities in cleavelandite associated with bismutite, wulfenite and cerussite. An inspection of his surviving material so far has not revealed this mineral, but there are yellow coatings associated with the above minerals that are more likely a secondary bismuth mineral.
Reference: Januzzi (1994) Mineral Data Book
Quartz
Formula: SiO2
Habit: massive
Colour: clear to smoky
Description: thousands of tons of massive material mined, but crystals limited to micros in small pockets with albite. Also chabazite, quartz, and apatite crystallized in cavities in rhodochrosite associated with clove-brown lithiophilite, quartz, apatite, and dickinsonite.
Reference: Brush and Dana (1879); Cameron et al (1954) USGS Prof Paper 255
Quartz var: Rose Quartz
Formula: SiO2
Habit: massive
Colour: pink
Reference: Ted Johnson collection
Quartz var: Smoky Quartz
Formula: SiO2
Reference: USGS Prof Paper 255
Reddingite (TL)
Formula: (Mn2+,Fe2+)3(PO4)2 · 3H2O
Habit: bipyramidal, pseudo-octahedral - in tiny pockets in massive material
Colour: pale rose-pink to yellowish-white, sometimes brown
Description: From the type material description in Brush and Dana (1878): "Reddingite occurs sparingly in minute octahedral crystals; belonging to the orthorhombic system. It is also found more generally massive with granular structure; it is associated with dickinsonite, and sometimes with triploidite. As compared with the other species which have been described it is a decidedly rare mineral. The massive mineral shows a distinct cleavage in one plane...crystals are occasionally coated dark from surface alteration" Difficult to distinguish from pink hureaulite or yellowish fillowite.
Reference: Brush and Dana (1878); Shainin (1946): American Mineralogist 31: 329-345; Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 702, 729.; Rocks & Minerals (1995) 70:396-409
Rhodochrosite
Formula: MnCO3
Habit: cleavable masses
Colour: white to pink
Description: Associated with eosphorite, dickinsonite, triploidite, quartz, also included in lithiophilite. Also chabazite, quartz, and fluorapatite crystallized in cavities in rhodochrosite associated with clove-brown lithiophilite, quartz, apatite, and dickinsonite. Typically with black alteration crust.
Reference: Brush and Dana (1878b, 1879a, 1879b); Shainin (1946): American Mineralogist 31: 329-345; Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 718, 855, 938.
Samarskite-(Y)
Formula: (Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8
Habit: massive
Colour: black
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State; Januzzi (1994) Mineral Data Book
Schorl
Formula: Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Reference: No reference listed
Sicklerite ?
Formula: Li1-x(Mn3+xMn2+1-x)PO4
Colour: reddish
Description: a potential alteration product of lithiophilite and purpurite
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State; Januzzi (1994) Mineral Data Book
Spessartine ?
Formula: Mn2+3Al2(SiO4)3
Description: Many references include "garnet" but none give a specific species except Januzzi who provides no analyses. Spessartine is possible given the abundance of Mn minerals in this pegmatite, but so far it is unconfirmed.
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State; Januzzi (1994) Mineral Data Book
Sphalerite
Formula: ZnS
Habit: massive
Colour: maroon to black
Description: Massive, resinous micro material in cleavelandite.
Reference: Januzzi. (1976). Mineral Localities of CT and Southeastern NY State
Spodumene
Formula: LiAlSi2O6
Habit: subhedral prisms, flattened parallel to a {100}, with dome terminations
Colour: white to peach
Description: rarely as gemmy kunzite, usually white. The prisms average 1 foot long, 6 inches wide and 3/4 inch thick but can reach up to 3 or 4 feet long and 8 to 9 inches thick. Much of it is altered to an albite/eucryptite parallel intergrowth mixture, to "cymatolite" (a parallel intergrowth mixture or albite and muscovite), to granular microcline, or to massive albite and muscovite - or a progressive combination of these replacements.
Reference: Brush and Dana (1880); Shainin (1946); Cameron et al (1954) USGS Prof Paper 255; Rocks & Minerals (1995) 70:396-409
Spodumene var: Kunzite
Formula: LiAlSi2O6
Habit: generally broad or flat, and comparatively thin; well terminated by dome
Colour: rose-pink or amethystine-purple
Description: Usually in the unaltered core of externally altered cyrstals and only very rarely transparent.
Reference: Brush and Dana (1880); Rocks & Minerals. Vol. 70. No. 6; Rocks & Minerals (1995) 70:396-409
Staurolite ?
Formula: Fe2+2Al9Si4O23(OH)
Description: mentioned as an accessory by Brush and Dana (1878)
Reference: Brush and Dana (1878)
'Stilbite subgroup'
Habit: radiating sheaves
Description: occurring on the surfaces of seams in cleavelandite
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State; Januzzi (1994) Mineral Data Book
Switzerite
Formula: (Mn,Fe)3(PO4)2 · 7H2O
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State, p.235.
Tantalite-(Mn)
Formula: MnTa2O6
Habit: subhedral prismatic micro crystals
Colour: maroon
Description: Comstock (1880) analyzed scant material found by Brush and Dana with a gravity of 6.5, almost no Fe, and niobium to tantalum atomic ratio of 1:1.04 making it just barely tantalite-(Mn). Maroon, translucent micro crystals in cleavelandite.
Reference: Comstock (1880): Analyses of some American Tantalates
Titanite
Formula: CaTi(SiO4)O
Description: an accessory in the surrounding amphibolite
Reference: Cameron et al (1954) USGS Prof Paper 255
Topaz
Formula: Al2(SiO4)(F,OH)2
Habit: short prismatic
Colour: colorless
Fluorescence: bright yellow-white under SW and MW UV
Description: In Januzzi (1994) he mentions topaz "reported as a single occurrence; additional information is needed concerning the authenticity of the find". In a specimen formerly in his collection are a few glassy, colorless, complexly terminated microcrystals identified as topaz, found in voids a very fine-grained cleavelandite matrix partly filled with calcite. But when examined under SW UV light, they fluoresce the typical bright yellow-white of fluorapatite. They also do not show the perfect basal cleavage of topaz.
Reference: Januzzi, Ronald. E. (1994) Mineral Data Book - Western Connecticut and Environs. Mineralogical Press, Danbury, Connecticut.
Torbernite
Formula: Cu(UO2)2(PO4)2 · 12H2O
Description: "torbernite" mentioned as an accessory by Cameron et al (1954), but probably dehydrated to metatorbernite
Reference: Cameron et al (1954)
'Tourmaline'
Formula: A(D3)G6(T6O18)(BO3)3X3Z
Colour: green
Description: "green tourmaline" mentioned by Cameron et al (1954) in the border zone of the pegmatite.
Reference: Cameron et al (1954)
Triphylite
Formula: LiFe2+PO4
Habit: blocky
Colour: blue-gray
Description: At least one 12 x 15 mm crystals, collected by Ronald Januzzi and certainly visually appears to be a triphylite, though rather mottled within, and he considered it pseudomorphed by alluaudite. In Januzzi (1994) he writes: "Alluaudite, collected and recently identified by the author as occurring at Branchville (confirmation by Kampf, Los Angeles County Museum of Natural History), is evidently a pseudomorph after euhedral crystals of triphylite." Needs confirmation.
Reference: Januzzi, Ronald. E. (1994): Mineral Data Book - Western Connecticut and Environs. Mineralogical Press, Danbury, Connecticut.
Triplite
Formula: (Mn2+,Fe2+)2(PO4)(F,OH)
Description: Brush and Dana (1878) established the presence of triploidite and compared it to triplite but noted the absence of fluorine. In 4 detailed papers on the various Mn phosphates they do not mention that triplite actually occurs there.
Reference: American Mineralogist (1946): 31: 329-345; Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 851.
Triploidite (TL)
Formula: (Mn2+,Fe2+)2(PO4)(OH)
Habit: divergent to parallel-fibrous to columnar crystalline aggregates, compact, massive. rarely prismatic
Colour: yellowish to reddish-brown, topaz- to wine-yellow, hyacinth-red
Description: mostly columnar, fibrous, radiating, rare isolated but typically vitreous and transparent crystals to a length of an inch or more. Associated with quartz and the other Mn phosphates and rhododchrosite.
Reference: Brush and Dana (1878); Shainin (1946): American Mineralogist 31: 329-345; Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 671, 855, 938.; Rocks & Minerals (1995) 70:396-409
Uraninite
Formula: UO2
Habit: octahedral
Colour: black
Description: uraninite "in brilliant black octahedrons" associated with lithiophilite, fluorapatite, garnet, uranium phosphates, and cyrtolite. Crystals used in several early radiometric daughter product and age dating studies.
Reference: Brush and Dana (1879); Cameron et al (1954) USGS Prof Paper 255; Rocks & Minerals (1995) 70:396-409
Uranophane
Formula: Ca(UO2)2(SiO3OH)2 · 5H2O
Habit: encrustations
Colour: pale yellow
Description: mentioned by Brush and Dana (1879) as "a silicate containing uranium". Specimens labeled "gummite" and "autunite" in the Yale collections are similar appearing coatings on cleavelandite and columbite. Portions fluoresce strongly and weakly under SW UV and so are more likely meta-autunite and uranophane, respectively.
Reference: Brush and Dana (1879); Januzzi, 1976. Mineral Localities of CT and Southeastern NY State
'Verdelite'
Formula: A(D3)G6(T6O18)(BO3)3X3Z
Colour: green
Description: "green tourmaline" mentioned by Cameron et al (1954) in the border zone of the pegmatite.
Reference: Cameron et al (1954)
Vivianite
Formula: Fe2+3(PO4)2 · 8H2O
Habit: coatings, micro prismatic crystals
Colour: blue, greenish-blue
Description: In thin layers as an alteration of lithiophilite and reddingite and as micro crystals, minute amounts. Some seen on altered lithiophilite nodules in the Yale collection.
Reference: Brush and Dana (1878); Januzzi, 1976. Mineral Localities of CT and Southeastern NY State; Januzzi (1994) Mineral Data Book
Wulfenite
Formula: Pb(MoO4)
Habit: pyramidal
Colour: orange-yellow
Description: micro-wulfenite occurs in cavities in cleavelandite associated with bismutite, pyromorphite and cerussite
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State; Januzzi (1994) Mineral Data Book
Xanthoxenite ?
Formula: Ca4Fe3+2(PO4)4(OH)2 · 3H2O
Description: may occur associated with lithiophilite
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State, p.275; Januzzi (1994) Mineral Data Book
Zircon
Formula: Zr(SiO4)
Reference: USGS Prof Paper 255
Zircon var: Cyrtolite
Formula: Zr[(SiO4),(OH)4]
Habit: aggregates
Colour: dark brown to black
Description: pure aggregates surrounded by smoky, fractured quartz; or aggregates with quartz and muscovite in the cores of radiating cleavelandite
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State; Cameron et al (1954) USGS Prof Paper 255

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Bismuth1.CA.05Bi
Group 2 - Sulphides and Sulfosalts
Greenockite2.CB.45CdS
'Marcasite'2.EB.10aFeS2
Pyrite2.EB.05aFeS2
Sphalerite2.CB.05aZnS
Group 3 - Halides
Fluorite3.AB.25CaF2
var: Chlorophane3.AB.25CaF2
Group 4 - Oxides and Hydroxides
Columbite-(Fe)4.DB.35FeNb2O6
Goethite4.00.α-Fe3+O(OH)
Hematite4.CB.05Fe2O3
Ilmenite4.CB.05Fe2+TiO3
Magnetite4.BB.05Fe2+Fe3+2O4
'Microlite Group'4.00.A2-mTa2X6-wZ-n
Opal4.DA.10SiO2 · nH2O
var: Opal-AN4.DA.10SiO2 · nH2O
Pyrolusite ?4.DB.05Mn4+O2
Quartz4.DA.05SiO2
var: Rose Quartz4.DA.05SiO2
var: Smoky Quartz4.DA.05SiO2
Samarskite-(Y)4.DB.25(Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8
Tantalite-(Mn)4.DB.35MnTa2O6
Uraninite4.DL.05UO2
Group 5 - Nitrates and Carbonates
Bismutite5.BE.25(BiO)2CO3
Calcite5.AB.05CaCO3
Cerussite5.AB.15PbCO3
Rhodochrosite5.AB.05MnCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Wulfenite7.GA.05Pb(MoO4)
Group 8 - Phosphates, Arsenates and Vanadates
'Alluaudite' ?8.AC.10(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
'Amblygonite' ?8.BB.05LiAl(PO4)F
Autunite8.EB.05Ca(UO2)2(PO4)2 · 11H2O
Brazilianite ?8.BK.05NaAl3(PO4)2(OH)4
Dickinsonite-(KMnNa) (TL)8.BF.05{KNa}{Mn2+◻}{Ca}{Na3}{Mn2+13}{Al}(PO4)12(OH)2
Eosphorite (TL)8.DD.20Mn2+Al(PO4)(OH)2 · H2O
Fairfieldite (TL)8.CG.05Ca2Mn2+(PO4)2 · 2H2O
Fillowite (TL)8.AC.50{Mn2+}{Na8}{Ca4Na4}{(Mn2+,Fe2+)43}(PO4)36
Fluorapatite8.BN.05Ca5(PO4)3F
var: Mn-bearing Fluorapatite8.BN.05(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Heterosite ?8.AB.10(Fe3+,Mn3+)PO4
Hureaulite8.CB.10(Mn,Fe)5(PO4)2(HPO4)2 · 4H2O
Hydroxylapatite8.BN.05Ca5(PO4)3(OH)
Landesite ?8.CC.05Mn2+3-xFe3+x(PO4)2(OH)x · (3-x)H2O
Lazulite ?8.BB.40(Mg,Fe2+)Al2(PO4)2(OH)2
Lithiophilite (TL)8.AB.10LiMn2+PO4
'Meta-autunite'8.EB.10Ca(UO2)2(PO4)2 · 6-8H2O
'Metaswitzerite'8.CE.25Mn2+3(PO4)2 · 4H2O
'Metatorbernite'8.EB.10Cu(UO2)2(PO4)2 · 8H2O
'Mitridatite'8.DH.30Ca2Fe3+3(PO4)3O2 · 3H2O
Montebrasite8.BB.05LiAl(PO4)(OH)
Natrophilite (TL)8.AB.10NaMn2+PO4
Phosphuranylite8.EC.10(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
Purpurite8.AB.10(Mn3+,Fe3+)PO4
Pyromorphite ?8.BN.05Pb5(PO4)3Cl
Reddingite (TL)8.CC.05(Mn2+,Fe2+)3(PO4)2 · 3H2O
Sicklerite ?8.AB.10Li1-x(Mn3+xMn2+1-x)PO4
Switzerite ?8.CE.25(Mn,Fe)3(PO4)2 · 7H2O
Torbernite8.EB.05Cu(UO2)2(PO4)2 · 12H2O
Triphylite8.AB.10LiFe2+PO4
Triplite ?8.BB.10(Mn2+,Fe2+)2(PO4)(F,OH)
Triploidite (TL)8.BB.15(Mn2+,Fe2+)2(PO4)(OH)
Vivianite8.CE.40Fe2+3(PO4)2 · 8H2O
Xanthoxenite ?8.DH.40Ca4Fe3+2(PO4)4(OH)2 · 3H2O
Group 9 - Silicates
'Albite'9.FA.35Na(AlSi3O8)
var: Cleavelandite9.FA.35Na(AlSi3O8)
var: Oligoclase9.FA.35(Na,Ca)[Al(Si,Al)Si2O8]
'Almandine'9.AD.25Fe2+3Al2(SiO4)3
'Annite'9.EC.20KFe2+3(AlSi3O10)(OH)2
Bertrandite9.BD.05Be4(Si2O7)(OH)2
Beryl9.CJ.05Be3Al2(Si6O18)
var: Aquamarine9.CJ.05Be3Al2Si6O18
var: Goshenite9.CJ.05Be3Al2(Si6O18)
var: Heliodor9.CJ.05Be3Al2(Si6O18)
var: Morganite9.CJ.05Be3Al2(Si6O18)
Chabazite-Ca9.GD.10(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
Elbaite9.CK.05Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Eucryptite (TL)9.AA.05LiAlSiO4
'Microcline'9.FA.30K(AlSi3O8)
Montmorillonite9.EC.40(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Damourite ?9.EC.15KAl2(AlSi3O10)(OH)2
Schorl9.CK.05Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Spessartine ?9.AD.25Mn2+3Al2(SiO4)3
Spodumene9.DA.30LiAlSi2O6
var: Kunzite9.DA.30LiAlSi2O6
Staurolite ?9.AF.30Fe2+2Al9Si4O23(OH)
Titanite9.AG.15CaTi(SiO4)O
Topaz ?9.AF.35Al2(SiO4)(F,OH)2
Uranophane9.AK.15Ca(UO2)2(SiO3OH)2 · 5H2O
Zircon9.AD.30Zr(SiO4)
var: Cyrtolite9.AD.30Zr[(SiO4),(OH)4]
Unclassified Minerals, Rocks, etc.
'Apatite'-
Cymatolite-
Garnet Group-X3Z2(SiO4)3
Gummite ?-
Heulandite subgroup ?-
Hornblende-
Limonite-(Fe,O,OH,H2O)
'Manganese Oxides'-
'var: Manganese Dendrites'-
Stilbite subgroup-
Tourmaline-A(D3)G6(T6O18)(BO3)3X3Z
Verdelite-A(D3)G6(T6O18)(BO3)3X3Z

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Semi-metals and non-metals
Bismuth1.3.1.4Bi
Group 2 - SULFIDES
AmXp, with m:p = 1:1
Greenockite2.8.7.2CdS
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:2
Marcasite2.12.2.1FeS2
Pyrite2.12.1.1FeS2
Group 4 - SIMPLE OXIDES
A2X3
Hematite4.3.1.2Fe2O3
Ilmenite4.3.5.1Fe2+TiO3
AX2
Pyrolusite ?4.4.1.4Mn4+O2
Group 5 - OXIDES CONTAINING URANIUM OR THORIUM
AXO2·xH2O
Uraninite5.1.1.1UO2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Group 7 - MULTIPLE OXIDES
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 8 - MULTIPLE OXIDES CONTAINING NIOBIUM,TANTALUM OR TITANIUM
ABO4
Samarskite-(Y)8.1.11.1(Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8
A2B2O6(O,OH,F)
Microlite Group8.2.2.1A2-mTa2X6-wZ-n
AB2O6
Columbite-(Fe)8.3.2.2FeNb2O6
Tantalite-(Mn)8.3.2.3MnTa2O6
Group 9 - NORMAL HALIDES
AX2
Fluorite9.2.1.1CaF2
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Cerussite14.1.3.4PbCO3
Rhodochrosite14.1.1.4MnCO3
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Bismutite16a.3.5.1(BiO)2CO3
Group 38 - ANHYDROUS NORMAL PHOSPHATES, ARSENATES, AND VANADATES
ABXO4
Lithiophilite (TL)38.1.1.2LiMn2+PO4
Natrophilite (TL)38.1.1.3NaMn2+PO4
Sicklerite ?38.1.4.2Li1-x(Mn3+xMn2+1-x)PO4
Triphylite38.1.1.1LiFe2+PO4
(AB)5(XO4)3
Alluaudite ?38.2.3.6(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Fillowite (TL)38.2.5.1{Mn2+}{Na8}{Ca4Na4}{(Mn2+,Fe2+)43}(PO4)36
AXO4
Heterosite ?38.4.1.1(Fe3+,Mn3+)PO4
Purpurite38.4.1.2(Mn3+,Fe3+)PO4
Group 39 - HYDRATED ACID PHOSPHATES,ARSENATES AND VANADATES
(AB)5[HXO4]2[XO4]2.xH2O
Hureaulite39.2.1.1(Mn,Fe)5(PO4)2(HPO4)2 · 4H2O
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
AB2(XO4)2·xH2O, containing (UO2)2+
Autunite40.2a.1.1Ca(UO2)2(PO4)2 · 11H2O
Fairfieldite (TL)40.2.2.1Ca2Mn2+(PO4)2 · 2H2O
Meta-autunite40.2a.1.2Ca(UO2)2(PO4)2 · 6-8H2O
Metatorbernite40.2a.13.2Cu(UO2)2(PO4)2 · 8H2O
Torbernite40.2a.13.1Cu(UO2)2(PO4)2 · 12H2O
A3(XO4)2·xH2O
Landesite ?40.3.2.4Mn2+3-xFe3+x(PO4)2(OH)x · (3-x)H2O
Metaswitzerite40.3.5.2Mn2+3(PO4)2 · 4H2O
Reddingite (TL)40.3.2.3(Mn2+,Fe2+)3(PO4)2 · 3H2O
Switzerite ?40.3.5.4(Mn,Fe)3(PO4)2 · 7H2O
Vivianite40.3.6.1Fe2+3(PO4)2 · 8H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Amblygonite ?41.5.8.1LiAl(PO4)F
Brazilianite ?41.5.7.1NaAl3(PO4)2(OH)4
Montebrasite41.5.8.2LiAl(PO4)(OH)
A2(XO4)Zq
Triplite ?41.6.1.2(Mn2+,Fe2+)2(PO4)(F,OH)
Triploidite (TL)41.6.3.2(Mn2+,Fe2+)2(PO4)(OH)
(AB)7(XO4)4Zq
Dickinsonite-(KMnNa) (TL)41.7.2.2{KNa}{Mn2+◻}{Ca}{Na3}{Mn2+13}{Al}(PO4)12(OH)2
A5(XO4)3Zq
Fluorapatite41.8.1.1Ca5(PO4)3F
Hydroxylapatite41.8.1.3Ca5(PO4)3(OH)
Pyromorphite ?41.8.4.1Pb5(PO4)3Cl
(AB)3(XO4)2Zq
Lazulite ?41.10.1.1(Mg,Fe2+)Al2(PO4)2(OH)2
Group 42 - HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)5(XO4)2Zq·xH2O
Phosphuranylite42.4.8.1(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
(AB)2(XO4)Zq·xH2O
Eosphorite (TL)42.7.1.2Mn2+Al(PO4)(OH)2 · H2O
(AB)5(XO4)3Zq·xH2O
Mitridatite42.8.4.1Ca2Fe3+3(PO4)3O2 · 3H2O
(AB)3(XO4)2Zq·xH2O
Xanthoxenite ?42.11.15.1Ca4Fe3+2(PO4)4(OH)2 · 3H2O
Group 48 - ANHYDROUS MOLYBDATES AND TUNGSTATES
AXO4
Wulfenite48.1.3.1Pb(MoO4)
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in [4] coordination
Eucryptite (TL)51.1.1.3LiAlSiO4
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Almandine51.4.3a.2Fe2+3Al2(SiO4)3
Spessartine ?51.4.3a.3Mn2+3Al2(SiO4)3
Insular SiO4 Groups Only with cations in >[6] coordination
Zircon51.5.2.1Zr(SiO4)
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [4] and >[4] coordination
Staurolite ?52.2.3.1Fe2+2Al9Si4O23(OH)
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] coordination only
Topaz ?52.3.1.1Al2(SiO4)(F,OH)2
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] and/or >[6] coordination
Titanite52.4.3.1CaTi(SiO4)O
Group 53 - NESOSILICATES Insular SiO4 Groups and Other Anions or Complex Cations
Insular SiO4 Groups and Other Anions of Complex Cations with (UO2)
Uranophane53.3.1.2Ca(UO2)2(SiO3OH)2 · 5H2O
Group 56 - SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
Si2O7 Groups and O, OH, F, and H2O with cations in [4] coordination
Bertrandite56.1.1.1Be4(Si2O7)(OH)2
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution
Beryl61.1.1.1Be3Al2(Si6O18)
Six-Membered Rings with borate groups
Elbaite61.3.1.8Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Schorl61.3.1.10Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Spodumene65.1.4.1LiAlSi2O6
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Annite71.2.2b.3KFe2+3(AlSi3O10)(OH)2
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Sheets of 6-membered rings with 2:1 clays
Montmorillonite71.3.1a.2(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Si Tetrahedral Frameworks - SiO2 with H2O and organics
Opal75.2.1.1SiO2 · nH2O
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Microcline76.1.1.5K(AlSi3O8)
Group 77 - TECTOSILICATES Zeolites
Zeolite group - True zeolites
Chabazite-Ca77.1.2.1(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
Unclassified Minerals, Rocks, etc.
Albite
var: Cleavelandite
-Na(AlSi3O8)
var: Oligoclase-(Na,Ca)[Al(Si,Al)Si2O8]
'Apatite'-
Beryl
var: Aquamarine
-Be3Al2Si6O18
var: Goshenite-Be3Al2(Si6O18)
var: Heliodor-Be3Al2(Si6O18)
var: Morganite-Be3Al2(Si6O18)
'Cymatolite'-
Fluorapatite
var: Mn-bearing Fluorapatite
-(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Fluorite
var: Chlorophane
-CaF2
'Garnet Group'-X3Z2(SiO4)3
'Gummite' ?-
'Heulandite subgroup' ?-
'Hornblende'-
'Limonite'-(Fe,O,OH,H2O)
'Manganese Oxides'-
'var: Manganese Dendrites'-
Muscovite
var: Damourite ?
-KAl2(AlSi3O10)(OH)2
Opal
var: Opal-AN
-SiO2 · nH2O
Quartz
var: Rose Quartz
-SiO2
var: Smoky Quartz-SiO2
Spodumene
var: Kunzite
-LiAlSi2O6
'Stilbite subgroup'-
'Tourmaline'-A(D3)G6(T6O18)(BO3)3X3Z
'Verdelite'-A(D3)G6(T6O18)(BO3)3X3Z
Zircon
var: Cyrtolite
-Zr[(SiO4),(OH)4]

List of minerals for each chemical element

HHydrogen
H AnniteKFe32+(AlSi3O10)(OH)2
H AutuniteCa(UO2)2(PO4)2 · 11H2O
H BertranditeBe4(Si2O7)(OH)2
H BrazilianiteNaAl3(PO4)2(OH)4
H Chabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
H Zircon (var: Cyrtolite)Zr[(SiO4),(OH)4]
H Muscovite (var: Damourite)KAl2(AlSi3O10)(OH)2
H Dickinsonite-(KMnNa){KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
H ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
H EosphoriteMn2+Al(PO4)(OH)2 · H2O
H FairfielditeCa2Mn2+(PO4)2 · 2H2O
H Goethiteα-Fe3+O(OH)
H Hureaulite(Mn,Fe)5(PO4)2(HPO4)2 · 4H2O
H HydroxylapatiteCa5(PO4)3(OH)
H LandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
H Lazulite(Mg,Fe2+)Al2(PO4)2(OH)2
H Limonite(Fe,O,OH,H2O)
H Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
H MetaswitzeriteMn32+(PO4)2 · 4H2O
H MetatorberniteCu(UO2)2(PO4)2 · 8H2O
H MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
H Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
H MontebrasiteLiAl(PO4)(OH)
H Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H OpalSiO2 · nH2O
H Opal (var: Opal-AN)SiO2 · nH2O
H Phosphuranylite(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
H Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
H SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
H StauroliteFe22+Al9Si4O23(OH)
H Switzerite(Mn,Fe)3(PO4)2 · 7H2O
H TopazAl2(SiO4)(F,OH)2
H TorberniteCu(UO2)2(PO4)2 · 12H2O
H Triplite(Mn2+,Fe2+)2(PO4)(F,OH)
H Triploidite(Mn2+,Fe2+)2(PO4)(OH)
H UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
H VivianiteFe32+(PO4)2 · 8H2O
H XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
LiLithium
Li AmblygoniteLiAl(PO4)F
Li ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Li EucryptiteLiAlSiO4
Li Spodumene (var: Kunzite)LiAlSi2O6
Li LithiophiliteLiMn2+PO4
Li MontebrasiteLiAl(PO4)(OH)
Li SickleriteLi1-x(Mnx3+Mn2+1-x)PO4
Li SpodumeneLiAlSi2O6
Li TriphyliteLiFe2+PO4
BeBeryllium
Be Beryl (var: Aquamarine)Be3Al2Si6O18
Be BertranditeBe4(Si2O7)(OH)2
Be BerylBe3Al2(Si6O18)
Be Beryl (var: Goshenite)Be3Al2(Si6O18)
Be Beryl (var: Heliodor)Be3Al2(Si6O18)
Be Beryl (var: Morganite)Be3Al2(Si6O18)
BBoron
B ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
B SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
B TourmalineA(D3)G6(T6O18)(BO3)3X3Z
B VerdeliteA(D3)G6(T6O18)(BO3)3X3Z
CCarbon
C Bismutite(BiO)2CO3
C CalciteCaCO3
C CerussitePbCO3
C RhodochrositeMnCO3
OOxygen
O AlbiteNa(AlSi3O8)
O Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
O AlmandineFe32+Al2(SiO4)3
O AmblygoniteLiAl(PO4)F
O AnniteKFe32+(AlSi3O10)(OH)2
O Beryl (var: Aquamarine)Be3Al2Si6O18
O AutuniteCa(UO2)2(PO4)2 · 11H2O
O BertranditeBe4(Si2O7)(OH)2
O BerylBe3Al2(Si6O18)
O Bismutite(BiO)2CO3
O BrazilianiteNaAl3(PO4)2(OH)4
O CalciteCaCO3
O CerussitePbCO3
O Chabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
O Albite (var: Cleavelandite)Na(AlSi3O8)
O Columbite-(Fe)FeNb2O6
O Zircon (var: Cyrtolite)Zr[(SiO4),(OH)4]
O Muscovite (var: Damourite)KAl2(AlSi3O10)(OH)2
O Dickinsonite-(KMnNa){KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
O ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
O EosphoriteMn2+Al(PO4)(OH)2 · H2O
O EucryptiteLiAlSiO4
O FairfielditeCa2Mn2+(PO4)2 · 2H2O
O Fillowite{Mn2+}{Na8}{Ca4Na4}{(Mn2+,Fe2+)43}(PO4)36
O FluorapatiteCa5(PO4)3F
O Garnet GroupX3Z2(SiO4)3
O Goethiteα-Fe3+O(OH)
O Beryl (var: Goshenite)Be3Al2(Si6O18)
O Beryl (var: Heliodor)Be3Al2(Si6O18)
O HematiteFe2O3
O Heterosite(Fe3+,Mn3+)PO4
O Hureaulite(Mn,Fe)5(PO4)2(HPO4)2 · 4H2O
O HydroxylapatiteCa5(PO4)3(OH)
O IlmeniteFe2+TiO3
O Spodumene (var: Kunzite)LiAlSi2O6
O LandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
O Lazulite(Mg,Fe2+)Al2(PO4)2(OH)2
O Limonite(Fe,O,OH,H2O)
O LithiophiliteLiMn2+PO4
O MagnetiteFe2+Fe23+O4
O Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
O MetaswitzeriteMn32+(PO4)2 · 4H2O
O MetatorberniteCu(UO2)2(PO4)2 · 8H2O
O MicroclineK(AlSi3O8)
O MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
O Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
O MontebrasiteLiAl(PO4)(OH)
O Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
O Beryl (var: Morganite)Be3Al2(Si6O18)
O MuscoviteKAl2(AlSi3O10)(OH)2
O NatrophiliteNaMn2+PO4
O Albite (var: Oligoclase)(Na,Ca)[Al(Si,Al)Si2O8]
O OpalSiO2 · nH2O
O Opal (var: Opal-AN)SiO2 · nH2O
O Phosphuranylite(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
O Purpurite(Mn3+,Fe3+)PO4
O PyrolusiteMn4+O2
O PyromorphitePb5(PO4)3Cl
O QuartzSiO2
O Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
O RhodochrositeMnCO3
O Quartz (var: Rose Quartz)SiO2
O Samarskite-(Y)(Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8
O SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
O SickleriteLi1-x(Mnx3+Mn2+1-x)PO4
O Quartz (var: Smoky Quartz)SiO2
O SpessartineMn32+Al2(SiO4)3
O SpodumeneLiAlSi2O6
O StauroliteFe22+Al9Si4O23(OH)
O Switzerite(Mn,Fe)3(PO4)2 · 7H2O
O Tantalite-(Mn)MnTa2O6
O TitaniteCaTi(SiO4)O
O TopazAl2(SiO4)(F,OH)2
O TorberniteCu(UO2)2(PO4)2 · 12H2O
O TourmalineA(D3)G6(T6O18)(BO3)3X3Z
O TriphyliteLiFe2+PO4
O Triplite(Mn2+,Fe2+)2(PO4)(F,OH)
O Triploidite(Mn2+,Fe2+)2(PO4)(OH)
O UraniniteUO2
O UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
O VerdeliteA(D3)G6(T6O18)(BO3)3X3Z
O VivianiteFe32+(PO4)2 · 8H2O
O WulfenitePb(MoO4)
O XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
O ZirconZr(SiO4)
FFluorine
F AmblygoniteLiAl(PO4)F
F Fluorite (var: Chlorophane)CaF2
F FluorapatiteCa5(PO4)3F
F FluoriteCaF2
F Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
F TopazAl2(SiO4)(F,OH)2
F Triplite(Mn2+,Fe2+)2(PO4)(F,OH)
NaSodium
Na AlbiteNa(AlSi3O8)
Na Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Na BrazilianiteNaAl3(PO4)2(OH)4
Na Albite (var: Cleavelandite)Na(AlSi3O8)
Na Dickinsonite-(KMnNa){KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
Na ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Na Fillowite{Mn2+}{Na8}{Ca4Na4}{(Mn2+,Fe2+)43}(PO4)36
Na Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Na NatrophiliteNaMn2+PO4
Na Albite (var: Oligoclase)(Na,Ca)[Al(Si,Al)Si2O8]
Na SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
MgMagnesium
Mg Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Mg Lazulite(Mg,Fe2+)Al2(PO4)2(OH)2
Mg Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
AlAluminium
Al AlbiteNa(AlSi3O8)
Al AlmandineFe32+Al2(SiO4)3
Al AmblygoniteLiAl(PO4)F
Al AnniteKFe32+(AlSi3O10)(OH)2
Al Beryl (var: Aquamarine)Be3Al2Si6O18
Al BerylBe3Al2(Si6O18)
Al BrazilianiteNaAl3(PO4)2(OH)4
Al Chabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
Al Albite (var: Cleavelandite)Na(AlSi3O8)
Al Muscovite (var: Damourite)KAl2(AlSi3O10)(OH)2
Al Dickinsonite-(KMnNa){KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
Al ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Al EosphoriteMn2+Al(PO4)(OH)2 · H2O
Al EucryptiteLiAlSiO4
Al Beryl (var: Goshenite)Be3Al2(Si6O18)
Al Beryl (var: Heliodor)Be3Al2(Si6O18)
Al Spodumene (var: Kunzite)LiAlSi2O6
Al Lazulite(Mg,Fe2+)Al2(PO4)2(OH)2
Al MicroclineK(AlSi3O8)
Al MontebrasiteLiAl(PO4)(OH)
Al Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Al Beryl (var: Morganite)Be3Al2(Si6O18)
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al Albite (var: Oligoclase)(Na,Ca)[Al(Si,Al)Si2O8]
Al SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Al SpessartineMn32+Al2(SiO4)3
Al SpodumeneLiAlSi2O6
Al StauroliteFe22+Al9Si4O23(OH)
Al TopazAl2(SiO4)(F,OH)2
SiSilicon
Si AlbiteNa(AlSi3O8)
Si AlmandineFe32+Al2(SiO4)3
Si AnniteKFe32+(AlSi3O10)(OH)2
Si Beryl (var: Aquamarine)Be3Al2Si6O18
Si BertranditeBe4(Si2O7)(OH)2
Si BerylBe3Al2(Si6O18)
Si Chabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
Si Albite (var: Cleavelandite)Na(AlSi3O8)
Si Zircon (var: Cyrtolite)Zr[(SiO4),(OH)4]
Si Muscovite (var: Damourite)KAl2(AlSi3O10)(OH)2
Si ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Si EucryptiteLiAlSiO4
Si Garnet GroupX3Z2(SiO4)3
Si Beryl (var: Goshenite)Be3Al2(Si6O18)
Si Beryl (var: Heliodor)Be3Al2(Si6O18)
Si Spodumene (var: Kunzite)LiAlSi2O6
Si MicroclineK(AlSi3O8)
Si Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Si Beryl (var: Morganite)Be3Al2(Si6O18)
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si Albite (var: Oligoclase)(Na,Ca)[Al(Si,Al)Si2O8]
Si OpalSiO2 · nH2O
Si Opal (var: Opal-AN)SiO2 · nH2O
Si QuartzSiO2
Si Quartz (var: Rose Quartz)SiO2
Si SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Si Quartz (var: Smoky Quartz)SiO2
Si SpessartineMn32+Al2(SiO4)3
Si SpodumeneLiAlSi2O6
Si StauroliteFe22+Al9Si4O23(OH)
Si TitaniteCaTi(SiO4)O
Si TopazAl2(SiO4)(F,OH)2
Si UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
Si ZirconZr(SiO4)
PPhosphorus
P Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
P AmblygoniteLiAl(PO4)F
P AutuniteCa(UO2)2(PO4)2 · 11H2O
P BrazilianiteNaAl3(PO4)2(OH)4
P Dickinsonite-(KMnNa){KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
P EosphoriteMn2+Al(PO4)(OH)2 · H2O
P FairfielditeCa2Mn2+(PO4)2 · 2H2O
P Fillowite{Mn2+}{Na8}{Ca4Na4}{(Mn2+,Fe2+)43}(PO4)36
P FluorapatiteCa5(PO4)3F
P Heterosite(Fe3+,Mn3+)PO4
P Hureaulite(Mn,Fe)5(PO4)2(HPO4)2 · 4H2O
P HydroxylapatiteCa5(PO4)3(OH)
P LandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
P Lazulite(Mg,Fe2+)Al2(PO4)2(OH)2
P LithiophiliteLiMn2+PO4
P Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
P MetaswitzeriteMn32+(PO4)2 · 4H2O
P MetatorberniteCu(UO2)2(PO4)2 · 8H2O
P MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
P Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
P MontebrasiteLiAl(PO4)(OH)
P NatrophiliteNaMn2+PO4
P Phosphuranylite(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
P Purpurite(Mn3+,Fe3+)PO4
P PyromorphitePb5(PO4)3Cl
P Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
P SickleriteLi1-x(Mnx3+Mn2+1-x)PO4
P Switzerite(Mn,Fe)3(PO4)2 · 7H2O
P TorberniteCu(UO2)2(PO4)2 · 12H2O
P TriphyliteLiFe2+PO4
P Triplite(Mn2+,Fe2+)2(PO4)(F,OH)
P Triploidite(Mn2+,Fe2+)2(PO4)(OH)
P VivianiteFe32+(PO4)2 · 8H2O
P XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
SSulfur
S GreenockiteCdS
S MarcasiteFeS2
S PyriteFeS2
S SphaleriteZnS
ClChlorine
Cl Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Cl PyromorphitePb5(PO4)3Cl
KPotassium
K AnniteKFe32+(AlSi3O10)(OH)2
K Muscovite (var: Damourite)KAl2(AlSi3O10)(OH)2
K Dickinsonite-(KMnNa){KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
K MicroclineK(AlSi3O8)
K MuscoviteKAl2(AlSi3O10)(OH)2
K Phosphuranylite(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
CaCalcium
Ca Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Ca AutuniteCa(UO2)2(PO4)2 · 11H2O
Ca CalciteCaCO3
Ca Chabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
Ca Fluorite (var: Chlorophane)CaF2
Ca Dickinsonite-(KMnNa){KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
Ca FairfielditeCa2Mn2+(PO4)2 · 2H2O
Ca Fillowite{Mn2+}{Na8}{Ca4Na4}{(Mn2+,Fe2+)43}(PO4)36
Ca FluorapatiteCa5(PO4)3F
Ca FluoriteCaF2
Ca HydroxylapatiteCa5(PO4)3(OH)
Ca Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
Ca MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
Ca Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Ca Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Ca Albite (var: Oligoclase)(Na,Ca)[Al(Si,Al)Si2O8]
Ca Phosphuranylite(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
Ca Samarskite-(Y)(Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8
Ca TitaniteCaTi(SiO4)O
Ca UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
Ca XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
TiTitanium
Ti IlmeniteFe2+TiO3
Ti TitaniteCaTi(SiO4)O
MnManganese
Mn Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Mn Dickinsonite-(KMnNa){KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
Mn EosphoriteMn2+Al(PO4)(OH)2 · H2O
Mn FairfielditeCa2Mn2+(PO4)2 · 2H2O
Mn Fillowite{Mn2+}{Na8}{Ca4Na4}{(Mn2+,Fe2+)43}(PO4)36
Mn Heterosite(Fe3+,Mn3+)PO4
Mn Hureaulite(Mn,Fe)5(PO4)2(HPO4)2 · 4H2O
Mn LandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
Mn LithiophiliteLiMn2+PO4
Mn MetaswitzeriteMn32+(PO4)2 · 4H2O
Mn Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Mn NatrophiliteNaMn2+PO4
Mn Purpurite(Mn3+,Fe3+)PO4
Mn PyrolusiteMn4+O2
Mn Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
Mn RhodochrositeMnCO3
Mn SickleriteLi1-x(Mnx3+Mn2+1-x)PO4
Mn SpessartineMn32+Al2(SiO4)3
Mn Switzerite(Mn,Fe)3(PO4)2 · 7H2O
Mn Tantalite-(Mn)MnTa2O6
Mn Triplite(Mn2+,Fe2+)2(PO4)(F,OH)
Mn Triploidite(Mn2+,Fe2+)2(PO4)(OH)
FeIron
Fe Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Fe AlmandineFe32+Al2(SiO4)3
Fe AnniteKFe32+(AlSi3O10)(OH)2
Fe Columbite-(Fe)FeNb2O6
Fe Goethiteα-Fe3+O(OH)
Fe HematiteFe2O3
Fe Heterosite(Fe3+,Mn3+)PO4
Fe IlmeniteFe2+TiO3
Fe LandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
Fe Limonite(Fe,O,OH,H2O)
Fe MagnetiteFe2+Fe23+O4
Fe MarcasiteFeS2
Fe MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
Fe Purpurite(Mn3+,Fe3+)PO4
Fe PyriteFeS2
Fe Samarskite-(Y)(Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8
Fe SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Fe StauroliteFe22+Al9Si4O23(OH)
Fe TriphyliteLiFe2+PO4
Fe Triplite(Mn2+,Fe2+)2(PO4)(F,OH)
Fe VivianiteFe32+(PO4)2 · 8H2O
Fe XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
CuCopper
Cu MetatorberniteCu(UO2)2(PO4)2 · 8H2O
Cu TorberniteCu(UO2)2(PO4)2 · 12H2O
ZnZinc
Zn SphaleriteZnS
YYttrium
Y Samarskite-(Y)(Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8
ZrZirconium
Zr Zircon (var: Cyrtolite)Zr[(SiO4),(OH)4]
Zr ZirconZr(SiO4)
NbNiobium
Nb Columbite-(Fe)FeNb2O6
Nb Samarskite-(Y)(Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8
MoMolybdenum
Mo WulfenitePb(MoO4)
CdCadmium
Cd GreenockiteCdS
TaTantalum
Ta Microlite GroupA2-mTa2X6-wZ-n
Ta Samarskite-(Y)(Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8
Ta Tantalite-(Mn)MnTa2O6
PbLead
Pb CerussitePbCO3
Pb PyromorphitePb5(PO4)3Cl
Pb WulfenitePb(MoO4)
BiBismuth
Bi BismuthBi
Bi Bismutite(BiO)2CO3
ThThorium
Th Samarskite-(Y)(Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8
UUranium
U AutuniteCa(UO2)2(PO4)2 · 11H2O
U Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
U MetatorberniteCu(UO2)2(PO4)2 · 8H2O
U Phosphuranylite(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
U Samarskite-(Y)(Y,Fe3+,Fe2+,U,Th,Ca)2(Nb,Ta)2O8
U TorberniteCu(UO2)2(PO4)2 · 12H2O
U UraniniteUO2
U UranophaneCa(UO2)2(SiO3OH)2 · 5H2O

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Eifelian - Lochkovian
387.7 - 419.2 Ma



ID: 2896343
Ordovician? granitic gneiss

Age: Devonian (387.7 - 419.2 Ma)

Description: (Including local terms Ansonia, Mine Hill, "Tyler Lake," "Siscowit") - White, light-gray, buff, or pink, generally foliated granitic gneiss, composed of sodic plagioclase, quartz, microcline, muscovite, and biotite, and locally garnet or sillimanite. Commonly contains numerous inclusions or layers of mica schist and gneiss.

Comments: Part of Central Lowlands; Iapetus (Oceanic) Terrane - Connecticut Valley Synclinorium; Ansonia Gneiss is here referred to as Ansonia leucogranite. On the basis of field and laboratory studies, Ansonia, Beardsley, Pumpkin Ground, and Shelton gneisses, previously considered stratigraphic units, are reinterpreted as plutonic. Ansonia is described as a strongly lineated and moderately foliated, fine-grained, garnet-bearing, biotite-muscovite leucogranite with a well-developed granoblastic texture. Intrudes Beardsley and Pumpkin Ground orthogneisses. Maximum age from zircons is 417+/-1.5 Ma. Conservative interpretation of isotopic data is crystallization between 393 and 419 Ma and therefore, authors assign an age of 406+/-13 Ma (Late Silurian to Early Devonian) to the Ansonia (Sevigny and Hanson, 1993) per CT007.

Lithology: Major:{gneiss}, Minor:{mica schist}

Reference: Horton, J.D., C.A. San Juan, and D.B. Stoeser. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States. doi: 10.3133/ds1052. U.S. Geological Survey Data Series 1052. [133]

Ordovician - Neoproterozoic
443.8 - 1000 Ma



ID: 3190671
Precambrian-Phanerozoic sedimentary rocks

Age: Neoproterozoic to Ordovician (443.8 - 1000 Ma)

Lithology: Mudstone-carbonate-sandstone-conglomerate

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Brush, George J. and Edward S. Dana (1878) Notice of three new Phosphates from Fairfield County, Connecticut. American Journal of Science: s. 3, 15: 398-399.
Brush, George J. and Edward S. Dana (1878) Notice of a fourth new Phosphate from Fairfield Co., Connecticut. American Journal of Science: s. 3, 15: 481-2.
Brush, George J. and Edward S. Dana (1878) On a new and remarkable mineral locality in Fairfield County, Connecticut; with a description of several new species occurring there. First Paper. American Journal of Science: s. 3, 16: 33-46, 114-123.
Brush, George J. and Edward S. Dana (1879) On the Mineral Locality in Fairfield County, Connecticut, with the description of two additional new species. Second Paper. American Journal of Science: s. 3, 17: 359-368.
Brush, George J. and Edward S. Dana (1879) On the Mineral Locality in Fairfield County, Connecticut. Third Paper. American Journal of Science: s. 3, 18: 45-50.
Penfield, Samuel L. (1879) On the Chemical Composition of Amblygonite. American Journal of Science: s.3, 18: 295-301.
Comstock, W. J. (1880) Analyses of Some American Tantalates. American Journal of Science: s. 3, 19: 131-2.
Comstock, W. J. (1880) On the chemical composition of the uraninite from Branchville, Connecticut. American Journal of Science: s. 3, 19: 220-222.
Penfield, Samuel L. (1880) Analyses of some Apatites containing Manganese. American Journal of Science: s.3, 19: 367-369.
Brush, George J. and Edward S. Dana. (1880) On the Mineral Locality at Branchville, Connecticut: Fourth Paper. Spodumene and the results of its Alteration. American Journal of Science: s. 3, 20: 257-285.
Penfield, Samuel L. (1883) Analyses of two varieties of lithiophilite (manganese triphylite). American Journal of Science: s. 3, 26: 176.
Brush, George J., Edward S. Dana, and Horace L. Wells (1890) On the Mineral Locality at Branchville, Connecticut: Fifth Paper; With analyses of several manganese phosphates. American Journal of Science: s. 3, 39: 210-216.
Hillebrand, W. F. (1890) On the occurrence of nitrogen in uraninite and on the composition of uraninite in general. American Journal of Science. s. 3, 40: 384-394.
Boltwood, B. B. (1907) On the ultimate disintegration products of the radioactive elements. American Journal of Science: s. 4, 23: 78-88.
Schairer, John F. (1931) Minerals of Connecticut. State Geological and Natural History Survey of Connecticut Bulletin 51.
Elwell, Wilbur. (1937) Some Old Localities in Connecticut. Rocks and Minerals: 12(9): 270-1.
Cameron, E N., Larrabee, D. M., McNair, A. H., Page, J. J., Shainin, V E., and Stewart, G. W. (1945) Structural and economic characteristics of New England mica deposits. Economic Geology: 40: 369-393.
Shainin, V. (1946) The Branchville, Connecticut, Pegmatite. American Mineralogist: 31: 329-345.
Palache, C., Berman, H., & Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 851, 876, 938.
Sohon, Julian A. (1951) Connecticut Minerals. State Geological and Natural History Survey of Connecticut Bulletin 77.
Cameron, Eugene N., Larrabee David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954) Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255.
Neues Jahrbuch für Mineralogie, Monatshefte (1957): 78.
Januzzi, Ronald E. (1959) The Minerals of Western Connecticut and Southeastern New York. Mineralogical Press, Danbury, Connecticut.
Jones, Robert W. Jr., (1960) Luminescent Minerals of Connecticut, A Guide to Their Properties and Locations. Fluorescent House. Branford, Connecticut.
Schooner, Richard. (1961) The Mineralogy of Connecticut. Fluorescent House, Branford, Connecticut.
Henderson, William A., Jr. (1975) The Bertrandites of Connecticut. Mineralogical Record: 6(3): 114-123.
errors listed in Januzzi and Seaman (1976) Mineral Localities of Connecticut and Southeastern New York State and Pegmatite Minerals of the World. Mineralogical Press, Danbury, Connecticut.
Ryerson, Kathleen H. (1976) Rock Hound’s Guide to Connecticut. Pequot Press.
Marcin, Edward J. (1981) Branchville, Fairfield County, Connecticut: A Classic Mineral Locality. Rocks and Minerals: 56: 67-69.
Lapis (1984): 2: 5.
Zanazzi et al. (1986) Dehydration from switzerite. American Mineralogist 71: 1224-1228.
minerals listed in error in Tschernich, R. (1992) Zeolites of the World. Geoscience Press, Phoenix: 114.
Januzzi, Ronald. E. (1994) Mineral Data Book - Western Connecticut and Environs. Mineralogical Press, Danbury, Connecticut.
Weber, Marcelle H. and Earle C. Sullivan (1995) Connecticut Mineral Locality Index. Rocks & Minerals (Connecticut Issue): 70(6) (November/December): 396.
Januzzi, Ronald E. (1997) The Branchville Quarry and the Dickinson/Fillow Controversy. Mineralogical Press, Danbury, Connecticut.
Vajdak, Josef (1999) New Mineral Finds in the First Half of 1999. Mineral News: 15(7): 2, 4.
Vajdak, Josef (2000) New Mineral Finds in the Second Half of 2000. Mineral News: 17(1): 1, 4, 5.

External Links



This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2018, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: August 19, 2018 08:20:26 Page generated: August 19, 2018 02:44:10
Go to top of page