Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Akenobe mine, Oya-cho, Yabu City, Hyogo, Japani
Regional Level Types
Akenobe mineMine
Oya-cho- not defined -
Yabu CityCity
HyogoPrefecture
JapanCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Name(s) in local language(s):明延鉱山, 兵庫県 養父市 大屋町明延
Latitude & Longitude (WGS84): 35° 16' 59'' North , 134° 40' 0'' East
Latitude & Longitude (decimal): 35.28333,134.66667
GeoHash:G#: wyrb8rjk2
Locality type:Mine
Köppen climate type:Cfa : Humid subtropical climate


A copper-zinc-tin-tungsten-arsenic mine, now closed, which worked more than 50 veins, some of them highly telescoped xenothermal veins (i.e. high- and low-temperature minerals superimposed in the same veins) cutting Paleozoic and Mesozoic sediments and younger gabbroic to dioritic intrusives. Tin was discovered here in 1908 and for many years this mine produced as much Sn as all other japanese tin deposits combined. Tungsten was produced from both ferberite and scheelite; arsenic trioxide from arsenopyrite.

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded at this locality.


Mineral List


48 valid minerals.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Acanthite
Formula: Ag2S
Reference: www.mineralmundi.com/japan.htm
Alumohydrocalcite
Formula: CaAl2(CO3)2(OH)4 · 4H2O
Reference: Handbook of Mineralogy
'Apatite'
Reference: Geology and Mineral Resources of Japan (Geological Survey of Japan, 1960)
'commodity:Arsenic'
Formula: As
Reference:  
Arsenopyrite
Formula: FeAsS
Reference: Geology and Mineral Resources of Japan (Geological Survey of Japan, 1960); Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Aurichalcite
Formula: (Zn,Cu)5(CO3)2(OH)6
Reference: Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
Baryte
Formula: BaSO4
Reference: www.mineralmundi.com/japan.htm
Bismuth
Formula: Bi
Reference: Geology and Mineral Resources of Japan (Geological Survey of Japan, 1960); Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
Bismuthinite
Formula: Bi2S3
Reference: Geology and Mineral Resources of Japan (Geological Survey of Japan, 1960)
Bornite
Formula: Cu5FeS4
Reference: Geology and Mineral Resources of Japan (Geological Survey of Japan, 1960); Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Brochantite
Formula: Cu4(SO4)(OH)6
Reference: Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
Calcite
Formula: CaCO3
Reference: Ryoichi SADANAGA and Michiaki BUNNO (1974) THE WAKABAYASHI MINERAL COLLECTION Bulletin No. 7 The University Museum, The University of Tokyo
Cassiterite
Formula: SnO2
Reference: Ryoichi SADANAGA and Michiaki BUNNO (1974) THE WAKABAYASHI MINERAL COLLECTION Bulletin No. 7 The University Museum, The University of Tokyo; Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Chalcocite
Formula: Cu2S
Reference: www.mineralmundi.com/japan.htm
Chalcopyrite
Formula: CuFeS2
Reference: Mining Annual Review:1985:407.; Canadian Mineralogist Vol. 25, pp,229-236 (1987); Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Chamosite
Formula: (Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Reference: Ryoichi SADANAGA and Michiaki BUNNO (1974) THE WAKABAYASHI MINERAL COLLECTION Bulletin No. 7 The University Museum, The University of Tokyo
'Clays'
Reference: Geology and Mineral Resources of Japan (Geological Survey of Japan, 1960)
Copper
Formula: Cu
Reference: Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
'commodity:Copper'
Formula: Cu
Reference:  
Covellite
Formula: CuS
Reference: Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
'Diorite'
Reference: Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Djurleite
Formula: Cu31S16
Reference: Dr. Kameki Kinoshita collection (curated at Geological Survey of Japan); Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
Emplectite
Formula: CuBiS2
Reference: Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
Epidote
Formula: {Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Reference: Werner, A.B.T., Sinclair, W.D., and Amey, E.B. (1998): US Geological Survey Circular 930-O.
Ferberite
Formula: FeWO4
Reference: Geology and Mineral Resources of Japan (Geological Survey of Japan, 1960)
Fluorite
Formula: CaF2
Reference: Ryoichi SADANAGA and Michiaki BUNNO (1974) THE WAKABAYASHI MINERAL COLLECTION Bulletin No. 7 The University Museum, The University of Tokyo
Galena
Formula: PbS
Reference: Geology and Mineral Resources of Japan (Geological Survey of Japan, 1960); Canadian Mineralogist Vol. 25, pp,229-236 (1987); Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Gold
Formula: Au
Reference: www.mineralmundi.com/japan.htm
Hematite
Formula: Fe2O3
Reference: Geology and Mineral Resources of Japan (Geological Survey of Japan, 1960)
Ikunolite
Formula: Bi4(S,Se)3
Reference: Masutomi Museum specimens (Kyoto)
'commodity:Indium'
Formula: In
Reference:  
Laitakarite
Formula: Bi4Se2S
Reference: (Kato, A. (1973) Sakurai Koubutsu Hyohon, 13).; Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Geology and Mineral Resources of Japan (Geological Survey of Japan, 1960)
Mawsonite
Formula: Cu6Fe2SnS8
Reference: Mining Annual Review:1985:407.; Am Min 61:3-4 pp 260-265; Canadian Mineralogist Vol. 25, pp,229-236 (1987)
Molybdenite
Formula: MoS2
Reference: Geology and Mineral Resources of Japan (Geological Survey of Japan, 1960)
Mordenite
Formula: (Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Reference: Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Dr. Kameki Kinoshita collection (curated at Geological Survey of Japan)
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Dr. Kameki Kinoshita collection (curated at Geological Survey of Japan)
Orthoclase
Formula: K(AlSi3O8)
Reference: www.mineralmundi.com/japan.htm
Pavonite
Formula: AgBi3S5
Reference: Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
Polybasite
Formula: [(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
Reference: www.mineralmundi.com/japan.htm
'Porphyry'
Reference: Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Pyrite
Formula: FeS2
Reference: Ryoichi SADANAGA and Michiaki BUNNO (1974) THE WAKABAYASHI MINERAL COLLECTION Bulletin No. 7 The University Museum, The University of Tokyo
Pyrrhotite
Formula: Fe7S8
Reference: Geology and Mineral Resources of Japan (Geological Survey of Japan, 1960); Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
Quartz
Formula: SiO2
Reference: Ryoichi SADANAGA and Michiaki BUNNO (1974) THE WAKABAYASHI MINERAL COLLECTION Bulletin No. 7 The University Museum, The University of Tokyo; Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Quartz var: Chalcedony
Formula: SiO2
Reference: Geology and Mineral Resources of Japan (Geological Survey of Japan, 1960)
Quartz var: Milky Quartz
Formula: SiO2
Reference: Takeo Katou (1917) journal of the Geological Society of Tokyo, 24, #287, 35-39.
Roquesite
Formula: CuInS2
Reference: Mineralogical Journal 5 (1968) 276-284; Mining Annual Review:1985:407.; Mineralogical Journal Vol. 12 (1984) , No. 4 pp 162-172; Canadian Mineralogist Vol. 25, pp,229-236 (1987); Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Saponite
Formula: Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Reference: Dr. Kameki Kinoshita collection (curated at Geological Survey of Japan)
Scheelite
Formula: Ca(WO4)
Reference: Ryoichi SADANAGA and Michiaki BUNNO (1974) THE WAKABAYASHI MINERAL COLLECTION Bulletin No. 7 The University Museum, The University of Tokyo; Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Siderite
Formula: FeCO3
Reference: Ryoichi SADANAGA and Michiaki BUNNO (1974) THE WAKABAYASHI MINERAL COLLECTION Bulletin No. 7 The University Museum, The University of Tokyo; Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Silver
Formula: Ag
Reference: Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
Sphalerite
Formula: ZnS
Reference: Geology and Mineral Resources of Japan (Geological Survey of Japan, 1960); Canadian Mineralogist Vol. 25, pp,229-236 (1987)
Sphalerite var: Marmatite
Formula: (Zn,Fe)S
Reference: Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
Stannite
Formula: Cu2FeSnS4
Reference: Dr. Matsuo Nambu collection (curated at Geological Survey of Japan); Shimizu, M., Shimizu, M., & Tsunoda, K. (2008). Physicochemical Environment of Formation of Tin Sulfide-Bearing. Far Eastern Studies 7:23-40
Stannoidite
Formula: Cu+6Cu2+2(Fe2+,Zn)3Sn2S12
Reference: Am Min 61:3-4 pp 260-265; Canadian Mineralogist Vol. 25, pp,229-236 (1987); Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Tennantite
Formula: Cu6[Cu4(Fe,Zn)2]As4S13
Reference: Canadian Mineralogist Vol. 25, pp,229-236 (1987)
'commodity:Tin'
Formula: Sn
Reference:  
Topaz
Formula: Al2(SiO4)(F,OH)2
Reference: www.mineralmundi.com/japan.htm
'commodity:Tungsten'
Formula: W
Reference:  
Vauquelinite
Formula: Pb2Cu(CrO4)(PO4)(OH)
Reference: http://staff.aist.go.jp/miyagi.iso14000/Works/Review/coop/0028/874.html (Dr. Takashi Yamada lecture to the Mineralogical Society)
'Wolframite'
Formula: (Fe2+)WO4 to (Mn2+)WO4
Reference: Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
'commodity:Zinc'
Formula: Zn
Reference:  

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
'Bismuth'1.CA.05Bi
Copper1.AA.05Cu
Gold1.AA.05Au
Silver1.AA.05Ag
Group 2 - Sulphides and Sulfosalts
'Acanthite'2.BA.35Ag2S
'Arsenopyrite'2.EB.20FeAsS
'Bismuthinite'2.DB.05Bi2S3
'Bornite'2.BA.15Cu5FeS4
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Covellite2.CA.05aCuS
Djurleite2.BA.05Cu31S16
Emplectite2.HA.05CuBiS2
Galena2.CD.10PbS
Ikunolite2.DC.05Bi4(S,Se)3
Laitakarite2.DC.05Bi4Se2S
Mawsonite2.CB.20Cu6Fe2SnS8
Molybdenite2.EA.30MoS2
Pavonite2.JA.05aAgBi3S5
Polybasite2.GB.15[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe7S8
Roquesite2.CB.10aCuInS2
Sphalerite2.CB.05aZnS
var: Marmatite2.CB.05a(Zn,Fe)S
Stannite2.CB.15aCu2FeSnS4
Stannoidite2.CB.15cCu+6Cu2+2(Fe2+,Zn)3Sn2S12
Tennantite2.GB.05Cu6[Cu4(Fe,Zn)2]As4S13
Group 3 - Halides
Fluorite3.AB.25CaF2
Group 4 - Oxides and Hydroxides
'Cassiterite'4.DB.05SnO2
Ferberite4.DB.30FeWO4
Hematite4.CB.05Fe2O3
Magnetite4.BB.05Fe2+Fe3+2O4
Quartz4.DA.05SiO2
var: Chalcedony4.DA.05SiO2
var: Milky Quartz4.DA.05SiO2
Group 5 - Nitrates and Carbonates
'Alumohydrocalcite'5.DB.05CaAl2(CO3)2(OH)4 · 4H2O
'Aurichalcite'5.BA.15(Zn,Cu)5(CO3)2(OH)6
'Calcite'5.AB.05CaCO3
Siderite5.AB.05FeCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
'Baryte'7.AD.35BaSO4
'Brochantite'7.BB.25Cu4(SO4)(OH)6
Scheelite7.GA.05Ca(WO4)
Vauquelinite7.FC.05Pb2Cu(CrO4)(PO4)(OH)
Group 9 - Silicates
Chamosite9.EC.55(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Epidote9.BG.05a{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Mordenite9.GD.35(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Orthoclase9.FA.30K(AlSi3O8)
Saponite9.EC.45Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Topaz9.AF.35Al2(SiO4)(F,OH)2
Unclassified Minerals, Rocks, etc.
'Apatite'-
Clays-
Diorite-
Porphyry-
Wolframite-(Fe2+)WO4 to (Mn2+)WO4

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Gold1.1.1.1Au
Silver1.1.1.2Ag
Semi-metals and non-metals
Bismuth1.3.1.4Bi
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Acanthite2.4.1.1Ag2S
Chalcocite2.4.7.1Cu2S
Djurleite2.4.7.2Cu31S16
AmBnXp, with (m+n):p = 3:2
Bornite2.5.2.1Cu5FeS4
AmBnXp, with (m+n):p = 4:3
Ikunolite2.6.2.3Bi4(S,Se)3
Laitakarite2.6.2.4Bi4Se2S
AmXp, with m:p = 1:1
Covellite2.8.12.1CuS
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
Mawsonite2.9.3.1Cu6Fe2SnS8
Roquesite2.9.1.4CuInS2
Stannite2.9.2.1Cu2FeSnS4
Stannoidite2.9.3.3Cu+6Cu2+2(Fe2+,Zn)3Sn2S12
AmBnXp, with (m+n):p = 2:3
Bismuthinite2.11.2.3Bi2S3
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Molybdenite2.12.10.1MoS2
Pyrite2.12.1.1FeS2
Group 3 - SULFOSALTS
ø > 4
Polybasite3.1.7.2[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
3 <ø < 4
Tennantite3.3.6.2Cu6[Cu4(Fe,Zn)2]As4S13
ø = 2
Emplectite3.7.5.2CuBiS2
1 < ø < 2
Pavonite3.8.10.1AgBi3S5
Group 4 - SIMPLE OXIDES
A2X3
Hematite4.3.1.2Fe2O3
AX2
Cassiterite4.4.1.5SnO2
Group 7 - MULTIPLE OXIDES
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 9 - NORMAL HALIDES
AX2
Fluorite9.2.1.1CaF2
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Siderite14.1.1.3FeCO3
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Aurichalcite16a.4.2.1(Zn,Cu)5(CO3)2(OH)6
Group 16b - HYDRATED CARBONATES CONTAINING HYDROXYL OR HALOGEN
Alumohydrocalcite16b.2.3.1CaAl2(CO3)2(OH)4 · 4H2O
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Baryte28.3.1.1BaSO4
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)m(XO4)pZq, where m:p>2:1
Brochantite30.1.3.1Cu4(SO4)(OH)6
Group 43 - COMPOUND PHOSPHATES, ETC.
Anhydrous Compound Phosphates, etc·, Containing Hydroxyl or Halogen
Vauquelinite43.4.3.1Pb2Cu(CrO4)(PO4)(OH)
Group 48 - ANHYDROUS MOLYBDATES AND TUNGSTATES
AXO4
Ferberite48.1.1.2FeWO4
Scheelite48.1.2.1Ca(WO4)
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] coordination only
Topaz52.3.1.1Al2(SiO4)(F,OH)2
Group 58 - SOROSILICATES Insular, Mixed, Single, and Larger Tetrahedral Groups
Insular, Mixed, Single, and Larger Tetrahedral Groups with cations in [6] and higher coordination; single and double groups (n = 1, 2)
Epidote58.2.1a.7{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Sheets of 6-membered rings with 2:1 clays
Saponite71.3.1b.2Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Sheets of 6-membered rings interlayered 1:1, 2:1, and octahedra
Chamosite71.4.1.7(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Orthoclase76.1.1.1K(AlSi3O8)
Group 77 - TECTOSILICATES Zeolites
Zeolite group - True zeolites
Mordenite77.1.6.1(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Unclassified Minerals, Rocks, etc.
'Apatite'-
'Clays'-
'Diorite'-
Muscovite
var: Sericite
-KAl2(AlSi3O10)(OH)2
'Porphyry'-
Quartz
var: Chalcedony
-SiO2
var: Milky Quartz-SiO2
Sphalerite
var: Marmatite
-(Zn,Fe)S
'Wolframite'-(Fe2+)WO4 to (Mn2+)WO4

List of minerals for each chemical element

HHydrogen
H AlumohydrocalciteCaAl2(CO3)2(OH)4 · 4H2O
H Aurichalcite(Zn,Cu)5(CO3)2(OH)6
H BrochantiteCu4(SO4)(OH)6
H Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
H Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
H Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
H TopazAl2(SiO4)(F,OH)2
H VauquelinitePb2Cu(CrO4)(PO4)(OH)
CCarbon
C AlumohydrocalciteCaAl2(CO3)2(OH)4 · 4H2O
C Aurichalcite(Zn,Cu)5(CO3)2(OH)6
C CalciteCaCO3
C SideriteFeCO3
OOxygen
O AlumohydrocalciteCaAl2(CO3)2(OH)4 · 4H2O
O Aurichalcite(Zn,Cu)5(CO3)2(OH)6
O BaryteBaSO4
O BrochantiteCu4(SO4)(OH)6
O CalciteCaCO3
O CassiteriteSnO2
O Quartz (var: Chalcedony)SiO2
O Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
O Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
O FerberiteFeWO4
O HematiteFe2O3
O MagnetiteFe2+Fe23+O4
O Quartz (var: Milky Quartz)SiO2
O Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
O MuscoviteKAl2(AlSi3O10)(OH)2
O OrthoclaseK(AlSi3O8)
O QuartzSiO2
O SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
O ScheeliteCa(WO4)
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O SideriteFeCO3
O TopazAl2(SiO4)(F,OH)2
O VauquelinitePb2Cu(CrO4)(PO4)(OH)
O Wolframite(Fe2+)WO4 to (Mn2+)WO4
FFluorine
F FluoriteCaF2
F TopazAl2(SiO4)(F,OH)2
NaSodium
Na Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Na SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
MgMagnesium
Mg Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Mg SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
AlAluminium
Al AlumohydrocalciteCaAl2(CO3)2(OH)4 · 4H2O
Al Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Al Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Al Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al OrthoclaseK(AlSi3O8)
Al SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Al TopazAl2(SiO4)(F,OH)2
SiSilicon
Si Quartz (var: Chalcedony)SiO2
Si Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Si Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Si Quartz (var: Milky Quartz)SiO2
Si Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si OrthoclaseK(AlSi3O8)
Si QuartzSiO2
Si SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Si TopazAl2(SiO4)(F,OH)2
PPhosphorus
P VauquelinitePb2Cu(CrO4)(PO4)(OH)
SSulfur
S AcanthiteAg2S
S ArsenopyriteFeAsS
S BaryteBaSO4
S BismuthiniteBi2S3
S BorniteCu5FeS4
S BrochantiteCu4(SO4)(OH)6
S ChalcociteCu2S
S ChalcopyriteCuFeS2
S CovelliteCuS
S DjurleiteCu31S16
S EmplectiteCuBiS2
S GalenaPbS
S IkunoliteBi4(S,Se)3
S LaitakariteBi4Se2S
S Sphalerite (var: Marmatite)(Zn,Fe)S
S MawsoniteCu6Fe2SnS8
S MolybdeniteMoS2
S PavoniteAgBi3S5
S Polybasite[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
S PyriteFeS2
S PyrrhotiteFe7S8
S RoquesiteCuInS2
S SphaleriteZnS
S StanniteCu2FeSnS4
S StannoiditeCu6+Cu22+(Fe2+,Zn)3Sn2S12
S TennantiteCu6[Cu4(Fe,Zn)2]As4S13
KPotassium
K Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
K MuscoviteKAl2(AlSi3O10)(OH)2
K OrthoclaseK(AlSi3O8)
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
CaCalcium
Ca AlumohydrocalciteCaAl2(CO3)2(OH)4 · 4H2O
Ca CalciteCaCO3
Ca Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Ca FluoriteCaF2
Ca Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Ca SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Ca ScheeliteCa(WO4)
CrChromium
Cr VauquelinitePb2Cu(CrO4)(PO4)(OH)
MnManganese
Mn Wolframite(Fe2+)WO4 to (Mn2+)WO4
FeIron
Fe ArsenopyriteFeAsS
Fe BorniteCu5FeS4
Fe ChalcopyriteCuFeS2
Fe Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Fe Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Fe FerberiteFeWO4
Fe HematiteFe2O3
Fe MagnetiteFe2+Fe23+O4
Fe Sphalerite (var: Marmatite)(Zn,Fe)S
Fe MawsoniteCu6Fe2SnS8
Fe PyriteFeS2
Fe PyrrhotiteFe7S8
Fe SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Fe SideriteFeCO3
Fe StanniteCu2FeSnS4
Fe StannoiditeCu6+Cu22+(Fe2+,Zn)3Sn2S12
Fe Wolframite(Fe2+)WO4 to (Mn2+)WO4
CuCopper
Cu Aurichalcite(Zn,Cu)5(CO3)2(OH)6
Cu BorniteCu5FeS4
Cu BrochantiteCu4(SO4)(OH)6
Cu ChalcociteCu2S
Cu ChalcopyriteCuFeS2
Cu CopperCu
Cu CovelliteCuS
Cu DjurleiteCu31S16
Cu EmplectiteCuBiS2
Cu MawsoniteCu6Fe2SnS8
Cu Polybasite[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
Cu RoquesiteCuInS2
Cu StanniteCu2FeSnS4
Cu StannoiditeCu6+Cu22+(Fe2+,Zn)3Sn2S12
Cu TennantiteCu6[Cu4(Fe,Zn)2]As4S13
Cu VauquelinitePb2Cu(CrO4)(PO4)(OH)
ZnZinc
Zn Aurichalcite(Zn,Cu)5(CO3)2(OH)6
Zn Sphalerite (var: Marmatite)(Zn,Fe)S
Zn SphaleriteZnS
Zn StannoiditeCu6+Cu22+(Fe2+,Zn)3Sn2S12
AsArsenic
As ArsenopyriteFeAsS
As Polybasite[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
As TennantiteCu6[Cu4(Fe,Zn)2]As4S13
SeSelenium
Se IkunoliteBi4(S,Se)3
Se LaitakariteBi4Se2S
MoMolybdenum
Mo MolybdeniteMoS2
AgSilver
Ag AcanthiteAg2S
Ag PavoniteAgBi3S5
Ag Polybasite[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
Ag SilverAg
InIndium
In RoquesiteCuInS2
SnTin
Sn CassiteriteSnO2
Sn MawsoniteCu6Fe2SnS8
Sn StanniteCu2FeSnS4
Sn StannoiditeCu6+Cu22+(Fe2+,Zn)3Sn2S12
SbAntimony
Sb Polybasite[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
BaBarium
Ba BaryteBaSO4
WTungsten
W FerberiteFeWO4
W ScheeliteCa(WO4)
W Wolframite(Fe2+)WO4 to (Mn2+)WO4
AuGold
Au GoldAu
PbLead
Pb GalenaPbS
Pb VauquelinitePb2Cu(CrO4)(PO4)(OH)
BiBismuth
Bi BismuthBi
Bi BismuthiniteBi2S3
Bi EmplectiteCuBiS2
Bi IkunoliteBi4(S,Se)3
Bi LaitakariteBi4Se2S
Bi PavoniteAgBi3S5

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Paleogene - Cretaceous
23.03 - 145 Ma



ID: 3185852
Mesozoic-Cenozoic volcanic and intrusive rocks

Age: Phanerozoic (23.03 - 145 Ma)

Lithology: Intermediate-felsic volcanic rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
- Mining Annual Review:(1985):407.
- Werner, A.B.T., Sinclair, W.D., and Amey, E.B. (1998): International Strategic Mineral Issues Summary Report - Tungsten. US Geological Survey Circular 930-O.
- Kamitani, M., Okumura, K., Teraoka, Y., Miyano, S., and Watanabe, Y. (2007): Mineral Resources Map of East Asia. Geological Survey of Japan.
- Takeo Katou (1917) The ring-ore from the Akenobe mine, province of Tajima, Japan. Journal of the Geological Society of Tokyo, 24, #287, 35-39.


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: January 22, 2019 14:32:01 Page generated: December 3, 2018 13:59:48
Go to top of page