IMPORTANT MESSAGE. We need your support now to keep mindat.org running. Click here to find out why.
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for Educators
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Bottino Mine, Stazzema, Apuan Alps, Lucca Province, Tuscany, Italy

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Latitude & Longitude (WGS84): 43° 59' 29'' North , 10° 15' 29'' East
Latitude & Longitude (decimal): 43.99139,10.25833
GeoHash:G#: spz632muk
Locality type:Mine
Köppen climate type:Csa : Hot-summer Mediterranean climate
Name(s) in local language(s):Miniera del Bottino, Stazzema, Alpi Apuane, Lucca, Toscana, ItaIia


The Bottino mine is widely famous for its Ag-rich minerals (1,612 kg of Ag per ton), as well as for its wonderfully cristallized specimens, mainly sulphides and sulphosalts. Its galleries are still partly praticable, even if difficult to reach and dangerous. Galleries entrance can be reached from Argentiera, near Ruosina, 2 km from Seravezza; galleries entrances can be reached by crossing the Vezza river and climbing the old incline on the northern slope of Monte Rocca; at the fork of two valleys the "Due Canali" adit is found(270 m); up into the right-hand valley galleries "Paoli" (385 m) and "Redola" (458 m) are reached, then the "Casello" and "Nuova", until the open pit on the vein outcropping is reached at 525 m (Senicioni area). The left-hand valley leads to the galleries "Breviglieri" (600 m) and "Rocca" (700 m). Other higher galleries can be reached by car from Camaiore to S. Anna di Stazzema, then 1 km walking along a trail through the pass between Mt. Rocca and Mt. Lieto.

Bottino's history fades back into centuries. Very likely it had been exploited by the Etruscans already, together with other Ag-bearing ore bodies in this area. The Roman continues until 1st century b. C., when all minerary activities were forbidden by law in the whole italian peninsula.
Public acts document minerary activities for the first time in XI century, when this area was disputed between the Counts of Corvaia and Vallecchia; in 1219 the territory was divided by agreement but the Republic of Lucca sized the mines in 1241 and kept them in spite of the opposition of the two Counts. A notarial deed of 1316 certifies that Bottino mine had become a personal property of Castruccio Castracani, Prince of Lucca; in 1348 the Republic of Pisa sized all mines of the Pietrasanta-Seravezza area, including Bottino, but exploitation was almost completely abandoned until 1515, when Florence definitely prevailed in Tuscany, also conquering these territories. Cosimo Medici the 1st, Grand Duke of Florence, reopened the Bottino mine in 1542, entrusting its management to Johann Ziegler (an hungarian) and to a group of experienced german foremen. A great quantity of documents in Florence public archives testify Cosimo's great effort to develope mining activities. The abandoned village of Gallena was completely remodeled to house the miners, bridge and smelting plants were built, new galleries excavated; a beautiful palace was built in Seravezza, as a residence for the Grand Duke when he visited the mines. Silver handicrafts made by using Bottino's material can be seen today in the Pitti museum in Florence. Cosimo's successors, Francesco the 1st and Ferdinando the 1st, continued the Bottino exploitation, but the mine was closed in 1592, due to decreasing production and difficulties caused by the presence of As and Sb. Various reports made during XVII and XVIII century describe the abandonment of the mine, in spite the persisting good conditions of adits and galleries. Attempts were made to start exploitation over again in 1697, by a joint venture company of italians and german, and at the end of XVIII century by british, but they all failed.
In 1829 a new Company was established and the mine reopened; after a short period of failure due to scarsity of financial means and very primitive exploitation method, the Company obtained very promising tests on materials from new assays and was reorganized in 1842, with the name of Compagnia Anonima del Bottino. Under the direction of Ing. Vegni and Ing. Blanchard, the mine fastly flourished and became the most important and better organized lead-silver mine in Italy; the production reached 1080 pounds of silver and 180.000 pounds of lead in 1849. It was visited and enthusiastically described many times by experts from all over.
Activities wew though interrupted in 1883 due to a heavy sags in silver and lead market prices; at that time 144 miners worked there, and the production was up to 570 tons of Ag-bearing lead per year. After almost 40 years of complete inactivity, works were started again in 1918 by a new Company, the Società Anonima Miniere dell'Argentiera, that for the first time unified the whole minerary area under one management. Until 1929 the mine was widely exploited again, also extending works to new and deeper areas, but activities ceased before 2nd World War. In this period, working conditions for miners were terrible.
After the war, some attempts have been made until 1969, but the mine is presently completely abandoned.
The older works, between XI and XVII century, were limited to outcroppings of the veins and consisted of trenches and small pits; only two galleries were opened ("Casello" and "Redola"), but mainly used for water drainage. Great works only started in 1836 by widening "Redola" transverse gallery and by exploiting the veins of both sides of it, with new galleries. The right-hand gallery was named "Sansoni" and the left one "Orsini"; these names have remained until today to designate the two main branches of the whole mine.
From these two new galleries, exploitation procedeed upwords to the outcropping, and two shafts were dug at both ends into particularly richly mineralized columns. A new gallery, deeper than "Redola", was opened to reach the bottom of the "Sansoni" shaft; its name is "Paoli", and it took ten years (1840-50) to escavate its 300 m, due to the presence of very hard schistous rocks. In 1851 was opened also Nuova tunnel.
The "Sansoni" and "Orsini" shafts were progressively widened forming large inclines along the veins; in 1855 a very rich area was discovered in the "Orsini" shaft, between "Redola" and "Paoli". A new shaft, the "Speranza" ("Hope") was started in 1859 between the other two, progressing from "Paoli" level; 125 m deep, the new shaft was connected in 1868 with a new 700 m long tunnel ("Due Canali") mainly used for water drainage and mineral quarrying. Later, the "Speranza" shaft was deepened 100 m below the "Due Canali" gallery. When the mine reopened, in 1918, the works were concentrated below the "Due Canali" tunnel, as the upper area was almost completely worked out. Four new levels was escavated from the "Speranza" shaft, new galleries ("Rocca") and shafts ("Locarni") were also escavated in a side area, but works had to be interrupted for financial reasons. Some of these works were completed after the war, and new assays attempted, but the general conditions of the mine are such that too big works would be required to start exploitation over again; the lower areas are permanently flooded, many landslides and collapses have chaotically filled the wider spaces. Moreover, the filling of used areas with sterile material has always been here a method for saving money by avoiding both trasportation and reinforcement. For all these reasons, the mine is very dangerous and it shouldn't be visited inside without a very expert guide.

The Bottino ore body is completely embedded in the paleozoic basement of Autoctono Unit and consists of a NW-SE belt of veins. The exploited veins dip W-SW and S at 50° to 70°, having variable extension and power. The main vein (usually called "Bottino vein") has been exploited from its outcropping (525 m) down to the "Venezia" level (174 m); its thickness locally reach 3 m. The vein system is crossed by faults and fractures, sometimes mineralized, in some cases corresponding to syn-metamorphic contacts.
The paleozoic rocks embedding the Bottino vein system belong to Filladi inferiori formation and Porphiroid and Porphyritic schists formation, the oldest formations of Apuane basement; they consists respectively of meta-greywackes and quartzitic phyllites and of metamorphosed rhyolite. Another typical rock, usually called "tormalinite", is widely present as columns along the veins; the miners called it "black quartz" due to its hardness and aspect, and used it as a guide horizon to ore.
The presence of this rock suggested a minerogenetic model for Bottino ore body:
1) Paleozoic: intensive volcanic activities formed the tourmalinite bodies, very rich in B and with metal concentrations (Ag, Au, Sn, W). [Stratabound tourmalinites (tourmaline, quartz, carbonates, rutile, apatite, zircon, chlorite, pyrrhotite), cutted through by quartz-sulfides veinlets, are conformable to the main Earliest Apenninic foliation. Tourmalinite fragments are also enclosed by the foliation.] 2) Oligocene-Miocene: metamorphic fluids mobilized metals and other elements, redepositing them in vein structures.
Veins have variable features: massive galena, with sphalerite and sulphosalts, in a quartz gangue; stockwork; concordant veinlets and lenses. Cavities are frequent along late fractures. Veins are heavily stretched, boudinaged and fractured; fragments of the embedding rocks are often surrounded by a sulphide matrix; veins of ductile sulphides (galena, meneghinite) flow through harder ones (pyrite, arsenopyrite).

The outstanding specimens for which Bottino mine is famous are found in three different locations:
1) cavities in veins. All the minerals of the veins can be found crystallized in cavities of variable sizes. In less rich areas cavities are smaller and mainly contain quartz and carbonates (siderite, calcite, dolomite), rarely rutile and pink to colorless apatite. Best cavities are located in sulphide-rich areas: they have elongated shapes similar to almonds or squashed pipes, and may even reach a length of 5 m with cross sections to 20x80 cm, though average smaller. Wonderful finds are reported by many authors, with mainly sphalerite (marmatite), galena xls up to 3 cm, boulangerite needles up to 13 cm, meneghinite xls up to 4 cm.
2) Fissures at the contacts of veins with hanging rock yield specimens found after the closing of the mine, even if mainly reports were made during works. They are discordant with the veins and with the embedding rocks' schistosity that is usually parallel to the veins. Their length is variable in size up to 2 m, width from a few mm to some cm; their walls may be either entirely lined with xls of assorted minerals or covered by crystallized siderite disseminated with sulphide xls. Fissures are mainly found in the porphiroidal formations; sometimes they group and intersect to form wider spaces wherein floating rock fragments, completely lined with xls can be found.
3) Quartz and dolomite veins in tourmalinite are very frequent at "Rocca" and "Breviglieri" level. Fissures and cavities often open inside the veins, yielding good xls of meneghinite, sphalerite, galena, pyrite, hairly boulangerite.
Silver is mainly present in galena and tetrahedrite (freibergite) and also forms Ag minerals such as pyrargyrite and argentopentlandite; nickel is also present in many minerals (ullmannite, gersdorffite, bottinoite). Paragenetic sequences essentially took place during Tertiary tectono-metamorphic event, perhaps except pyrrhotite, probably pre-metamorphic; pyrite and arsenopyrite formed first, later the Pb-Zn-Cu minerals, last the Ni ones.

Alternative Label Names

This is a list of additional names that have been recorded for mineral labels associated with this locality in the minID database. This may include previous versions of the locality name hierarchy from mindat.org, data entry errors, and it may also include unconfirmed sublocality names or other names that can only be matched to this level.

Bottino Mine, Stazzema, Apuan Alps, Lucca, Tuscany, Italy

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


61 valid minerals. 2 (TL) - type locality of valid minerals.

Detailed Mineral List:

Acanthite
Formula: Ag2S
Habit: prismatic xls
Reference: Benvenuti M., Brizzi G., Dini A., 1992/93. La miniera piombo-argentifera del Bottino (LU). II, III. Riv. Miner. Ital., 17: 1-22.
Albite
Formula: Na(AlSi3O8)
Habit: tabular, twinned
Colour: wite
Description: xls up to 2 cm.
Reference: Benvenuti M., Brizzi G., Dini A., 1992/93. La miniera piombo-argentifera del Bottino (LU). II, III. Riv. Miner. Ital., 17: 1-22
Anatase
Formula: TiO2
Habit: bypiramidal
Colour: brown
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Ankerite
Formula: Ca(Fe2+,Mg)(CO3)2
Reference: European Journal of Mineralogy, 12 (2)
'Apatite'
Habit: tabular
Colour: colorless, white, pink
Description: Xls up to 15 mm
Reference: Struever G., 1871. Apatite della miniera del Bottino presso Seravezza. Atti R. Acad. Sci. Torino, 26
Aragonite
Formula: CaCO3
Habit: sprays of acicular xls
Colour: white
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Argentopentlandite
Formula: Ag(Fe,Ni)8S8
Description: Micrograins included in chalcopyrite
Reference: Benvenuti M., 1991. Ni-sulphides from Bottino mine (Tuscany, Italy). European Journal of Mineralogy, 3: 79-84.
Arsenopyrite
Formula: FeAsS
Habit: prismatic xls
Colour: grey
Description: It is common as masses, but rare as single xls. Prismatic xls, sometimes twinned, are present in the schist of Paoli level. Pelloux (1922) found xls in Due Canali level.
Reference: European Journal of Mineralogy, 12 (2)
Baryte
Formula: BaSO4
Habit: tabular
Colour: white
Description: It has been found only one time, in Conca dei Danari tunnel (Due Canali level).
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Bottinoite (TL)
Formula: Ni2+Sb5+2(OH)12 · 6H2O
Habit: bladed xls
Colour: blue-green
Description: It was identified by Bonazzi et al. (1992) on specimens from a secondary level between Redola and Paoli.
Reference: Bonazzi P., Menchetti S., Caneschi A., Magnanelli S., 1992. Bottinoite, Ni(H2O)[Sb(OH)6]2, a new mineral from the Bottino mine, Alpi Apuane, Italy. Am. Miner., 77: 1301-1304.
Boulangerite
Formula: Pb5Sb4S11
Habit: Acicular
Colour: dark grey
Description: This is one of the most famous Bottino minerals and it is called also "plumosite". It forms feltry masses of very thin and delicate xls. In the past it was described as jamesonite, eteromorphite, boulangerite, zinkenite or meneghinite but recent studies have proved that Bottino's plumosite is always boulangerite (Garavelli et al., 1957; Orlandi et al., 2002). It is possible to find acicular xls up to 15 cm or in fibrous compact masses.
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Bournonite
Formula: PbCuSbS3
Habit: tabular, twinned
Colour: dark grey
Description: It comes from Paoli level or Rocca and Breviglieri tunnels. Size up to 15 mm, medium 5 mm.
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Brandholzite
Formula: MgSb2(OH)12 · 6H2O
Reference: - Orlandi, P. (2011): Zibaldone di mineralogia italiana 2010: parte seconda. Micro, 3/2011, 98-100. - Orlandi, P., Biagioni, C. & Michelucci, E. (2013). Brandholzite. Primo ritrovamento italiano nella miniera del Bottino, Alpi Apuane. Rivista Mineralogica Italiana, 2/2013, 130-134.
Calcite
Formula: CaCO3
Habit: rhombohedric, prismatic
Colour: colorless, whitish, dark-grey for boulangerite inclusions
Description: xls up to 5 mm.
Reference: Am.Min.:77:1301-1304.
Cassiterite
Formula: SnO2
Description: Only identified in thin section
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Cerussite
Formula: PbCO3
Habit: tabular prismatic
Colour: white
Reference: European Journal of Mineralogy, 12 (2)
Chalcocite
Formula: Cu2S
Description: Masses on altered chalcopyrite
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Chalcopyrite
Formula: CuFeS2
Habit: bisphenoids, pseudo-tetrahedrons, multiple twins
Colour: bright golden on fractures; greenish-yellow to reddish brown on surface
Description: xls up to 4 cm
Reference: Am.Min.:77:1301-1304.
Chamosite
Formula: (Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Habit: earthy masses; powdery aggregates
Colour: dark-green
Description: Often coatinng other minerals or included in quartz xls.
Reference: Benvenuti, M., Brizzi, G., Dini, A. (1993): La miniera piombo-argentifera del Bottino (LU). (2a parte). Rivista Mineralogica Italiana, 1/1993, 1-22.
'Chlorite Group'
Description: Probably it is chamosite
Reference: European Journal of Mineralogy, 12 (2)
Cinnabar
Formula: HgS
Reference: Dini A., Benvenuti M., Costagliola P., Lattanzi P., 2001. Mercury deposits in metamorphic settings: the example of Levigliani and Ripa mines, Apuane Alps (Tuscany, Italy). Ore Geology Reviews, vol. 18, issue 3-4; october 2001
Covellite
Formula: CuS
Description: Only observed as alteration of chalcopyrite in the veins.
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Cubanite
Formula: CuFe2S3
Description: Only observed as bladed bronze-yellow inclusions in galena, with chalcopyrite
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Dolomite
Formula: CaMg(CO3)2
Habit: rhomboedric xls
Colour: pale tan to yellow and milky white
Description: Sometimes it is coated by micro iridescent pyrite xls.
Reference: European Journal of Mineralogy, 12 (2)
'Dravite-Schorl Series'
Description: Schorl-dravites to proton and alkali-deficient end-member.
Reference: Eur. J. Mineral. , 1991, 3, pp. 537-548.
Fluorite
Formula: CaF2
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Freibergite ?
Formula: Ag6[Cu4Fe2]Sb4S13-x
Habit: tetrahedral
Colour: steel gray
Description: xls up to 10 mm.
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Galena
Formula: PbS
Habit: cube-octahedral, rarely octahedral
Colour: grey
Description: xls up to 5 cm. Usually galena has 0,3 to 0,4 wt% Ag at Bottino; sometimes are observed cubanite and pyrargyrite inclusions.
Reference: European Journal of Mineralogy, 12 (2)
Geocronite ?
Formula: Pb14(Sb,As)6S23
Description: Only reported in 1924 by Sagui and in 1972 by Angelillis. Its presence is unconfirmed.
Reference: Angelillis R., 1972. Probabile ritrovamento di geocronite alla miniera del Bottino. Notiz. Gr. Miner. Lomb., 53.
Gersdorffite
Formula: NiAsS
Habit: Masses
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Goethite
Formula: α-Fe3+O(OH)
Habit: earthy masses, crust
Colour: yellow to brown
Description: It is present only in the oxidation zone. Sometimes pseudo after pyrite and siderite
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Gold
Formula: Au
Habit: small grains
Colour: yellow
Description: Reported in 1935 by Dessau from the deepest parts of the mine; more recently, a few micro samples have been found in Rocca tunnel.
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Gypsum
Formula: CaSO4 · 2H2O
Habit: needles
Colour: colorless
Description: xls up to 1 cm.
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Hematite ?
Formula: Fe2O3
Description: It is reported by A. D'Achiardi (1873) and Pelloux (1923) in embedding rocks but its presence at Bottino is unconfirmed
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Hydromagnesite
Formula: Mg5(CO3)4(OH)2 · 4H2O
Habit: fibrous radiating, globular formations
Colour: white
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Jamesonite
Formula: Pb4FeSb6S14
Description: Reported in the past (D'Achiardi, 1873), its presence at Bottino is definitively discredited following very recent accurate analyses. All specimens from Bottino labelled as "jamesonite" actually consist of boulangerite (Orlandi et al., 2002).
Reference: D'Achiardi A. (1873): Mineralogia della Toscana. Tipografia Nistri, Pisa, vol. 2, page 334; Orlandi P., Dini A., Pagano R., Cerri M. (2002): I minerali del Bottino della collezione Cerpelli. Riv. Mineral. Ital., 26, 2 (2-2002), 81-100.
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: European Journal of Mineralogy, 12 (2)
Kermesite
Formula: Sb2S2O
Habit: acicular
Colour: red
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Lepidocrocite
Formula: γ-Fe3+O(OH)
Reference: European Journal of Mineralogy, 12 (2)
'Limonite'
Formula: (Fe,O,OH,H2O)
Magnesite
Formula: MgCO3
Reference: European Journal of Mineralogy, 12 (2)
Magnetite
Formula: Fe2+Fe3+2O4
Habit: octahedric
Colour: black
Description: Only reported by A. D'Achiardi (1873).
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Malachite
Formula: Cu2(CO3)(OH)2
Habit: crusts, needles
Colour: green
Description: Alteration product of chalcopyrite and bournonite
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Marcasite
Formula: FeS2
Habit: botryoidal aggregates
Colour: yellow
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Meneghinite (TL)
Formula: Pb13CuSb7S24
Habit: prismatic
Colour: lead to steel grey
Description: xls up to 5 cm. Also as curved hairs and needles similar to boulangerite; pseudos after galena have been reported
Reference: Rivista Mineralogica Italiana, (1), 1-22; Canadian Mineralogist 16, pp. 393-395 (1978); Lapis 3 (1990), 7
Montmorillonite
Formula: (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Reference: European Journal of Mineralogy, 12 (2)
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Habit: globular aggregates
Colour: whitish
Reference: Benvenuti M., Brizzi G., Dini A., 1992/93. La miniera piombo-argentifera del Bottino (LU). I, II, III. Riv. Miner. Ital., 16: 219-234 e 17: 1-22, 103-119
Pentlandite
Formula: (FexNiy)Σ9S8
Description: Only identified as inclusions in pyrrhotite
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Pyrargyrite
Formula: Ag3SbS3
Habit: prismatic xls
Colour: dark grey with bright red reflections.
Reference: Rivista Mineralogica Italiana, (1), 1-22. -Biagioni, C., Orlandi, P., & Michelucci, E. (2008). La pirargirite della miniera del Bottino. MICRO (notizie mineralogiche), 2008, 117-120.
Pyrite
Formula: FeS2
Habit: cubic, octahedric, cube-octahedric, elongated prismatic
Colour: yellow
Description: Pseudo after pyrrhotite
Reference: Am.Min.:77:1301-1304.
Pyrolusite
Formula: Mn4+O2
Reference: European Journal of Mineralogy, 12 (2)
Pyrrhotite
Formula: Fe7S8
Habit: tabular
Colour: yellow, brown
Description: xls up to 3 cm. Sometimes incrusted galena cube-octahedrons; also replaced by micro pyrite xls aggregates. Strongly magnetic.
Reference: European Journal of Mineralogy, 12 (2)
Quartz
Formula: SiO2
Reference: Am.Min.:77:1301-1304.
Rutile
Formula: TiO2
Habit: prismatic, sometimes bended
Colour: dark brown to black
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Senarmontite
Formula: Sb2O3
Habit: acicular
Colour: white
Description: Probably pseudo after either valentinite or stibnite
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Serpierite
Formula: Ca(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Habit: globular aggregates of blades
Colour: sky-blue
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Siderite
Formula: FeCO3
Habit: lenticular, rhombohedric
Colour: from pale-tan to brownish, reddish-brown, dark-brown and almost black
Reference: Am.Min.:77:1301-1304.
Sphalerite
Formula: ZnS
Habit: complex, made of combinations of cube, tetrahedrons and rhombododecahedrons. Often it is twinned and elongated; rarely tabular.
Colour: black
Description: Sometimes it is epitactic on chalcopyrite. xls up to 5 cm.
Reference: European Journal of Mineralogy, 12 (2)
Stibnite
Formula: Sb2S3
Habit: thin prismatic xls
Description: It was reported in 1969 from Due Canali dumps.
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Sulphur
Formula: S8
Habit: bipyramidal
Colour: yellow
Reference: Rivista Mineralogica Italiana, (1), 1-22.
'Tourmaline'
Formula: A(D3)G6(T6O18)(BO3)3X3Z
Habit: prismatic
Colour: black
Description: It has been determined as a member between dravite and schorlite. At Bottino tourmaline makes up to 80% in volume of tourmalinite colums; xls are always microscopic. It is also an accessory mineral of the embedding rocks.
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Ullmannite
Formula: NiSbS
Habit: cubic
Colour: pale grey
Description: Sometimes coated by green bottinoite
Reference: Am.Min.:77:1301-1304.
Valentinite
Formula: Sb2O3
Habit: prismatic
Colour: yellowish
Description: Identified in a single specimen from Due Canali dumps.
Reference: Rivista Mineralogica Italiana, (1), 1-22.
Vermiculite
Formula: Mg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Reference: European Journal of Mineralogy, 12 (2)
Zincite ?
Formula: ZnO
Description: Reported by A. D'Achiardi (1873) but never confirmed.
Reference: D'Achiardi A., 1872/72. Mineralogia della Toscana. Tip. Nistri, Pisa.
Zircon
Formula: Zr(SiO4)
Reference: Eur. J. Mineral. , 1991, 3, pp. 537-548.

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
'Gold'1.AA.05Au
'Sulphur'1.CC.05S8
Group 2 - Sulphides and Sulfosalts
'Acanthite'2.BA.35Ag2S
'Argentopentlandite'2.BB.15Ag(Fe,Ni)8S8
'Arsenopyrite'2.EB.20FeAsS
'Boulangerite'2.HC.15Pb5Sb4S11
'Bournonite'2.GA.50PbCuSbS3
'Chalcocite'2.BA.05Cu2S
'Chalcopyrite'2.CB.10aCuFeS2
'Cinnabar'2.CD.15aHgS
'Covellite'2.CA.05aCuS
'Cubanite'2.CB.55aCuFe2S3
'Freibergite' ?2.GB.05Ag6[Cu4Fe2]Sb4S13-x
'Galena'2.CD.10PbS
'Geocronite' ?2.JB.30aPb14(Sb,As)6S23
'Gersdorffite'2.EB.25NiAsS
'Jamesonite'2.HB.15Pb4FeSb6S14
'Kermesite'2.FD.05Sb2S2O
'Marcasite'2.EB.10aFeS2
'Meneghinite' (TL)2.HB.05bPb13CuSb7S24
'Pentlandite'2.BB.15(FexNiy)Σ9S8
'Pyrargyrite'2.GA.05Ag3SbS3
'Pyrite'2.EB.05aFeS2
'Pyrrhotite'2.CC.10Fe7S8
'Sphalerite'2.CB.05aZnS
'Stibnite'2.DB.05Sb2S3
'Ullmannite'2.EB.25NiSbS
Group 3 - Halides
'Fluorite'3.AB.25CaF2
Group 4 - Oxides and Hydroxides
'Anatase'4.DD.05TiO2
'Bottinoite' (TL)4.FH.05Ni2+Sb5+2(OH)12 · 6H2O
'Brandholzite'4.FH.05MgSb2(OH)12 · 6H2O
'Cassiterite'4.DB.05SnO2
'Goethite'4.00.α-Fe3+O(OH)
'Hematite' ?4.CB.05Fe2O3
'Lepidocrocite'4.FE.15γ-Fe3+O(OH)
'Magnetite'4.BB.05Fe2+Fe3+2O4
'Pyrolusite'4.DB.05Mn4+O2
'Quartz'4.DA.05SiO2
'Rutile'4.DB.05TiO2
'Senarmontite'4.CB.50Sb2O3
'Valentinite'4.CB.55Sb2O3
'Zincite' ?4.AB.20ZnO
Group 5 - Nitrates and Carbonates
'Ankerite'5.AB.10Ca(Fe2+,Mg)(CO3)2
'Aragonite'5.AB.15CaCO3
'Calcite'5.AB.05CaCO3
'Cerussite'5.AB.15PbCO3
'Dolomite'5.AB.10CaMg(CO3)2
'Hydromagnesite'5.DA.05Mg5(CO3)4(OH)2 · 4H2O
'Magnesite'5.AB.05MgCO3
'Malachite'5.BA.10Cu2(CO3)(OH)2
'Siderite'5.AB.05FeCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
'Baryte'7.AD.35BaSO4
'Gypsum'7.CD.40CaSO4 · 2H2O
'Serpierite'7.DD.30Ca(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Group 9 - Silicates
'Albite'9.FA.35Na(AlSi3O8)
'Chamosite'9.EC.55(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
'Kaolinite'9.ED.05Al2(Si2O5)(OH)4
'Montmorillonite'9.EC.40(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
'Muscovite'9.EC.15KAl2(AlSi3O10)(OH)2
'Vermiculite'9.EC.50Mg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
'Zircon'9.AD.30Zr(SiO4)
Unclassified Minerals, Rocks, etc.
'Apatite'-
'Chlorite Group'-
'Dravite-Schorl Series'-
'Limonite'-(Fe,O,OH,H2O)
'Tourmaline'-A(D3)G6(T6O18)(BO3)3X3Z

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Gold1.1.1.1Au
Semi-metals and non-metals
Sulphur1.3.5.1S8
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Acanthite2.4.1.1Ag2S
Chalcocite2.4.7.1Cu2S
AmBnXp, with (m+n):p = 9:8
Argentopentlandite2.7.1.2Ag(Fe,Ni)8S8
Pentlandite2.7.1.1(FexNiy)Σ9S8
AmXp, with m:p = 1:1
Cinnabar2.8.14.1HgS
Covellite2.8.12.1CuS
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
Cubanite2.9.13.1CuFe2S3
AmBnXp, with (m+n):p = 2:3
Stibnite2.11.2.1Sb2S3
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Gersdorffite2.12.3.2NiAsS
Marcasite2.12.2.1FeS2
Pyrite2.12.1.1FeS2
Ullmannite2.12.3.3NiSbS
Oxysulfides
Kermesite2.13.1.1Sb2S2O
Group 3 - SULFOSALTS
3 <ø < 4
Freibergite ?3.3.6.3Ag6[Cu4Fe2]Sb4S13-x
Geocronite ?3.3.1.2Pb14(Sb,As)6S23
Meneghinite (TL)3.3.5.1Pb13CuSb7S24
ø = 3
Bournonite3.4.3.2PbCuSbS3
Pyrargyrite3.4.1.2Ag3SbS3
2.5 < ø < 3
Boulangerite3.5.2.1Pb5Sb4S11
2 < ø < 2.49
Jamesonite3.6.7.1Pb4FeSb6S14
Group 4 - SIMPLE OXIDES
AX
Zincite ?4.2.2.1ZnO
A2X3
Hematite ?4.3.1.2Fe2O3
Senarmontite4.3.9.2Sb2O3
Valentinite4.3.11.1Sb2O3
AX2
Anatase4.4.4.1TiO2
Cassiterite4.4.1.5SnO2
Pyrolusite4.4.1.4Mn4+O2
Rutile4.4.1.1TiO2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Lepidocrocite6.1.2.2γ-Fe3+O(OH)
X(OH)3
Bottinoite (TL)6.3.9.1Ni2+Sb5+2(OH)12 · 6H2O
Group 7 - MULTIPLE OXIDES
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 9 - NORMAL HALIDES
AX2
Fluorite9.2.1.1CaF2
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Cerussite14.1.3.4PbCO3
Magnesite14.1.1.2MgCO3
Siderite14.1.1.3FeCO3
AB(XO3)2
Ankerite14.2.1.2Ca(Fe2+,Mg)(CO3)2
Dolomite14.2.1.1CaMg(CO3)2
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Malachite16a.3.1.1Cu2(CO3)(OH)2
Group 16b - HYDRATED CARBONATES CONTAINING HYDROXYL OR HALOGEN
Hydromagnesite16b.7.1.1Mg5(CO3)4(OH)2 · 4H2O
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Baryte28.3.1.1BaSO4
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Gypsum29.6.3.1CaSO4 · 2H2O
Group 31 - HYDRATED SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)5(XO4)2Zq·xH2O
Serpierite31.6.2.1Ca(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in >[6] coordination
Zircon51.5.2.1Zr(SiO4)
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Vermiculite71.2.2d.3Mg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Sheets of 6-membered rings with 2:1 clays
Montmorillonite71.3.1a.2(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Sheets of 6-membered rings interlayered 1:1, 2:1, and octahedra
Chamosite71.4.1.7(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Unclassified Minerals, Rocks, etc.
'Apatite'-
Aragonite-CaCO3
Brandholzite-MgSb2(OH)12 · 6H2O
'Chlorite Group'-
'Dravite-Schorl Series'-
Kaolinite-Al2(Si2O5)(OH)4
'Limonite'-(Fe,O,OH,H2O)
'Tourmaline'-A(D3)G6(T6O18)(BO3)3X3Z

List of minerals for each chemical element

HHydrogen
H BottinoiteNi2+Sb25+(OH)12 · 6H2O
H BrandholziteMgSb2(OH)12 · 6H2O
H Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
H Goethiteα-Fe3+O(OH)
H GypsumCaSO4 · 2H2O
H HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
H KaoliniteAl2(Si2O5)(OH)4
H Lepidocrociteγ-Fe3+O(OH)
H Limonite(Fe,O,OH,H2O)
H MalachiteCu2(CO3)(OH)2
H Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
H VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
BBoron
B TourmalineA(D3)G6(T6O18)(BO3)3X3Z
CCarbon
C AnkeriteCa(Fe2+,Mg)(CO3)2
C AragoniteCaCO3
C CalciteCaCO3
C CerussitePbCO3
C DolomiteCaMg(CO3)2
C HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
C MagnesiteMgCO3
C MalachiteCu2(CO3)(OH)2
C SideriteFeCO3
OOxygen
O AlbiteNa(AlSi3O8)
O AnataseTiO2
O AnkeriteCa(Fe2+,Mg)(CO3)2
O AragoniteCaCO3
O BaryteBaSO4
O BottinoiteNi2+Sb25+(OH)12 · 6H2O
O BrandholziteMgSb2(OH)12 · 6H2O
O CalciteCaCO3
O CassiteriteSnO2
O CerussitePbCO3
O Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
O DolomiteCaMg(CO3)2
O Goethiteα-Fe3+O(OH)
O GypsumCaSO4 · 2H2O
O HematiteFe2O3
O HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
O KaoliniteAl2(Si2O5)(OH)4
O KermesiteSb2S2O
O Lepidocrociteγ-Fe3+O(OH)
O Limonite(Fe,O,OH,H2O)
O MagnesiteMgCO3
O MagnetiteFe2+Fe23+O4
O MalachiteCu2(CO3)(OH)2
O Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
O MuscoviteKAl2(AlSi3O10)(OH)2
O PyrolusiteMn4+O2
O QuartzSiO2
O RutileTiO2
O SenarmontiteSb2O3
O SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
O SideriteFeCO3
O TourmalineA(D3)G6(T6O18)(BO3)3X3Z
O ValentiniteSb2O3
O VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
O ZinciteZnO
O ZirconZr(SiO4)
FFluorine
F FluoriteCaF2
NaSodium
Na AlbiteNa(AlSi3O8)
Na Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
MgMagnesium
Mg AnkeriteCa(Fe2+,Mg)(CO3)2
Mg BrandholziteMgSb2(OH)12 · 6H2O
Mg Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Mg DolomiteCaMg(CO3)2
Mg HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
Mg MagnesiteMgCO3
Mg Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Mg VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
AlAluminium
Al AlbiteNa(AlSi3O8)
Al Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Al KaoliniteAl2(Si2O5)(OH)4
Al Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
SiSilicon
Si AlbiteNa(AlSi3O8)
Si Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Si KaoliniteAl2(Si2O5)(OH)4
Si Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si QuartzSiO2
Si VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Si ZirconZr(SiO4)
SSulfur
S AcanthiteAg2S
S ArgentopentlanditeAg(Fe,Ni)8S8
S ArsenopyriteFeAsS
S BaryteBaSO4
S BoulangeritePb5Sb4S11
S BournonitePbCuSbS3
S ChalcociteCu2S
S ChalcopyriteCuFeS2
S CinnabarHgS
S CovelliteCuS
S CubaniteCuFe2S3
S FreibergiteAg6[Cu4Fe2]Sb4S13-x
S GalenaPbS
S GeocronitePb14(Sb,As)6S23
S GersdorffiteNiAsS
S GypsumCaSO4 · 2H2O
S JamesonitePb4FeSb6S14
S KermesiteSb2S2O
S MarcasiteFeS2
S MeneghinitePb13CuSb7S24
S Pentlandite(FexNiy)Σ9S8
S PyrargyriteAg3SbS3
S PyriteFeS2
S PyrrhotiteFe7S8
S SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
S SphaleriteZnS
S StibniteSb2S3
S SulphurS8
S UllmanniteNiSbS
KPotassium
K MuscoviteKAl2(AlSi3O10)(OH)2
CaCalcium
Ca AnkeriteCa(Fe2+,Mg)(CO3)2
Ca AragoniteCaCO3
Ca CalciteCaCO3
Ca DolomiteCaMg(CO3)2
Ca FluoriteCaF2
Ca GypsumCaSO4 · 2H2O
Ca Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Ca SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
TiTitanium
Ti AnataseTiO2
Ti RutileTiO2
MnManganese
Mn PyrolusiteMn4+O2
FeIron
Fe AnkeriteCa(Fe2+,Mg)(CO3)2
Fe ArgentopentlanditeAg(Fe,Ni)8S8
Fe ArsenopyriteFeAsS
Fe ChalcopyriteCuFeS2
Fe Chamosite(Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8
Fe CubaniteCuFe2S3
Fe FreibergiteAg6[Cu4Fe2]Sb4S13-x
Fe Goethiteα-Fe3+O(OH)
Fe HematiteFe2O3
Fe JamesonitePb4FeSb6S14
Fe Lepidocrociteγ-Fe3+O(OH)
Fe Limonite(Fe,O,OH,H2O)
Fe MagnetiteFe2+Fe23+O4
Fe MarcasiteFeS2
Fe Pentlandite(FexNiy)Σ9S8
Fe PyriteFeS2
Fe PyrrhotiteFe7S8
Fe SideriteFeCO3
Fe VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
NiNickel
Ni ArgentopentlanditeAg(Fe,Ni)8S8
Ni BottinoiteNi2+Sb25+(OH)12 · 6H2O
Ni GersdorffiteNiAsS
Ni Pentlandite(FexNiy)Σ9S8
Ni UllmanniteNiSbS
CuCopper
Cu BournonitePbCuSbS3
Cu ChalcociteCu2S
Cu ChalcopyriteCuFeS2
Cu CovelliteCuS
Cu CubaniteCuFe2S3
Cu FreibergiteAg6[Cu4Fe2]Sb4S13-x
Cu MalachiteCu2(CO3)(OH)2
Cu MeneghinitePb13CuSb7S24
Cu SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
ZnZinc
Zn SerpieriteCa(Cu,Zn)4(SO4)2(OH)6 · 3H2O
Zn SphaleriteZnS
Zn ZinciteZnO
AsArsenic
As ArsenopyriteFeAsS
As GeocronitePb14(Sb,As)6S23
As GersdorffiteNiAsS
ZrZirconium
Zr ZirconZr(SiO4)
AgSilver
Ag AcanthiteAg2S
Ag ArgentopentlanditeAg(Fe,Ni)8S8
Ag FreibergiteAg6[Cu4Fe2]Sb4S13-x
Ag PyrargyriteAg3SbS3
SnTin
Sn CassiteriteSnO2
SbAntimony
Sb BottinoiteNi2+Sb25+(OH)12 · 6H2O
Sb BoulangeritePb5Sb4S11
Sb BournonitePbCuSbS3
Sb BrandholziteMgSb2(OH)12 · 6H2O
Sb FreibergiteAg6[Cu4Fe2]Sb4S13-x
Sb GeocronitePb14(Sb,As)6S23
Sb JamesonitePb4FeSb6S14
Sb KermesiteSb2S2O
Sb MeneghinitePb13CuSb7S24
Sb PyrargyriteAg3SbS3
Sb SenarmontiteSb2O3
Sb StibniteSb2S3
Sb UllmanniteNiSbS
Sb ValentiniteSb2O3
BaBarium
Ba BaryteBaSO4
AuGold
Au GoldAu
HgMercury
Hg CinnabarHgS
PbLead
Pb BoulangeritePb5Sb4S11
Pb BournonitePbCuSbS3
Pb CerussitePbCO3
Pb GalenaPbS
Pb GeocronitePb14(Sb,As)6S23
Pb JamesonitePb4FeSb6S14
Pb MeneghinitePb13CuSb7S24

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Cretaceous
66 - 145 Ma



ID: 3186389
Mesozoic sedimentary rocks

Age: Cretaceous (66 - 145 Ma)

Lithology: Sedimentary rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Permian
251.902 - 298.9 Ma



ID: 3141608
Permian quartzite

Age: Phanerozoic (251.902 - 298.9 Ma)

Description: low grade metamorphic

Lithology: Major:{quartzite}, Minor{gneiss,phyllite}

Reference: Asch, K. The 1:5M International Geological Map of Europe and Adjacent Areas: Development and Implementation of a GIS-enabled Concept. Geologisches Jahrbuch, SA 3. [147]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
• Repetti E., 1832. Relazione sullo stato attuale delle miniere d’argento del Vicariato di Pietrasanta. Antologia, 45: 199.
• Baldracco C., 1833. Relazione sulla miniera di galena argentifera detta del Bottino nel Vicariato di Pietrasantain Toscana, Genova. Boll. R. Uff. Geol. Ital., 5: 114
• Bechi E., 1852. Intorno ad un nuovo minerale (meneghinite). Atti Accad. Georgof., Firenze, 30: 84 e Amer. J. Sci, s. 2, 14: 60
• Rath vom G., 1867. Ueber den meneghinit von der Grube Bottino in Toskana. Ann. Mus. Fis. Sci. Nat.: 132.
• Struever G., 1871. Apatite della miniera del Bottino presso Seravezza. Atti R. Accad. Sci. Torino, seduta del 16 aprile.
• D'Achiardi A., 1872/73. Mineralogia della Toscana. Arnaldo Forni Editore, Pisa.
• Blanchard F., 1876. Histoire et description de la mine de plomb argentifère du Bottino, et des systèmes qu’y sont employès pour l’exploitation, le transport, la préparation mécanique e le traitement métallurgique des minerais. Rev. Univ. Mines Paris
• D’Achiardi A., 1876. Su alcuni minerali toscani. Pirrotina del Bottino. Meneghinite del Bottino. Atti Soc. Tosc. Sci. Nat., Mem., 2: 114-117
• Grattarola F., 1876. Note mineralogiche. Tetraedrite e pirrotina del Bottino. Boll. R. Comit. Geol.. Ital., 7: 339-341.
• Uzielli G., 1876. Sopra la baritina e il ferro oligisto di Calafuria e pirrotina della miniera del Bottino. Atti R. Accad. Naz. Lincei, Rend., 3: 11-16.
• Uzielli G., 1876. Sulla pirrotina del Bottino. Atti R. Accad. Naz. Lincei, Rend., 3: 616.
• Miers A. 1884. On the crystal form of meneghinite. Mineralogical Magazine: 331.
• D’Achiardi A., 1885. Tormalinolite del Bottino nelle Alpi Apuane. Atti Soc. Tosc. Sci. Nat., Proc. Verb., 4: 204-208
• Busatti L., 1886. Nota su alcuni minerali toscani. Clorite della miniera del Bottino (Alpi Apuane). Atti Soc. Tosc. Sci. Nat., Mem., 7: 194-196
• Blanchard F., 1887. Les mines de plomb argentifère du Bottino, près de Seravezza (Toscane), Italie. Bulletin de la Société de l'Industrie minérale, 1: 1-4
• Traube H., 1888. Bleiglanz von Bottino in Toscana. N. Jb. Mineral. Geol. Palaont.: 253.
• D'Achiardi G., 1903. Le forme cristalline della pirrotina del Bottino. Atti Soc. Tosc. Sci. Nat., Proc. Verb.:140.
• Manasse E., 1906. Contribuzioni alla mineralogia della Toscana. Siderose manganesifero del Bottino. Atti Soc. Tosc. Sci. Nat., Proc. Verb., 15: 21-22.
• D’Achiardi G., 1920. La miniera del Bottino nelle Alpi Apuane. Mem. Soc. Lunig. G. Cappellini Storia Nat. Reg., 1: 132-140
• Sagui C. L., 1921. Le nuove ricerche sulla miniera del Bottino. Mem. Soc. Lunig. G. Capellini Storia Nat. Reg., 1: 174-175.
• Sagui C. L., 1921. Roma in rapporto alla decadenza mineraria. La miniera del Bottino e le loro antiche lavorazioni. Mem. Soc. Lunig. G. Capellini Storia Nat. Reg., 2.
• Pelloux A., 1922. La zona metallifera del Bottino e della Valle di Castello. I suoi minerali e le sue miniere. Tip. Moderna, La Spezia.
• Pelloux A., 1922. La zona metallifera del Bottino e di Valle di Castello: i suoi minerali e le sue miniere. La Min. Ital., 6: 97-108; 131-138.
• Pelloux A., 1923. Tetraedrite ed altri minerali della miniera del Bottino (Seravezza). Mem. Soc. Lunig. G. Capellini Storia Nat. Reg., 6: 96-103.
• Sagui C. L., 1924. Primary and secondary ores of the Bottino mine, Italy. Economic Geology, 19: 542-549.
• Zaccagna D., 1932. I giacimenti ferriferi di Monte Tambura e Fondone e Fornovolasco, piombo argentifero di Bottino e Valdicastello, rame del Frigido e di Vagli, mercurifero di Levigliani e Ripa. Mem. Descr. Carta Geol. Ital.: 390-403.
• Sagui C. L., 1933. Economic geology nad its allied science in ancient times. Economic Geology, 28: 20-40.
• Sagui C. L., Jourdan A., 1933. De quelques données sur la genèse de la pyrrhotite colloidale et des autres minerais de la mine du Bottino. C. R. Acad. Sci. Paris, 196: 1424-1426.
• Dessau G., 1935. Studi sulla miniera del Bottino. Boll. Soc. Geol. Ital.: 333-349. [http://www.neogeo.unisi.it/dbgmnew/Archivio/T-644/TESTO_644.PDF]
• Berry L. G., Moddle D. A., 1941. Studies of mineral sulphosalts. V. Meneghinite from Ontario and Tuscany. Univ. Toronto. Geol. Surv. Canada, 46: 5-17
• Garavelli C. L., 1957. Contributo alla conoscenza della boulangerite. Atti Soc. Tosc. Sci. Nat., Mem., 64: 133-151.
• Garavelli C. L., 1962. Contenuto in Fe e temperatura di formazione di blende italiane. Atti Soc. Tosc. Sci .Nat., Mem., 69: 52-96.
• Fredriksson K., 1964. Electron probe analysis of copper in meneghinite. Amer. Miner., 49.
• Amodio L., Menchetti S., 1966. Su alcuni minerali della zona del Bottino-Sant'Anna (Alpi Apuane). Rend. Soc. Ital. Miner. Petrol., 22.
• Amodio Morelli L., Menchetti S., 1969. Su alcuni minerali della zona del Bottino e del Canale dell'Angina-Zulfello (Alpi Apuane). Atti Soc. Tosc. Sci. Nat., Mem., 76:417-445.
• Bassani U., 1971. La miniera di piombo e zinco del Bottino. Parti I e II. Notiz. Gr. Miner. Lomb., 4: 10-12; 28-37.
• Angelillis R., 1972. Probabile ritrovamento di geocronite alla miniera del Bottino. Notiz. Gr. Miner. Lomb., 53.
• Carmignani, L., Dessau, G., Duchi, G. (1972): I giacimenti delle Alpi Apuane e loro correlazione con l'evoluzione del gruppo montuoso. Memorie Società Geologica Italiana, 11, 417-431.
• De Michele, V. (1974). Guida mineralogica d'Italia. Istituto Geografico De Agostini, Novara, 2 vol
• Carmignani L., Dessau G., Duchi G., 1978. Structural control of mineralization in the Apuan Alps. Verh. Geol. B-A, 3:279-283.
• Benvenuti M., Lattanzi P., Tanelli G., 1989. Tourmalinite-associated Pb-Zn-Ag mineralization at Bottino, Apuane Alps, Italy: geologic setting, mineral texture and sulfide chemistry. Economic Geology, 84: 1277-1294.
• Benvenuti, M. (1991): Ni-sulphides from Bottino mine (Tuscany, Italy). European Journal of Mineralogy, 3, 79-84.
• Benvenuti, M., Costagliola, P., Lattanzi, P., Tanelli, G. (1991): Mineral chemistry of tourmalines from the Bottino mining district, Apuane Alps (Italy). European Journal of Mineralogy, 3, 537-548
• Benvenuti, M., Cortecci, G., Costagliola, P., Lattanzi, P., Ruggieri, G., Tanelli, G. (1992): The metamorphic-hosted precious- and base-metal deposits of the Bottino-Valdicastello region (Apuan Alps, Tuscany): an overview. Acta Vulcanologica, 2, 45-54.
• Bonazzi, P., Menchetti, S., Caneschi, A., Magnanelli, S. (1992): Bottinoite, Ni(H2O)6[Sb(OH)6]2 , a new mineral from the Bottino mine, Alpi Apuane, Italy. American Mineralogist, 77, 1301-1304
• Lattanzi P., Hansmann W., Koeppel V., Costagliola P., 1992. Source of metal in metamorphic ore-forming processes in the Apuane Alps (NW Tuscany, Italy): constraints by Pb-isotope data. Mineral. Petrol., 45: 217-229.
• Benvenuti, M., Brizzi, G., Dini, A. (1992/93): La miniera piombo-argentifera del Bottino (LU). I, II, III. Rivista Mineralogica Italiana, 16, 219-234 e 17, 1-22, 103-119.
• Costagliola, P., Cipriani, C., Benvenuti, M. (1994): Revisione critica della collezione del Bottino di Seravezza (Alpi Apuane, Toscana) del Museo di Mineralogia e Litologia di Firenze. Museol. Sci., 11: 109-117
• Lattanzi, P., Benvenuti, M., Costagliola, P., Tanelli, G. (1994): An overview on recent research on the metallogeny of Tuscany with special reference to the Apuane Alps. Memorie Società Geologica Italiana, 48, 613-625.
• Stasi, F., Vurro, F., Renna, M. (1998): Boulangerite from Bottino (Apuane Alps): twinning and OD character. Plinius, 20, 201-203.
• Orlandi, P., Dini, A., Pagano, R., Cerri, M. (2002): I minerali del Bottino della collezione Cerpelli. Rivista Mineralogica Italiana, 26 (2), 81-100.
• Garofani, I. (2007). Archeologia industriale in Alta Versilia. La miniera del Bottino e gli Stabilimenti Industriali dell'Argentiera. Istituto Storico Lucchese, Sezione "Versilia Storica", 14, 158 pp.
• Biagioni, C., Orlandi, P., & Michelucci, E. (2008). La pirargirite della miniera del Bottino. MICRO (notizie mineralogiche), 2008, 117-120.
• Orlandi, P., Biagioni, C. & Michelucci, E. (2013). Brandholzite. Primo ritrovamento italiano nella miniera del Bottino, Alpi Apuane. Rivista Mineralogica Italiana, 2/2013, 130-134.
Biagioni C., Dini A., Lorenzoni M., Orlandi P. and Pardini S. (2018) Boulangerite from the Bottino Mine, Apuan Alps, Tuscany, Italy; Mineralogical Record v. 44, no. 4 pp. 543-558


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2018, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: September 20, 2018 12:12:53 Page generated: September 19, 2018 19:43:48
Go to top of page