Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Connecticut, USAi
Regional Level Types
ConnecticutState
USACountry

This page kindly sponsored by Harold Moritz
PhotosMapsSearch
00539120014946283395580.jpg
Mine Exploration

Connecticut, USA
04683050014946313161369.jpg
Winze Or Sump?

Connecticut, USA
07209270014946313135885.jpg
Mine Exploration

Connecticut, USA
00539120014946283395580.jpg
Mine Exploration

Connecticut, USA
04683050014946313161369.jpg
Winze Or Sump?

Connecticut, USA
07209270014946313135885.jpg
Mine Exploration

Connecticut, USA
00539120014946283395580.jpg
Mine Exploration

Connecticut, USA
05915700014946313161796.jpg
Winze Or Sump?

Connecticut, USA
Area:
14,357 km2
Type:
Largest Settlements:
PlacePopulation
Bridgeport147,629 (2017)
New Haven130,322 (2017)
Stamford128,874 (2017)
Hartford124,006 (2017)
North Stamford121,230 (2017)
Waterbury108,802 (2017)
Mindat Locality ID:
15903
Long-form identifier:
mindat:1:2:15903:5
GUID (UUID V4):
22b89168-4566-46a9-b7d2-b8f6c9469022
Other Languages:
French:
Connecticut, États-Unis
German:
Connecticut, Vereinigte Staaten
Italian:
Connecticut, Stati Uniti d'America
Russian:
Коннектикут, Соединённые Штаты Америки
Simplified Chinese:
康乃狄克州, 美国
Spanish:
Connecticut, Estados Unidos
Afrikaans:
Connecticut, Verenigde State van Amerika
Albanian:
Connecticut, Shtetet e Bashkuara të Amerikës
Amharic:
ኮነቲከት, አሜሪካ
Anglo-Saxon:
Connecticut, Geānedu Rīcu American
Arabic:
كونيتيكت, الولايات المتحدة
Aragonese:
Connecticut
Armenian:
Կոնեկտիկուտ, Ամերիկայի Միացյալ Նահանգներ
Asturian:
Connecticut, Estaos Xuníos d'América
Aymara:
Connecticut suyu, Istadus Unidus
Azeri:
Konnektikut, Amerika Birləşmiş Ştatları
Basque:
Connecticut
Bavarian:
Connecticut, Vaoanigte Stootn
Belarusian:
Канектыкут, Злучаныя Штаты Амерыкі
Belarusian (Tarashkevitsa):
Канэктыкут, Злучаныя Штаты Амэрыкі
Bengali:
কানেটিকাট, মার্কিন যুক্তরাষ্ট্র
Bishnupriya Manipuri:
কানেকটিকাট, তিলপারাষ্ট্র
Bislama:
Connecticut, Yunaeted Stet blong Amerika
Bosnian:
Connecticut, Sjedinjene Američke Države
Breton:
Connecticut, Stadoù-Unanet Amerika
Bulgarian:
Кънектикът, Съединени американски щати
Burmese:
ကွန်နက်တီကတ်ပြည်နယ်, အမေရိကန်ပြည်ထောင်စု
Catalan:
Connecticut, Estats Units d’Amèrica
Cebuano:
Connecticut
Central Bikol:
Connecticut, Estados Unidos
Chechen:
Коннектикут, Америкин Цхьаьнатоьхна Штаташ
Chuvash:
Коннектикут, Пĕрлешнĕ Штатсем
Cornish:
Connecticut, Statys Unys
Corsican:
Connecticut, Stati Uniti d'America
Croatian:
Connecticut, Sjedinjene Američke Države
Czech:
Connecticut, Spojené státy americké
Danish:
Connecticut, USA
Dutch:
Connecticut, Verenigde Staten
Dutch Low Saxon:
Connecticut, Verienigde Staoten van Amerika
Egyptian Arabic:
كونيتيكت, امريكا
Emilian-Romagnol:
Connecticut, Stat Unî
Esperanto:
Konektikuto
Estonian:
Connecticut, Ameerika Ühendriigid
Faroese:
Connecticut
Farsi/Persian:
کنتیکت, ایالات متحده آمریکا
Fiji Hindi:
Connecticut, United States
Finnish:
Connecticut, Yhdysvallat
Franco-Provençal:
Connecticut, Ètats-Unis
Gagauz:
Connecticut, Amerika Birleşik Devletläri
Galician:
Connecticut, Estados Unidos de América
Georgian:
კონექტიკუტი, ამერიკის შეერთებული შტატები
Greek:
Κονέκτικατ, Ηνωμένες Πολιτείες Αμερικής
Guarani:
Connecticut, Tetãvore Joapykuéra
Haitian:
Konèktikòt, Etazini
Hakka:
Connecticut
Hausa:
Connecticut, Tarayyar Amurka
Hawaiian:
Konekikuka, ‘Amelika Hui Pū ‘ia
Hebrew:
קונטיקט, ארצות הברית
Hill Mari:
Коннектикут, Америкын Ушымы Штатвлӓжӹ
Hindi:
कनेक्टिकट, संयुक्त राज्य
Hungarian:
Connecticut, Amerikai Egyesült Államok
Icelandic:
Connecticut, Bandaríkin
Ido:
Connecticut, Usa
Igbo:
Kónétíkùt, Njikọ̀taọ̀hà
Iloko:
Connecticut, Estados Unidos iti Amerika
Indonesian:
Connecticut, Amerika Serikat
Interlingua:
Connecticut, Statos Unite de America
Irish Gaelic:
Connecticut, Stáit Aontaithe Mheiriceá
Japanese:
コネチカット州, アメリカ合衆国
Javanese:
Connecticut, Amérika Sarékat
Judaeo-Spanish:
Connecticut, Estados Unidos de Amerika
Kabiye:
Kɔnɛtɩkuti, Etaazuunii
Kabyle:
Connecticut, Iwunak Yeddukklen n Temrikt
Kalmyk:
Коннектикут, Америкин Ниицәтә Орн Нутугуд
Kannada:
ಕನೆಕ್ಟಿಕಟ್, ಅಮೇರಿಕ ಸಂಯುಕ್ತ ಸಂಸ್ಥಾನ
Kapampangan:
Connecticut, Estados Unidos
Kazakh (Cyrillic Script):
Коннектикут, Америка Құрама Штаттары
Khmer:
ខុនណេកទីខាត់, សហរដ្ឋអាមេរិក
Korean:
코네티컷주, 미국
Kurdish (Latin Script):
Connecticut, Dewletên Yekbûyî yên Amerîkayê
Latin:
Connecticuta, Civitates Foederatae Americae
Latvian:
Konektikuta, Amerikas Savienotās Valstis
Ligurian:
Connecticut, Stati Unïi d'America
Limburgian:
Connecticut, Vereinegde Staote vaan Amerika
Lithuanian:
Konektikutas, Jungtinės Amerikos Valstijos
Lombard:
Connecticut, Stat Ünì d'America
Low Saxon/Low German:
Connecticut, USA
Luri:
کانتیکئت, ڤولاتچٱیا یٱکاگرتٱ آمریکا
Luxembourgish:
Connecticut, Vereenegt Staate vun Amerika
Macedonian:
Конектикат, Соединети Американски Држави
Maithili:
कनेक्टिकट, संयुक्त राज्य अमेरिका
Malagasy:
Connecticut, Etazonia
Malay:
Connecticut, Amerika Syarikat
Malayalam:
കണെക്റ്റിക്കട്ട്
Manx:
Connecticut, Steatyn Unnaneysit America
Maori:
Connecticut, Hononga-o-Amerika
Marathi:
कनेक्टिकट, अमेरिकेची संयुक्त संस्थाने
Mazanderani:
کنتیکت
Meadow Mari:
Коннектикут, Ушымо Американ Штат-влак
Min Dong Chinese:
Connecticut
Mingrelian:
კონექტიკუტი, ამერიკაშ აკოართაფილი შტატეფი
Mongolian:
Коннектикут, Америкийн Нэгдсэн Улс
Nauruan:
Connecticut, Eben Merika
Nepali:
कनेक्टिकट, संयुक्त राज्य अमेरिका
Newar / Nepal Bhasa:
कनेक्तिकत, संयुक्त राज्य अमेरिका
Northern Frisian:
Connecticut, Feriind Stoote foon Ameerika
Northern Sami:
Connecticut, Amerihká ovttastuvvan stáhtat
Norwegian:
Connecticut, USA
Norwegian (Nynorsk):
Connecticut, USA
Occitan:
Connecticut, Estats Units d'America
Ossetian:
Коннектикут, Америкæйы Иугонд Штаттæ
Pali:
कनेक्टिकट, संयुक्त राज्य अमेरिका
Pennsylvania German:
Connecticut, Amerikaa
Piedmontese:
Connecticut, Stat Unì d'América
Polish:
Connecticut, Stany Zjednoczone
Portuguese:
Connecticut, Estados Unidos
Punjabi:
ਕਨੈਟੀਕਟ, ਸੰਯੁਕਤ ਰਾਜ ਅਮਰੀਕਾ
Quechua:
Connecticut suyu, Hukllachasqa Amirika Suyukuna
Romanian:
Connecticut, Statele Unite ale Americii
Romansh:
Connecticut, Stadis Unids
Russia Buriat:
Коннектикут
Samogitian:
Konektėkots, JAV
Sanskrit:
कनेक्टिकट्, अमेरिकासंयुक्तराज्यम्
Sardinian:
Connecticut, Istados Unidos de Amèrica
Saterland Frisian:
Connecticut, Fereende Stoaten fon Amerikoa
Scots:
Connecticut
Scottish Gaelic:
Connecticut, Na Stàitean Aonaichte
Serbian:
Конектикат, Сједињене Америчке Државе
Serbo-Croatian:
Connecticut, Sjedinjene Američke Države
Sicilian:
Connecticut, Stati Uniti
Silesian:
Connecticut, Zjednoczůne Sztaty
Slovak:
Connecticut, Spojené štáty
Slovenian:
Connecticut, Združene države Amerike
South Azerbaijani:
کانتیکت ایالتی, آمریکا بیرلشمیش ایالتلری
Swahili:
Connecticut, Marekani
Swedish:
Connecticut, USA
Tagalog:
Connecticut, Estados Unidos
Tamil:
கனெடிகட், அமெரிக்க ஐக்கிய நாடு
Tatar:
Коннектикут, Америка Кушма Штатлары
Telugu:
కనెక్టికట్, అమెరికా సంయుక్త రాష్ట్రాలు
Thai:
รัฐคอนเนตทิคัต, ประเทศสหรัฐอเมริกา
Traditional Chinese:
康湼狄格州, 美國
Turkish:
Connecticut, Amerika Birleşik Devletleri
Ukrainian:
Коннектикут, Сполучені Штати Америки
Upper Sorbian:
Connecticut, Zjednoćene staty Ameriki
Urdu:
کنیکٹیکٹ, ریاستہائے متحدہ امریکا
Uyghur:
Konnéktikat Shitati, ئامېرىكا قوشما شىتاتلىرى
Uzbek (Latin Script):
Konnektikut, Amerika Qoʻshma Shtatlari
Vietnamese:
Connecticut, Chủng Quốc Hoa Kỳ
Volapük:
Connecticut, Lamerikän
Waray:
Connecticut, Estados Unidos
Welsh:
Connecticut, Unol Daleithiau America
West Frisian:
Konettikut, Feriene Steaten
Western Punjabi:
کنکٹیکٹ, امریکہ
Wu Chinese:
康涅狄格, 美国
Xhosa:
IKhonethikhati, IYunayithedi Steyitsi
Yakut:
Коннектикут, Америка Холбоһуктаах Штааттара
Yiddish:
קאנעטיקעט, פאראייניקטע שטאטן פון אמעריקע
Yoruba:
Connecticut
Zazaki:
Connecticut, Dewletê Amerikayê Yewbiyayey
Zeelandic:
Connecticut, Vereênigde Staeten
Zulu:
Connecticut, IMelika


Hierarchy:
Connecticut is politically divided into 8 counties - Fairfield, Hartford, Litchfield, Middlesex, New Haven, New London, Tolland, and Windham. Below the county level, the entire state is divided into 169 incorporated towns and cities, there is no unincorporated land. Typically within the boundaries of an incorporated town or city is a population center with the same name as the incorporated one, such as the town and village of East Haddam. There are also other named population centers within incorporated towns/cities that are sometimes more populated than the village with the incorporated town name, such as Falls Village in the town of Canaan, or Willimantic in the town of Windham. A few of these have established boundaries. Villages and other geographic places within an incorporated town/city typically serve as a more precise reference to a mineral locality. But in some cases there is a village with the same name as a different incorporated town. For example, the village of Canaan is in the incorporated town of North Canaan not the incorporated town of Canaan. Both of these towns include many mineral localities that if just referred to as Canaan would cause confusion.
All Connecticut localities listed in mindat.org should include:
- the name(s) of the locality
- (optional) the closest city or village or other place name (if relevant or different from the incorporated town/city) (USGS maps are a good reference)
- the name of the incorporated town/city (1 of 169)
- the county name

Geology:
Connecticut has a long and complex geologic history that resulted in the presence of many types of sedimentary, igneous, metamorphic and hydrothermal rocks. There are three primary bedrock geologic regions that are part of the continental scale Appalachian Orogen:

1) Metamorphic and igneous rocks of the Western Uplands.
2) Sedimentary and igneous rocks of the Central Lowlands (the Hartford Mesozoic Basin of the Newark Terrane).
3) Metamorphic and igneous rocks of the Eastern Uplands.

Within the Western Uplands the metamorphic rocks occur in three major tectonic terranes:

1) Mesoproterozoic massifs (mostly ortho and paragneisses, migmatites and amphibolites) with Neoproterozoic and Cambro-Ordovician quartzite, gneiss, schist and marble shelf sequences (Laurentian continental margin deposits), including the goethite iron ore deposits. These are exposed in westernmost Connecticut and in the core of the Waterbury Dome.
2) Allochthonous Taconian (Hoosic, Manhattan and Canaan Mountain) schist and amphibolite - (Neoproterozoic and Cambrian continental slope deposits), exposed also in westernmost Connecticut.
3) Allochthonous Connecticut Valley Synclinorium and Milford-Orange Terranes (oceanic terranes consisting mostly of Cambrian to Silurian schist and granofels, and intruded by gneissic syntectonic plutons). Parts of these terranes are unconformably capped by Devonian/early Silurian The Straits Schist and Wepawaug Schist. This belt lies in the eastern and southern parts of the Western Uplands.

The Mesoproterozoic massifs underwent metamorphism during the Ottowan phase (approx. 1.05 Ga) of the Grenville Orogeny. These rocks, their Neoproterozoic to Ordovician cover, and the terranes to their east also were deformed by the Taconian and Acadian Orogenies.

Within the Western Uplands there are also a few large post-tectonic plutons such as the very late Devonian Nonnewaug Granite (and associated pegmatites) and Permian Pinewood Adamellite; numerous small Devonian pegmatites; and the Mesozoic Pomperaug Basin with similar sedimentary and igneous rocks as the much larger Mesozoic Hartford Basin.

The Mesozoic Hartford Basin, part of the Newark Terrane of rift basins formed during the Triassic-Jurassic breakup of Pangaea, underlies the Central Lowlands of Connecticut. It is a continental graben filled with 8-10 km of clastics - arkosic conglomerates, sandstones and mudstones with minor carbonate and petroleum-rich lacustrian shales - three basalt lava flows (including the much-quarried Jurassic Holyoke Basalt), and numerous diabase plutons (principally the Jurassic West Rock Diabase) that also extent into the adjacent uplands.

Within the Eastern Uplands the metamorphic rocks occur in six major tectonic terranes:

1) The Bronson Hill Anticlinorium, which consists of metamorphosed felsic plutons and volcanics of an Ordovician island arc. Part of this terrane is unconformably capped by Devonian/Silurian Bolton Group meta-sediments. This terrane underlies the western part of the Eastern Highlands.
2, 3) Allochthonous Merrimack and Central Maine Terranes (oceanic terranes consisting mostly of Ordovician to Devonian schist, siliceous and calc-silicate gneiss and granofels, and intruded by gneissic syntectonic plutons). These terranes are exposed in the central part of the Eastern Uplands.
4) Putnam-Nashoba island arc terrane consisting mostly of Ordovician orthogneisses and exposed in far eastern Connecticut and in the Willimantic Dome.
5, 6) Avalon and Gander (Stony Creek, Clinton and Lyme Domes) continental terranes consisting of Neoproterozoic gray ortho and paragneisses, quartzite, meta-granites and alaskite. The Gander Lyme Dome also includes Permian alaskite gneiss. These terranes are intruded by numerous small, post-tectonic plutons of Permian Westerly (or Narragansett Pier) granite and pegmatite. These terranes crop out along the southeastern and eastern edges of the state, and in the Willimantic Dome.

Numerous small to large very early Permian pegmatites intrude the Eastern Uplands terranes, particularly in the area east of Middletown known as the Middletown Pegmatite District.

Ductile faulting on a continental scale has greatly affected the metamorphic and igneous rocks of the Western and Eastern Uplands. Barrovian metamorphism extends from low grade (Chlorite Zone) to high grade (Sillimanite Zone), there is very little contact metamorphism (mostly around the Litchfield Norite) though there is retrograde metamorphism in many areas. Despite the extensive tectonic history, there are only a few remnants of lower oceanic igneous crust; serpentinized fragments of these are found mainly in the Satan's Kingdom area and Orange-Milford Belt.

Brittle faulting associated with the Triassic-Jurassic breakup of Pangaea affected all of Connecticut. Numerous, regional faults are mapped in the Eastern and Western Uplands and, of course, within, bordering and cross-cutting the Hartford and Pomperaug Mesozoic Basins, which formed during this time. Intense brittle faulting is particularly well exposed in the New Britain-Newington area where faults are present every few meters. Many faults and even fractures are mineralized due to hydrothermal activity, the most prominent example being the Lantern Hill quartz lode in North Stonington.

Although late Cretaceous and Tertiary transgressive sediments of the Coastal Plains of eastern North America did cover part of Connecticut, erosion has removed them. Pleistocene glaciation affected the state and deposited extensive till, deltaic sands and gravels, and lacustrian silts and clays.

Mineralogy:
Due to its long and complex geologic history, Connecticut boasts a large variety of mineral forming environments and thus a long list of mineral species. The presence of these deposits so close to major colleges and universities such as Yale, Harvard, Wesleyan, Amherst, and University of Connecticut provided specimens for study by early luminaries such as Archibald Bruce, Benjamin Silliman, Edward Dana, James Dana, George Brush, Wilbur Foye, and Charles Shepard and more recently David London. Mineral specimens from Connecticut are in the museum collections at Greenwich, Middletown, New Haven, and Kent, Connecticut; plus Cambridge and Amherst, Massachusetts; New York City; Washington, DC and beyond. It also created and continues to inspire a plethora of amateur collectors, mostly as hobbyists but also many who have made major contributions (through publications and collections) to the knowledge of the state's mines and minerals, such as Ronald Januzzi, Richard Schooner, Neal Yedlin, Charles and Marcelle Weber, Bill Shelton, John (Jack) Pawloski, Bruce Jarnot, John Hiller, Earle Sullivan, Ed Force, Bob Jones and many others.

The minerals of Connecticut can best be generally categorized by their host rock types and environments listed below.

Igneous Rock Minerals:
- Rock forming minerals in large plutons - albite, microcline/orthoclase, quartz, biotite series, muscovite, dark amphiboles, dark pyroxenes.
- Accessory minerals in large plutons - almandine, fluorapatite, titanite, zircon, rutile, allanite, monazite, schorl, pyrite.
- Rock forming minerals in basalt and diabase - anorthite, augite, pigeonite, olivine.
- Pegmatite minerals - albite (including cleavelandite), microcline, quartz, muscovite, annite, almandine, tourmalines, beryl, fluorapatite, columbite-tantalite, samarskite, uraninite (and secondaries), monazite, zircon, montebrasite, lepidolite, spodumene (and alterations), lithiophilite-triphyllite (and alterations), microlite, cookeite, topaz, opal-AN, pollucite, calcite, fluorite, sulfides, numerous other secondary and rare minerals.

Metamorphic Rock Minerals:
- Rock forming minerals in siliceous schist, gneiss, and amphibolite - albite, quartz, muscovite, biotite series, chlorite series, microcline, dark amphiboles, dark pyroxenes.
- Accessory minerals in siliceous schist, gneiss, and amphibolite - chlorite group, almandine, kyanite, sillimanite, andalusite, ilmenite, fluorapatite, staurolite, cordierite, graphite, rutile, goethite, schorl, titanite, corundum, magnetite, monazite, epidote/clinozoisite, scheelite, ferberite, sulfides.
- Rock forming minerals in marble and calc-silicate rocks - calcite, dolomite, diopside, tremolite, grossular, scapolite series, albite, phlogopite.
- Accessory minerals in marble and calc-silicate rocks - dravite-uvite, pyrite, pyrrhotite, chalcopyrite, graphite, norbergite-chondrodite, titanite, spinel/magnetite, fluorapatite, corundum, quartz, chlorite series, talc, serpentine group, wollastonite, vesuvianite, epidote/clinozoisite/zoisite, microcline, axinite, forsterite, danburite.
- Minerals in serpentinites - serpentine (antigorite, lizardite, chrysotile), talc, pyrophyllite, chlorite series, calcite, tremolite, diopside, epidote/clinozoisite, magnetite, chromite, sulfides (including secondaries).

Sedimentary Rock Minerals:
Mostly clastics consisting of fragments of quartz, feldspars and other rock types, typically cemented by albite with a small amount of hematite, chlorites, and zeolites. The bituminous lacustrian shales include pyrite and nodules of magnesite and there are rare tufa deposits composed of calcite.

Hydrothermal Minerals:
- Minerals in gas vesicles in basalt and diabase - calcite, quartz/chalcedony/agate, datolite, prehnite, pectolite, apophyllite, pumpellyite, julgoldite, babingtonite, adularia, gypsum, anhydrite, celestine, goethite, hematite, sulfides, zeolites (stilbite, heulandite, natrolite, analcime, laumontite, gmelinite, chabazite, mordenite).
- Minerals in faults and fractures - quartz, calcite, dolomite, fluorite, barite, aragonite, siderite, sulfides (pyrite, chalcopyrite, galena, arsenopyrite, chalcocite, bornite) and secondaries, topaz, muscovite, prehnite, pectolite, goethite, hematite, zeolites.

Mining and Quarrying:
All of the above rock types and mineral deposits have been exploited by over 1000 open quarries, underground mines, and prospects, studied by geologists and mineralogists, and combed over by collectors. Although Native Americans are known to have worked quartz, talc and serpentinite deposits, the arrival of Europeans and Africans beginning in the early 17th century saw greatly increasing demand for geologic resources.

Besides rock quarrying all over the state for construction purposes, marble deposits were worked for quicklime, particularly in the marble belt in the western part of the Western Uplands. This resource is still in great demand for a variety of purposes and was also mined during WWII for dolomite (magnesium) for aircraft production and the Manhattan Project. Marble quarries are still active in Canaan and North Canaan.

"Granite", mostly actually metamorphosed plutons or meta-volcanic gneisses but also including true Westerly (or Narragansett Pier) granite, was in great demand for construction of expanding towns and cities, and for fortifications starting in the early 19th century, until largely replaced by concrete in the early 20th century. Granite quarrying still takes place in Stony Creek (Branford) and Roxbury.

To satisfy the huge demand for concrete, many quarries worked the diabase and basalt in both the Hartford and Pomperaug Basins for crushed stone. Others work massive gneissic rock in the uplands. Several very large quarries are still active in the Holyoke Basalt, particularly in Southbury/Woodbury, North Branford, Wallingford/Durham, Plainville, Meriden and East Granby. These quarries represent the major mining taking place in Connecticut today. The basalt quarries, and various construction sites that blasted open this rock, sometimes opened up fantastically mineralized gas vesicles and fractures.

"Brownstone", primarily an aeolian arkosic sandstone found in the Jurassic Portland Formation of the Hartford Basin, was heavily quarried for building stone until the early 20th century, particularly at Portland and Manchester. Minor brownstone quarrying took place in Portland from the early 1990s until 2012.

Quarrying and mining for minerals concentrated on four major resources: iron from goethite and siderite; feldspar and mica from pegmatites; garnet from metamorphic rocks; and baryte, quartz, and metal ores from hydrothermal veins. The majority of this activity was economically successful, except most of the mining of metal ores from hydrothermal veins. The tungsten mine in Trumbull worked accessory scheelite and ferberite in an amphibolite, but was also not successful. Nor was the cobalt-nickel mining near Great Hill in East Hampton that, like Trumbull, worked a stratigraphic deposit rather than a hydrothermal vein. Pentlandite, chalcopyrite and pyrrhotite grains in the Litchfield Norite is another non-hydrothermal metal deposit that saw failed attempts at profitable mining.

The goethite iron ores formed along an unconformity between the Stockbridge Marble and Walloomsac Schist. This stratigraphic horizon crops out in a belt largely in Salisbury where it was mined for iron in several places from the early 18th century until 1923. Known for its toughness, Salisbury iron was in great demand for cannon, chains, anchors, and railroad wheels. The Kent Mine worked geothite formed in the stratigraphically lower Cambrian Dalton Formation. Here, and at a location in Sharon where it was mined, part of the Dalton was weathered to kaolinite. Another 19th century iron mine operated on Mine Hill in Roxbury exploiting the siderite vein there, which is the largest in North America.

Microcline, muscovite and other minerals were quarried and mined from the numerous pegmatites from about 1825 until 1990. There are hundreds of pegmatite quarries, mostly in the Middletown District in the Eastern Uplands, but also scattered around the Western Uplands such as at Bethel, Ridgefield, Branchville, New Milford, and Woodbury. A burst of pegmatite mining activity took place during and after WWII when sheet mica was in great demand, and for uranium and beryllium for nuclear weapons and power. A by-product of this activity was the production of a plethora of rare and gem minerals that were used for scientific and lapidary purposes and that are still sought after by collectors. Connecticut pegmatites host 9 of the state's 15 type locality minerals or varieties as well as the first known columbite crystal. Some of the first radiometric dating of minerals used uraninite and samarskite from Branchville and Glastonbury. The Roebling quarry, Gillette quarry and Strickland pegmatite were major gem producers, particularly for colored tourmalines and beryl. Most pegmatite quarries closed after the federal subsidies for beryl and mica ended in the 1950s because the high grading of ore was largely done manually. But The Feldspar Corp. operated the state’s largest pegmatite quarries in the White Rock area of Middletown (plus the Hale and Gotta-Wannerstrom quarries in Portland) from about 1960 to 1990 using efficient flotation technology to separate the minerals from vast quantities of crushed ore.

Although not a pegmatite quarry, the quarry for the reservoir dam at East Morris worked an outlier of the Devonian Nonnewaug granite and intersected numerous, large miarolitic cavities in pegmatitic phases of the granite. The cavities produced great smoky quartz and microcline crystals with albite similar in quality and size to those from granite plutons in northern New Hampshire.

Almandine for abrasives was quarried from metamorphic rocks in several places, the most famous was in Roxbury where the host schist is largely altered to crumbly talc facilitating the separation of the dodecahedral porphyroblasts.

Finally, the hydrothermal veins so plentiful from the Triassic-Jurassic rifting of Pangaea were exploited for a variety of minerals, primarily quartz at the giant lode at Lantern Hill and other places. Many smaller faults, particularly those cross-cutting quartzite in the highlands, are brecciated with open spaces lined with fantastic quartz crystals, such as at West Stafford, Haddam, Moosup, and Avon. Amethyst occurs at the Canton Lead Mine in Canton. The hydrothermal veins were also worked mainly for copper and baryte during the 19th century. Baryte was successfully mined in Cheshire and copper mining was moderately successful at the Simsbury Mine (the first chartered copper mine in North America) in what is now East Granby, and at the Bristol Copper Mine, famous for its fantastic chalcocite and bornite crystals. There are many small holes and shafts dug by prospectors in search of silver, lead, copper, cobalt, nickel, and the elusive gold, none of which really panned out but now provide places for mineral collectors to ply their trade.

Coordinates are at the intersection of Interstates 91 and 691, state Routes 15 and 66, and East Main Street in Meriden very near the geographic center of the state.

References covering the state, or significant regions of it, are listed below.

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded from this region.


Mineral List

Mineral list contains entries from the region specified including sub-localities

365 valid minerals. 14 (TL) - type locality of valid minerals. 1 (FRL) - first recorded locality of unapproved mineral/variety/etc. 20 erroneous literature entries.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Rock list contains entries from the region specified including sub-localities

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Acanthite
Formula: Ag2S
Actinolite
Formula: ◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Localities: Reported from at least 46 localities in this region.
Habit: bladed
Colour: dark green
Description: Beautiful bladed crystals on massive actinolite from a locality near the "Stonehenge Inn".
Aegirine
Formula: NaFe3+Si2O6
Aegirine-augite
Formula: (NaaCabFe2+cMgd)(Fe3+eAlfFe2+gMgh)Si2O6
Habit: anhedral to subhedral elongated prisms
Colour: black to dark green
Description: Reported by Dale and Gregory as aegirine in 1911, the mineral found here has since been redefined as aegirine-augite.
'Aeschynite'
Description: now equivalent to Davidite-(La)
Albite
Formula: Na(AlSi3O8)
Localities: Reported from at least 224 localities in this region.
Habit: blocky, equant
Colour: white to pale gray
Fluorescence: lavender, magenta-pink
Description: Besides a major constituent of the pegmatite, crystals in small pockets reach up to about 2 cm, often in dense clusters, also as overgrowth on microcline on cleavelandite and psuedomorphous after muscovite in the wall zone.
Albite var. Andesine
Formula: (Na,Ca)[Al(Si,Al)Si2O8]
Localities: Reported from at least 6 localities in this region.
Albite var. Cleavelandite
Formula: Na(AlSi3O8)
Localities: Reported from at least 21 localities in this region.
Habit: tabular prisms
Colour: white
Fluorescence: reddish magenta to lavender
Description: As irregular aggregates of small subhedral crystals, often in very aesthetic arrangements, and as veins 1/8 to ¼ inch wide and as much as 6 feet long.
Albite var. Oligoclase
Formula: (Na,Ca)[Al(Si,Al)Si2O8]
Localities: Reported from at least 22 localities in this region.
Habit: anhedral but in large cleavable masses
Colour: white to pale green
Description: Gemmy and in large cleavable masses.
Albite var. Peristerite
Formula: Na(AlSi3O8)
'Alkali Feldspar'
Allanite-(Ce)
Formula: (CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
Localities: Reported from at least 6 localities in this region.
Habit: elongated prisms
Colour: black, very dark brown
Description: Very sharp terminated crystals crystals, up to half an inch in diameter and five or six inches in length, accompany pink fluorite. Massive material also occurs, intergrown with quartz, bastnaesite, pyrite, chalcopyrite, and white to greenish plagioclase (commonly stained brown). The allanite is not very radioactive and was identified by an x-ray diffraction test by Mary E. Mrose of the U. S. Geological Survey. She indicated that it gave an exceptionally clear pattern. It was obviously non-metamict, in keeping with its unaltered appearance and virtual lack of radioactivity. Note: Schooner misidentified these as staurolite in Zodac (1940).
'Allanite Group'
Formula: (A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
Localities: Reported from at least 18 localities in this region.
Alleghanyite
Formula: Mn2+5(SiO4)2(OH)2
Colour: reddish
Description: Found by Dick Schooner. A segregation over a foot in diameter, it consisted mainly of reddish alleghanyite and pinkish kutnohorite, with accessories. Unfortunately, only a few specimens were saved.
Allophane
Formula: (Al2O3)(SiO2)1.3-2 · 2.5-3H2O
References:
Alluaudite ?
Formula: (Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Habit: pseudomorph after triphylite?
Description: From Januzzi (1994): "Alluaudite, collected and recently identified by the author as occurring at Branchville (confirmation by Kampf, Los Angeles County Museum of Natural History), is evidently a pseudomorph after euhedral crystals of triphylite." Needs confirmation.
Almandine
Formula: Fe2+3Al2(SiO4)3
Localities: Reported from at least 123 localities in this region.
Habit: dodecahedral
Colour: maroon to purple, nearly black
Fluorescence: none
Description: Crystals can reach over 2.5 cm on an edge. Unpublished XRF analysis by Harold Moritz found 98% Fe of total Fe+Mn content. Hiller (1983) noted that some gem quality garnets will show 4-star rays if properly cut.
'Almandine-Pyrope Series var. Rhodolite' ?
Formula: Mg3Al2(SiO4)3
Habit: Dodecahedral
Colour: Red, purple
Description: Color is not diagnostic for garnet species. Needs chemical analysis to confirm, pyrope is not confirmed in Connecticut and is unlikely because it is found mostly in Mg-rich deep crustal igneous rocks and as grains rather than crystals. These crystals are probably almandine, which is extremely common in schists, though they may have a significant Mg component. The term "rhodolite" refers originally a rose-red gem variety of pyrope. Current usage has extended the name to any pink garnet in the almandine-pyrope series with most of the occurrences in the almandine compositional field.
'Almandine-Spessartine Series'
Habit: trapezohedral
Colour: dark maroon with black coating
Description: Crystals to 4 inches. Referred to by Schooner as spessartine, but most likely impure almandine based on XRF analyses of many other district pegmatitic garnets.
'Alum Group'
Formula: XAl(SO4)2 · 12H2O
Amblygonite
Formula: LiAl(PO4)F
Description: Re-identified as montebrasite.
'Amphibole Supergroup'
Formula: AB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Localities: Reported from at least 11 localities in this region.
'Amphibole Supergroup var. Byssolite'
Formula: AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Habit: fibrous
Colour: very pale green
'Amphibole Supergroup var. Uralite' ?
Formula: AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Description: Included in a list of minerals with no details.
Analcime
Formula: Na(AlSi2O6) · H2O
Localities: Reported from at least 13 localities in this region.
Habit: trapezohedra
Colour: white
Description: good though generally small (~1 cm or less) crystals associated with prehnite, natrolite, micro heulandite
Anatase
Formula: TiO2
Localities: Reported from at least 18 localities in this region.
Habit: bipyramidal
Colour: metallic blue to yellow and green
Description: "brilliant, metallic bluish, bipyramidal crystals and as bi-colored, glassy crystals exhibiting the same morphology (these crystals are blue to yellow, at times greenish in color), both deeply striated and occurring in alpine type seams"
Andalusite
Formula: Al2(SiO4)O
Habit: elongated with square cross-sections
Colour: gray-brown
Description: Crystals in quartz to 6 cm. May be pseudomorphed by fine-grained mica/kyanite.
Andradite
Formula: Ca3Fe3+2(SiO4)3
Habit: modified rhombic dodecahedrons
Colour: wine yellow
Description: "The Mill Rock garnets have a wine-yellow color, and a brilliant luster. The material available was much too scanty to admit of any chemical examination, but in view of their similarity of form and color, they may safely be referred to the variety topazolite." (Dana, 1877). They are a couple of mm across or less, associated with quartz.
Andradite var. Melanite
Formula: Ca3(Fe3+,Ti)2(SiO4)3
Habit: rhombic dodecahedral, often in nearly parallel positions in rosettes
Colour: dark-brown to jet-black, occasionally yellowish-brown
Description: Rosettes reach to about 2 cm across.
Andradite var. Topazolite
Formula: Ca3Fe3+2(SiO4)3
Habit: modified rhombic dodecahedrons
Colour: wine yellow
Description: "The Mill Rock garnets have a wine-yellow color, and a brilliant luster. The material available was much too scanty to admit of any chemical examination, but in view of their similarity of form and color, they may safely be referred to the variety topazolite." (Dana, 1877). They are a couple of mm across or less, associated with quartz.
Anglesite
Formula: PbSO4
Localities: Reported from at least 10 localities in this region.
Anhydrite
Formula: CaSO4
Localities: Reported from at least 25 localities in this region.
Habit: Cleavable masses, molds surrounded by later encrusting minerals
Colour: white to pale blue
Description: Extant crystals very rare in Conn. - nearly all were dissolved away and exist as platy to rectangular prismatic molds, but here there were "large pearly masses showing cleavage surfaces often 10 cm. or more broad. There is abundant evidence that anhydrite has been present in almost universal distribution, but it now remains undissolved only in the centers of the less pervious blocks of rock. Molds of anhydrite crystals varying from stout prisms to exceedingly thin sheets are abundant everywhere." Shannon (1920).
Ankerite
Formula: Ca(Fe2+,Mg)(CO3)2
Habit: rhombohedral
Description: Typical small rhombs <1 cm. Uncertain in the reference if the crystals are true ankerite under the revised definition, or ferroan dolomite, or how to distinguish them from the much more common magnesite.
Annabergite
Formula: Ni3(AsO4)2 · 8H2O
Habit: coatings
Colour: bright to pale green
Description: waxy, pale to bright green coatings on ore-bearing host rocks, particularly around bronze nickeline grains.
Annite
Formula: KFe2+3(AlSi3O10)(OH)2
Localities: Reported from at least 71 localities in this region.
Anorthite
Formula: Ca(Al2Si2O8)
Localities: Reported from at least 6 localities in this region.
Anorthite var. Bytownite
Formula: (Ca,Na)[Al(Al,Si)Si2O8]
Anorthite var. Labradorite
Formula: (Ca,Na)[Al(Al,Si)Si2O8]
Description: The references provide no details, but anorthite is a component of the diabase dike exposed in the cut.
Anthophyllite
Formula: ◻{Mg2}{Mg5}(Si8O22)(OH)2
Localities: Reported from at least 9 localities in this region.
Habit: prismatic
Colour: dark green
Description: As pure layers cm thick and as isolated to radial sprays of crystals to several cm long in a granular quartz-albite matrix.
Antigorite
Formula: Mg3(Si2O5)(OH)4
Habit: massive
Colour: dark yellowish-green
Description: Described by Dana as occurring at "Oldfield Rock" near Stratford Landing, an place name no longer used and now somewhere between the former Vought (AVCO) plant and the Marine Basin. The outcrop is long covered, but based on descriptions by Percival (1842), was similar to those in Milford, Orange (see http://www.mindat.org/loc-227940.html) and West Haven and represents serpentinized lower oceanic crust.
Antimony ?
Formula: Sb
Habit: broad plates
Description: Reference notes that the validity needs confirmation, but this was apparently either not done of found to be something else (ilmenite?).
'Apatite'
Formula: Ca5(PO4)3(Cl/F/OH)
Localities: Reported from at least 22 localities in this region.
'Apophyllite Group'
Formula: AB4[Si8O22]X · 8H2O
Localities: Reported from at least 16 localities in this region.
Habit: tabular, in spherical aggregates
Colour: white to creamy
Description: Aggregates of tabular crystals can reach 3 to 4 cm. This habit is characteristic for this locality, other area trap rock quarries have bipyramidal crystals.
Aragonite
Formula: CaCO3
Localities: Reported from at least 34 localities in this region.
Habit: flattened acicular prisms
Colour: colorless to white
Fluorescence: pale yellow-white under LW/MW/SW
Description: Excellent acicular sprays of clear crystals in small cavities on very rusty/earthy goethite in the cores of fault veins, crystals usually micro to 1.5 cm or so.
Arrojadite-(KFe) ?
Formula: (KNa)(Fe2+◻)Ca(Na2◻)Fe2+13Al(PO4)11(PO3OH)(OH)2
Description: reported by Dick Schooner, no details in the reference.
Arsenic ?
Formula: As
Arsenolite ?
Formula: As2O3
Habit: powder
Colour: yellowish
Description: Schooner (1955): "as yellowish powdery incrustations on decomposed arsenopyrite at the Strickland Quarry. One rather large mass of the unusual material was taken out of the pegmatite which adjoins the schist in the cut above the main pit. Pyrite is associated, in all the specimens."
Arsenopyrite
Formula: FeAsS
Localities: Reported from at least 26 localities in this region.
Habit: rectangular prisms
Colour: gray
Description: Usually as aggregates of < 1cm crystals embedded in yellowish matrix.
Arsenopyrite var. Danaite
Formula: (Fe0.90Co0.10)AsS - (Fe0.65Co0.35)AsS
Habit: massive, striated aggregates
Description: The arsenopyrite is not the Co-Ni ore, earlier references to and analyses of "danaite" are probably from confusion with the loellingite ore veins.
'Asbestos'
'Asbestos var. Mountain Leather'
Habit: fibrous
Colour: white
Description: Fairly thick, white, matted fibers of amphibole or perhaps sepiolite.
Atacamite
Formula: Cu2(OH)3Cl
Habit: micro radiating clusters, aggregates, druses
Colour: deep green, sky blue
Description: Henderson (1967) reports: deep green crystals of quite variable habit up to 0.5 mm in size. The terminal planes of single crystals were generally bright, while faces in the prism zone were rounded and striated (Fig. 3). It also occurred as radiating groups and in irregular aggregates, sometimes with a single larger crystal perched on top. Druses of atacamite on vesicles were common. It was most frequently found close to or on cuprite, but occasionally appeared to be on malachite. Identification was based on its solubility in dilute hydrochloric and nitric acids, a positive test for halogen, and negative tests for carbonate and sulfate. The atacamite showed parallel extinction and weak birefringence, the two together ruling our malachite, antlerite and brochantite. The mineral was distinguished from paratacamite by its crystal form. On occasion, crystals corresponding to atacamite were found but with a sky blue color. These may well be pseudomorphs of rosasite after atacamite.
Augelite
Formula: Al2(PO4)(OH)3
Colour: gray
Description: Specimens of metasomatically altered natromontebrasite, collected at the Strickland quarry around 1950 by Charles Thomas, consist of gray augelite crystals intergrown with pink brazilianite, pink hydroxylapatite, and yellow lacroixite. Very little such material was preserved, and most of it was consumed in study at the U.S. Geological Survey. Natromontebrasite was discredited in 2007, being a mixture of montebrasite, lacroixite, and wardite.
Augite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Localities: Reported from at least 13 localities in this region.
Augite var. Fassaite
Formula: (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Augite var. Titanium-bearing Augite
Formula: (Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
Aurichalcite
Formula: (Zn,Cu)5(CO3)2(OH)6
Localities: Reported from at least 6 localities in this region.
Autunite
Formula: Ca(UO2)2(PO4)2 · 10-12H2O
Localities: Reported from at least 27 localities in this region.
Habit: tabular flakes, coatings
Colour: pale yellow
Fluorescence: bright green
Description: Should be referred to as meta-autunite as all such material is dehydrated. Associated with uraninite and uranophane.
Axinite-(Fe)
Formula: Ca2Fe2+Al2BSi4O15OH
Habit: tabular, axe-head shaped
Colour: lavender-brown
Description: "Beautiful groups of tabular crystals, up to an inch across, were associated with prehnite and several other minerals in a small cavity in gneiss. The largest group was almost three inches long. Most of the crystals were colored green by inclusions of chlorite, but some were of a typical lavender-brown tint and quite gemmy. Pseudomorphs of chlorite after axinite were fairly abundant. This is the first reported occurrence of axinite in Connecticut." Schooner (1958) "Groups of simple axe-shaped crystals, up to two inches across, were embedded in loose chlorite, with some admixed clay. The crystals were of two types: lavender-brown, glassy, and without inclusions, and greenish, opaque, and thoroughly impregnated with the chlorite. Some of the smaller examples of the latter kind were pseudomorphs of chlorite after axinite. In all cases, there seemed to be two generations of axinite crystals, differing in size but not in habit. One large crystal had a number of smaller ones clustered on its surfaces." Schooner (1961)
'Axinite Group' ?
Description: Included in a list copied from Schooner (1958) but with no supporting details. May have occurred in the calc-silicate vein found in the gneissic wall rock.
Azurite
Formula: Cu3(CO3)2(OH)2
Localities: Reported from at least 16 localities in this region.
Habit: Tabular to tapered groups
Colour: Very dark blue
Description: Mostly massive, found in massive quartz with massive chalcocite, malachite, fluorite.
Babingtonite
Formula: Ca2(Fe,Mn)FeSi5O14(OH)
Localities: Reported from at least 14 localities in this region.
Habit: blocky to wedge-shaped
Colour: black
Description: Crystals to a little over 1 cm, surfaces are mix of smooth and lustrous to rough textures. Commonly associated with prehnite, calcite and quartz.
Baryte
Formula: BaSO4
Localities: Reported from at least 38 localities in this region.
Description: Mostly massive to subhedral material, but good euhedral crystals can reach 1 dm and subparallel clusters can reach a meter. Large crystals tend to have transparent sections, smaller crystals translucent to opaque. Associated with drusy quartz, small isolated botryoidal malachite blebs or acicular sprays, rarer with blebs of copper sulfides, all on pinkish-red arkosic sandstone to conglomerate matrix. A partial, reddish coating may be present on many crystals.
Bastnäsite-(Ce)
Formula: Ce(CO3)F
Habit: thin, irregular plates
Colour: brown, reddish-brown to yellowish-tan
Description: Irregular thin plates, as much as two or three inches across and a half of an inch thick, are intimately associated with massive allanite, white to greenish plagioclase, pink to purple fluorite, chalcopyrite and pyrite. Some may be altered to gray lanthanite?
Bavenite
Formula: Ca4Be2Al2Si9O26(OH)2
Habit: blades, needles, platey, massive, in hemispherical and 2-D radiating aggregates
Colour: white to pale green
Description: probably the best material for the species in Connecticut.
Bazzite
Formula: Be3Sc2(Si6O18)
Becquerelite
Formula: Ca(UO2)6O4(OH)6 · 8H2O
Habit: pseudomorphs after uraninite
Colour: yellow
Description: "A soft yellow pseudomorph after a uraninite crystal was X-rayed, and proved to be becquerelite." Schooner (circa 1980s).
Bementite ?
Formula: Mn7Si6O15(OH)8
Description: Reported by Dick Schooner, reference gives no details.
Beraunite ?
Formula: Fe3+6(PO4)4O(OH)4 · 6H2O
Habit: stains and encrustations
Colour: dark green
Description: Very poorly crystallized in fracture fillings.
Bertrandite
Formula: Be4(Si2O7)(OH)2
Localities: Reported from at least 30 localities in this region.
Habit: multiple forms, from simple to complex and as various twins. Usually flattened, elongated, or blocky.
Colour: colorless
Description: Micro-crystals and aggregates in voids left by dissolved beryl crystals. Also part of a suite of micro-minerals pseudomorphing beryl crystals.
Beryl
Formula: Be3Al2(Si6O18)
Localities: Reported from at least 111 localities in this region.
Habit: elongated hexagonal prisms, terminated with pinacoids and partial pyramids {11bar21}
Colour: yellow, peach, pale green, pink overgrowths on pale green cores, aqua, colorless
Fluorescence: blue-white
Description: Crystals to 2 feet (60 cm) across have been found. Most typical are colorless to pale green or pink overgrowths on pale green cored ("reverse watermelon") crystals, usually less than 15 cm long. Commonly frozen in quartz and associated with fluorapatite, cleavelandite, elbaite. Pocket crystals rare.
Beryl var. Aquamarine
Formula: Be3Al2Si6O18
Localities: Reported from at least 19 localities in this region.
Habit: hexagonal prisms
Colour: pale blue
Description: Subordinate in quantity to the typical pale green and pink beryl, but gem quality crystals were found and cut. Some highly etched crystals also exist.
Beryl var. Emerald
Formula: Be3Al2(Si6O18)
Beryl var. Goshenite
Formula: Be3Al2(Si6O18)
Localities: Reported from at least 6 localities in this region.
Habit: hexagonal prisms
Colour: colorless
Description: a gem quality flattened crystal 8 cm in diameter retained by Brack family.
Beryl var. Heliodor
Formula: Be3Al2(Si6O18)
Localities: Reported from at least 14 localities in this region.
Habit: elongated prisms with partial or complete pyramidal terminations
Colour: yellow
Description: "Beryl occurs in the pegmatite in yellow (“golden”), green, and blue euhedral crystals. In the border zone they range in size from 1/32 to 1/34 inch in diameter and from 1/2 inch to 2 1/2 inches long. Crystals as much as 8 inches in length and 1 inch in diameter occur in the core-margin zone." Cameron et al (1954): USGS Prof Paper 255; "many crystals of golden beryl, sharp in form and of the finest gem quality. Indeed, this is one of the principal heliodor sources in North America. The Little collection, at Harvard University, contains some exceptionally fine clear golden crystals; they were obtained from masses of quartz, many years ago. Similar crystals are in various museums and private collections. Of late, several magnificent specimens of a different type have been recovered. Those are deeply etched, frosty-looking, greenish-golden gem crystals, from cavities along a fault (?) which runs through the lower end of the quarry. The Gallant collection includes a superb crystal, with round¬ed diamond-shaped etch-pits on virtually every surface. It is over two inches long." Schooner (1961).
Beryl var. Morganite
Formula: Be3Al2(Si6O18)
Localities: Reported from at least 11 localities in this region.
Habit: elongated hexagonal prisms, terminated with pinacoids and partial pyramids {11bar21}
Colour: pink, commonly with green cores
Description: Beryl crystals to 2 feet (60 cm) across have been found. Crystals usually less than 15 cm long. Color zoning in large crystals typically consists of colorless to rose externally, with pale green cores. Commonly frozen in quartz and associated with fluorapatite, cleavelandite, elbaite. Some pocket gem material.
Beyerite ?
Formula: Ca(BiO)2(CO3)2
Description: Reference includes a list of minerals reportedly found by Dick Schooner in a pegmatite in East Hampton, but with no supporting details.
'Biotite'
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Localities: Reported from at least 60 localities in this region.
Habit: tabular
Colour: black
Description: Mostly as a component of the host metagabbro, but also as euhedral crystals in the open veins to about 1 cm.
Birnessite
Formula: (Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Habit: encrustation
Colour: black
Description: "This is one of the manganese oxides identified as a component of the soft black alteration crusts on tephroite, etc."
Bismite
Formula: Bi2O3
Bismuth
Formula: Bi
Localities: Reported from at least 9 localities in this region.
Habit: plates, or small lamellar masses
Description: "disseminated in a vein of quartz, in brilliant plates, or small lamellar masses, seldom more than an inch in diameter" Robinson (1825)
Bismuthinite
Formula: Bi2S3
Localities: Reported from at least 20 localities in this region.
Bismutite
Formula: (BiO)2CO3
Localities: Reported from at least 21 localities in this region.
Description: Good quality specimens were reported by Dick Schooner in Betts (1999).
Bismutoferrite
Formula: Fe3+2Bi(SiO4)2(OH)
Habit: massive coatings
Colour: green
Description: Associated with bismuthinite and pyrite with secondary bismite, bismutite (some or all may in fact be bismutoferrite) and goethite staining pegmatite matrix.
Bismutotantalite
Formula: Bi(Ta,Nb)O4
Habit: anhedral
Colour: gray exterior, brown interior
Description: Very small grains to a couple of mm in matrix of albite, muscovite, quartz, elbaite. Analyzed in 2017 by Peter Cristofono and Tom Mortimer.
Bityite
Formula: CaLiAl2(AlBeSi2O10)(OH)2
Habit: hexagonal
Colour: white
Description: Schooner (circa 1985) says: "When the Strickland quarry was last active, the author found a boulder of cleavelandite with a small vug of aggregated lustrous white hexagonal-looking crystals with calcite and a trace of lepidolite. It was many years before the mineral was recognized as being a mica! Its unusual X-ray pattern aroused some curiosity, and it was forwarded to Pete J. Dunn at the Smithsonian. He identified it as bityite, and made an analysis by electron microprobe."
'Bloodstone'
Formula: SiO2
Colour: shades of red
Description: Found as loose rocks in glacial till.
Bornite
Formula: Cu5FeS4
Localities: Reported from at least 21 localities in this region.
Habit: typically dodecahedral, less commonly in cubes showing slight modifications. Most crystals are slightly to severely rounded.
Colour: dull black, with blue patina
Description: Most bornite from Bristol is massive vein material in layers and stringers throughout the vein system, and as rounded blebs in white calcite or on quartz matrix. Crystals rare and specimens not as prevalent as chalcocite.
Brazilianite
Formula: NaAl3(PO4)2(OH)4
Colour: pink
Description: Schooner (circa 1985) says: "A few masses of Strickland quarry natromontebrasite, from the pollucite zone in the middle eastern wall, halfway down, are composed of intergrown metasomatic or hydrothermal alterations. Pink brazilianite, containing a trace of Mn (analysis by the USGS), is associated with augelite, lacroixite, and hydroxylapatite. This mineral was collected by Charles Thomas, and studied by Mary E. Mrose. Ronald E. Januzzi had earlier collected material, on the old dumps, in which the brazilianite occurs as confused white aggregates, with hydroxylapatite and possibly morinite." Natromontebrasite was discredited in 2007, being a mixture of montebrasite, lacroixite, and wardite.
Breithauptite ?
Formula: NiSb
Description: No details in reference, all others cite this one.
References:
'Brewsterite Subgroup' ?
Description: "as microscopic monoclinic crystals, and as white fibers in a cavity in pyroxene...verified by x-ray diffraction analysis" Pawloski (1965). But questioned by Tschernich (1992).
Brochantite
Formula: Cu4(SO4)(OH)6
Brookite
Formula: TiO2
Localities: Reported from at least 6 localities in this region.
Description: micros in schist
Brucite ?
Formula: Mg(OH)2
Colour: whitish green
Description: "Amianthus is sometimes nearly as fine as that of Corsica." (Robinson 1825). Uncertain if he was referring to brucite or byssolite.
Bustamite
Formula: CaMn2+(Si2O6)
Habit: cleavable masses
Colour: light pink
Description: When the author discovered a large lens of spessartine at the Jail Hill quarry, in the 1950s, a few good specimens of pink "rhodonite" were collected. Two different shades were associated differently, one with spessartine and calcite (or dolomite), the other with tephroite and pyrophanite. X-ray and spectrographic tests have shown the lighter pink mineral to be bustamite, and the darker one pyroxmangite. In some cases, bustamite is intimately intergrown with johannsenite (probably an exsolution product).
'Calamine'
'Calciomicrolite'
Habit: octahedral with modifications by other isometric forms
Colour: dark yellow-green, brown, black
Description: Mostly as microcrystals to a few mm. EDS analysis of one crystals shows it to be calciomicrolite.
Calcite
Formula: CaCO3
Localities: Reported from at least 156 localities in this region.
Habit: scalenohedral, rhombohedral to pseudo-cubic
Colour: colorless, white, pale yellow
Fluorescence: orange-red to pink
Description: Very common in a variety of forms, crystals can reach several cm. Late forming ones perched on prehnite are most prized. Also as thick (to 1 meter or so) fault filling by bands of opaque parallel crystals with phantoms and coatings of hematite.
Calcite var. Iron-bearing Calcite
Formula: (Ca,Fe)CO3
'Calcium Amphibole Subgroup var. Hornblende'
Carnotite
Formula: K2(UO2)2(VO4)2 · 3H2O
Caryopilite
Formula: Mn2+3Si2O5(OH)4
Description: This was identified (at the University of Michigan) as a very minor component of "ore" from the manganese pod at the Jail Hill quarry in Haddam.
Cassiterite
Formula: SnO2
Localities: Reported from at least 8 localities in this region.
Colour: dark brownish black
Description: good crystals to 1 cm, can be highly modified, lustrous, microcrystals in cleavelandite
Celadonite
Formula: K(MgFe3+◻)(Si4O10)(OH)2
Celestine
Formula: SrSO4
Habit: tabular
Colour: colorless to very pale blue
Description: Crystals typically small, <1.5 cm.
References:
Cerite-(CeCa) ?
Formula: (Ce7Ca2)◻Mg(SiO4)3(SiO3OH)4(OH)3
Description: Reference includes a list of minerals reportedly found by Dick Schooner in a pegmatite in East Hampton, but with no supporting details.
Cerussite
Formula: PbCO3
Localities: Reported from at least 16 localities in this region.
Description: micros occur in cavities in cleavelandite associated with altered bismuthinite, pyromorphite and wulfenite
'Chabazite'
Localities: Reported from at least 23 localities in this region.
Description: good microcrystals can be found together with other zeolites
'Chabazite var. Phacolite'
Chabazite-Ca
Formula: (Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
Localities: Reported from at least 15 localities in this region.
Habit: rhombhedral
Colour: pale orange
Description: Confirmed in 2018 via SEM-EDS analyses.
Chalcanthite
Formula: CuSO4 · 5H2O
Chalcocite
Formula: Cu2S
Localities: Reported from at least 16 localities in this region.
Habit: Orthorhombic crystals, many showing twinning. Some are heavily striated, often show a pseudohexagonal symmetry, and discoidal pseudohexagonal crystals are common. Tabular crystals also occur in abundance. Twinned crystals may be pseudohexagonal, or may b
Colour: metallic bluish-black
Description: Tabular to elongated, usually singly or multiply twinned crystals with a bluish, lustrous metallic luster when fresh, up to 2 or 3 cm long. Usually associated with scalenohedral calcite and/or milky quartz. Crystals gradually gain a black charcoal coating that is easily cleaned by placing them in an agitated alconox solution, which does not harm the crystals or associated minerals.
'Chalcodite'
Formula: K(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
Chalcopyrite
Formula: CuFeS2
Localities: Reported from at least 102 localities in this region.
Habit: tetrahedral
Colour: Brassy yellow to rainbow iridescence
Description: Typically massive and iridescent, rarely as crystals up to 2 cm or as "blister" habit.
Chalcopyrite var. Blister Copper
Formula: CuFeS2
'Chlorite Group'
Localities: Reported from at least 71 localities in this region.
'Chlorophyllite'
Habit: prismatic
Colour: silvery gray-green
Description: Micaceous alteration of cordierite, the latter crystals up to 8 cm across but typically fragmented into sections along a relict basal cleavage. May not be from this town specifically as the geology is not quite right, noted mainly from Haddam or eastern Litchfield - which is close to Thomaston, which was once part of Plymouth.
Chondrodite
Formula: Mg5(SiO4)2F2
Localities: Reported from at least 8 localities in this region.
Description: Included in a list of minerals with no supporting information or specific localities, but it is a common accessory in area marble.
Chromite
Formula: Fe2+Cr3+2O4
Chrysoberyl
Formula: BeAl2O4
Localities: Reported from at least 6 localities in this region.
Habit: Typically flat, striated, cyclic twins, sometimes fully 6-sided.
Colour: yellow-green, pale green
Description: First locality where it was found in-situ. Intensely studied in the 19th century - crystal drawings are in Dana's System of Mineralogy and Goldschmidt's Atlas der Krystallformen. Shepard (1837) writes: "occurs in large distinct crystals, simple and compound (see fig. 136 of my Mineralogy) as well as massive". Crystals reached up to about 7.5 cm across, typically translucent but not gemmy.
Chrysocolla
Formula: Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O, x < 1
Localities: Reported from at least 19 localities in this region.
'Chrysoprase'
Colour: apple green
Description: Found as loose rocks in glacial till.
Chrysotile
Formula: Mg3(Si2O5)(OH)4
Localities: Reported from at least 8 localities in this region.
Churchite-(Y)
Formula: Y(PO4) · 2H2O
Habit: colloform with concentric layers
Colour: pale yellow-white
Description: Thin colloform crust on goethite with an associated opal-AN-like layer. In Januzzi (1994) the discoverer states, "Recent examination, by way of x-ray and semi-quantitative analysis uncovered a new species for the Scoville Ore Bed in Salisbury, Connecticut; the mineral churchite, a relatively inconspicuous species and confused (no doubt often) with rhabdophane and probably more common than realized. Florencite should be looked for when churchite occurs in a deposit of this type. A hyalite-like mineral evidently forming before churchite lies just beneath it (the specimen is in the author’s collection)-this species is very possibly evansite."
Claudetite ?
Formula: As2O3
Description: According to an unconfirmed report by Schooner (circa 1980s), associated with arsenopyrite were "a few soft, transparent, gypsum-like plates" of claudetite.
Clinochlore
Formula: Mg5Al(AlSi3O10)(OH)8
Localities: Reported from at least 23 localities in this region.
Habit: hemispherical aggregates of tabular crystals
Colour: dark green to black
Clinochlore var. Diabantite ?
Formula: (Mg,Fe,Al)6((Si,Al)4O10)(OH)8
Colour: Deep green
Description: Filling small cavities, this mineral may actually be pumpellyite, which is now known to be common in the local traprock, but there were few quarries in that rock in 1920.
Clinochlore var. Ripidolite
Formula: (Mg,Fe,Al)6(Si,Al)4O10(OH)8
Habit: fine anhedral grains
Colour: dark green
Description: Forms fine-grained masses at the contact between the quartz mass and the host schist.
'Clinopyroxene Subgroup'
Clinozoisite
Formula: (CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
Localities: Reported from at least 17 localities in this region.
Description: In the host metamorphic rocks.
Clinozoisite var. Clinothulite
Formula: {Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Habit: granular
Colour: pink
Description: Granular material in quartz, with calc-silicate minerals in the amphibolite. Clinozoisite is much more common than zoisite and more likely a mineral to occur in this metamorphic terrain.
Cobaltite
Formula: CoAsS
Description: Microcrystals.
Coffinite
Formula: U(SiO4) · nH2O
Columbite-(Fe)
Formula: Fe2+Nb2O6
Localities: Reported from at least 25 localities in this region.
Habit: tabular to elongated prisms
Colour: black with yellow, blue to purple iridescence
Description: As small pocket crystals to large subhedral masses in the intermediate plagioclase-quartz mineralized zone. Schooner (1958): "innumerable specimens, including well developed crystals up to three or four inches across; heavy aggregates of parallel tabular crystals in cleavelandite were abundant when the locality was active in 1953."
'Columbite-(Fe)-Columbite-(Mn) Series'
Localities: Reported from at least 42 localities in this region.
Habit: flat, elongated prisms or subhedral masses
Colour: black, with iridescence
Description: Good prismatic crystals formed in quartz, also hand-sized subhedral masses with striations from neighboring muscovite. Januzzi (1976) reports that a beryl crystal with a large columbite crystal projecting from it was donated to the American Museum of Natural History in New York City. The ID is generic, at least one crystal was tested using Raman spectroscopy and the best match is tantalite-(Fe) (see entry). A crystal formerly in the Bill Shelton collection has a specific gravity of 6.7, making it clearly a columbite species.
'Columbite Group'
Habit: tabular
Colour: black with iridescence
Description: Subhedral crystals in pegmatite matrix.
Columbite-(Mn)
Formula: Mn2+Nb2O6
'Columbite-(Mn)-Tantalite-(Mn) Series'
Habit: rectangular prisms
Colour: dark reddish to reddish brown
Description: Columbite-tantalite crystals with reddish color and some translucency have been historically called tantalite-(Mn) without supporting analyses (even SG) but visually could equally be columbite-(Mn). Strong illumination is typically needed to see the color and translucency. Most are small (<1 cm) and embedded in matrix.
'Columbite-Tantalite'
Description: "Incidentally, a magnificent columbite-tantalite crystal was also found in the pegmatite in 1974." Brunet (1978).
Cookeite
Formula: (LiAl4◻)[AlSi3O10](OH)8
Localities: Reported from at least 10 localities in this region.
Habit: micro-globular aggregates, masses, pseudomorphs after spodumene
Colour: pale yellow
Description: Typically as tiny spheres of crystal aggregates with K-rich albite, micas, elbaite, quartz, calcite, pyrite, fluorite, and bertrandite in cleavelandite of the mineralized intermediate plagioclase-quartz zone. Rare pseudomorphs of spodumene. Schooner (1955) says: "solid masses of bright yellow fine-grained material. Some pieces were seen to be as much as 4 or 5 inches thick, the mineral having occurred as a lining in a long cavity or series of cavities."
Copiapite
Formula: Fe2+Fe3+4(SO4)6(OH)2 · 20H2O
'Copiapite Group'
Copper
Formula: Cu
Localities: Reported from at least 16 localities in this region.
Habit: massive
Colour: Coated with green malachite.
Description: A few very large nuggets found in glacial till or attached to arkosic bedrock. The largest was found in 1870 0.5 mile north of East Rock and weighed about 200 pounds (90 kg).
Cordierite
Formula: (Mg,Fe)2Al3(AlSi5O18)
Localities: Reported from at least 16 localities in this region.
Habit: Anhedral to blocky, also Subhedral
Colour: gray-green to violet
Corundum
Formula: Al2O3
Localities: Reported from at least 12 localities in this region.
Habit: hexagonal tabular
Colour: pale lavender
Description: A 2 cm, tabular, hexagonal crystal is present in a cabinet specimen of kyanite at Harvard that was part of Brace's large boulder.
Corundum var. Sapphire
Formula: Al2O3
Habit: hexagonal prisms
Colour: dark blue
Description: embedded in kyanite, vary in size from micro to megascopic.
Covellite
Formula: CuS
Localities: Reported from at least 6 localities in this region.
Crandallite ?
Formula: CaAl3(PO4)(PO3OH)(OH)6
Description: Schooner (1955) reports it "as microscopic crystals associated with bertrandite" found by Gunnar Bjareby. However, he does not mention it in any of his subsequent writings on the area.
Cronstedtite
Formula: Fe2+2Fe3+((Si,Fe3+)2O5)(OH)4
Habit: radial groups of flattened crystals
Colour: greenish-brown to almost black
Description: A drab greenish-brown to almost black mineral, abundantly associated with grunerite, siderite, and marcasite, was identified as chamosite. Careful restudy of X-ray data indicates cronstedtite as a better fit.
Cryptomelane
Formula: K(Mn4+7Mn3+)O16
Habit: botryoidal
Colour: black with blue tint
Cummingtonite
Formula: ◻{Mg2}{Mg5}(Si8O22)(OH)2
Cuprite
Formula: Cu2O
Localities: Reported from at least 16 localities in this region.
Description: Thin secondary crusts associated with bornite and/or chalcocite. Easily confused with hematite.
Cuprite var. Chalcotrichite
Formula: Cu2O
Habit: acicular
Cuprobismutite
Formula: Cu8AgBi13S24
Habit: massive, coatings
Description: Associated with bismuthinite and pyrite with secondary bismite, bismutite (some or all may in fact be bismutoferrite) and goethite staining pegmatite matrix.
'Cymatolite'
Habit: pseudomorphs after spodumene
Colour: white to pale gray
Description: oriented intergrowth of very fine-grained, elongated albite and muscovite. Grains are oriented perpendicular to the spodumene c axis and give a columnar, silky appearance to the inside of a fractured specimen. Crystals pseudomorphs after spodumene at Yale to 32 x 70 cm.
Danburite (TL)
Formula: CaB2Si2O8
Datolite
Formula: CaB(SiO4)(OH)
Localities: Reported from at least 35 localities in this region.
Habit: complex prisms with chisel-point terminations
Colour: pale apple green
Description: Gas vesicles rich in crystals lining the walls were once abundant. Never found singly. Crystals can reach over 2.5 cm, larger ones typically transparent, smaller crystals translucent to opaque - grading to porcelaineous crusts. Excellent specimens in major museums.
Davidite-(La)
Formula: La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
Habit: subhedral
Colour: pitch black
Description: Small 1-2 cm obsidian-black subhedral crystals with red staining in adjacent rock.
Devilline
Formula: CaCu4(SO4)2(OH)6 · 3H2O
Diadochite
Formula: Fe3+2(PO4)(SO4)(OH) · 6H2O
Habit: coatings and micro globules
Colour: orange
Description: Orange coatings on triphylite, messelite, and other related phosphates
Diamond
Formula: C
Habit: cubic
Colour: grey
Description: Single alluvial crystal 0.8mm
Diaspore
Formula: AlO(OH)
Habit: thin or 6-sided tables flattened parallel to the shorter diagonal
Colour: yellowish-white
Description: First reported by Shepard (1842) as euclase forming "thin, transparent, yellowish-white tabular crystals, lining cavities in a silvery white mica, and sometimes imbedded in a dark purple fluor" in the topaz veins. Later retracted and confirmed to be diaspore by Shepard (1851) and Dana (1851): H=7-7.5, SG=3.29, alumina 84.9%, water 15.1% and described as "thin or 6-sided tables flattened parallel to the shorter diagonal". May be more common than reported because who has really looked?
Dickinsonite-(KMnNa) (TL)
Formula: (KNa)(Mn2+◻)Ca(Na2Na)Mn2+13Al(PO4)11(PO4)(OH)2
Habit: foliated crystalline masses, almost micaceous, radiating or stellated curved laminae
Colour: oil to olive green, dark to grass-green
Description: Intimately associated with quartz, eosphorite, triploidite and rhodochrosite
References:
Dickite
Formula: Al2(Si2O5)(OH)4
Digenite
Formula: Cu9S5
Diopside
Formula: CaMgSi2O6
Localities: Reported from at least 50 localities in this region.
Habit: flattened short to elongated prisms
Colour: white to very pale green
Fluorescence: light blue-gray under SW
Description: pseudomorphed by tremolite (originally called Canaanite)
Diopside var. Canaanite
Formula: CaMgSi2O6
Djurleite
Formula: Cu31S16
Dolomite
Formula: CaMg(CO3)2
Localities: Reported from at least 32 localities in this region.
Habit: rhombohedral, some curved
Colour: white, pink, tan, brown if iron-rich
Description: Abundant as fault vein filling associated with barite, quartz, bitumen. Crystals usually drusy.
Dolomite var. Iron-bearing Dolomite
Formula: Ca(Mg,Fe)(CO3)2
Habit: curved rhombohedra
Colour: brown
Description: grades into tan normal dolomite, surfaces commonly etched
References:
Dravite
Formula: NaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
Localities: Reported from at least 9 localities in this region.
Habit: short to elongated (along c axis) prisms with simple rhombohedral terminations, often doubly.
Colour: black
Description: In schist outcrop over 100 meters from the Biermann quarry and not related to it.
'Dravite-Schorl Series'
Habit: short prismatic, doubly-terminated by rhombohedrons
Colour: dark brown to black
Description: Described in Dana and Brush (1875) as "perfect dark brown crystals in mica-slate...sometimes to two inches in length and breadth." These dark brown to black crystals are sometimes referred to in old literature as dravite, though that identification is unconfirmed. Certainly somewhere in the dravite-schorl solid solution series.
Dumortierite ?
Formula: Al(Al2O)(Al2O)2(SiO4)3(BO3)
Habit: acicular
Colour: bright blue
Description: A few concentrations of tiny acicular crystals in one specimen of coarse-grained albite/quartz/biotite gneiss matrix.
'Elaterite'
Formula: (C,H,O,S)
Elbaite
Formula: Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Localities: Reported from at least 16 localities in this region.
Habit: Elongated trigonal prisms, antilogous pole terminated with rhombohedral pyramids {1bar11}, analgous pole dominated by a pedion.
Colour: prisms mostly green, blue-green, rarely pink. Terms. green, yellow, pink, blue, combinations
Description: Hundreds of crystals in some pockets, often "piercing" smoky quartz. Flawless crystals are rare; usually fractured. Large pocket crystals vary but are usually striated to silky, slender and elongated, from small needles up to 30 cm, but typically a few cm long. Color zoning is usually longitudinal, short and terminal in shades of green, pink, golden yellow and blue with up to 5 colors. Antilogous poles typically pale green, yellow, pink; analogous poles usually colorless, pale green, aqua. w/thin indigo cap, or sometimes with a narrow pale colored zone immediately beneath and parallel to the pedion. Tiny crystals may be any color throughout. Concentric “watermelon” zoning is not common. Some fragments of green prisms are overgrown by later pink zones. Also found frozen in matrix with beryl, fluorapatite, fluorite, muscovite, smoky quartz, lepidolite, microlite, columbite.
Enstatite
Formula: Mg2Si2O6
Description: Enstatite (sensu stricto) — [En 91.5] within xenolith, Wagner et al.,1979
Enstatite var. Bronzite
Formula: (Mg,Fe2+)2[SiO3]2
Eosphorite (TL)
Formula: Mn2+Al(PO4)(OH)2 · H2O
Habit: mostly massive, rare prismatic crystals
Colour: pale pink, grayish-, bluish-, and yellowish-white, white
Description: Intimately associated with quartz, dickinsonite, triploidite and rhodochrosite. Pink, translucent, prismatic crystals to around 1 cm long show rough striae parallel to the long axis, associated with micro encrusting quartz and apatite.
Epidote
Formula: (CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Localities: Reported from at least 59 localities in this region.
Habit: prismatic
Colour: yellow-green to dark green to black
Description: drusy crystals in fractures in gneiss, crystallized in two generations, an initial one with elongated, larger and darker crystals and a second one of much finer-grained, short and lighter colored crystals. The second generation coats the first and some other minerals like quartz.
Epidote var. Tawmawite
Formula: {Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
Description: A completely unsubstantiated guess.
Epistilbite
Formula: CaAl2Si6O16 · 5H2O
Epsomite
Formula: MgSO4 · 7H2O
Habit: efflorescence
Description: Schooner (1958): "occurs very sparingly with pickeringite, in efflorescences on protected schist ledges in the cut above the Strickland Quarry. It is distinguished from pickeringite by its different taste… the same as that of artificial Epsom salt."
Erythrite
Formula: Co3(AsO4)2 · 8H2O
Habit: earthy incrustation or delicate needles
Colour: red
Description: Formed from the weathering of Co-rich loellingite. "Eugene Franckfort reported that the face of one lode, opened more than a century ago, was covered with, abundant erythrite crystals… as fine as any which he had seen in his native Europe." (Schooner 1958). "The Francfort mineral collection [at Wesleyan University] contains some excellent samples of erythrite from Bucks Shaft" (Gray 2005). It was common during the mining, but very scarce now. A small flake was tested in concentrated HCl and it turned the solution blue, indicating erythrite.
Euclase ?
Formula: BeAl(SiO4)(OH)
Colour: colorless
Description: Etched, elongated microcrystals with rhombic cross-section and wedge-shaped terminations. With secondary quartz and cookeite coating a pocket quartz.
Eucryptite (TL)
Formula: LiAlSiO4
Habit: pseudomorphous after spodumene
Colour: white to slightly greenish-white or pale gray
Fluorescence: red
Description: oriented intergrowth with very fine-grained, elongated albite. Grains are oriented perpendicular to the spodumene c axis and give an indistinct fibrous to columnar structure, this being always at right angles to the adjoining surface of the original mineral. Fractured surface typically has a frosty appearance.
Euxenite-(Y)
Formula: (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
Description: Reference by Januzzi (1976) to this mineral being found by Schooner in "Portland" correlates only with a report by Schooner (circa 1985) from the Hale Quarry in Portland. Schooner makes no mention if it from Strickland in his various comprehensive publications, especially his last, Schooner (circa 1985).
'Fahlunite'
Formula: (Mg,Fe)Al2Si3O10 · 2H2O
Habit: pseudomorphs after cordierite
Colour: dull olive green
Description: "The pinite [later fahlunite] variety, though generally occurring in indeterminate shaped pieces, yet nevertheless is occasionally seen in forms of the same shape and regularity as the iolite, from which, however, it differs essentially in color and hardness. The peculiar tint affected by the pinite is a pale, bluish, chloride green. Its lustre is pearly, and not particularly shining, except in a few specimens, where the color approaches silver-white. Hardness 2.5. Laminae neither flexible nor elastic. "in rhombic prisms in great abundance at the Iolite locality, and desirable specimens are easily obtainable. Many of these specimens upon being broken show clear blue Iolite in the interior, from which mineral it, is derived as alteration." (Davis, 1901).
Fairfieldite (TL)
Formula: Ca2Mn2+(PO4)2 · 2H2O
Habit: foliated to lamellar masses, radiating masses consisting of curved foliated or fibrous aggregations
Colour: white to pale straw-yellow
Description: One variety cccurs filling cavities in the reddingite, and covering the distinct crystals of this mineral. It is uniformly clear and transparent, and is highly lustrous, showing entire absence of even incipient alteration. It is generally foliated to lamellar, although sometimes of a somewhat radiated structure. A second variety occurs in masses of considerable size interpenetrated rather irregularly with quartz, and quite uniformly run through with thin seams and lines of a black manganesian mineral of not very clearly defined character. Typically friable to the touch and lacks something of the brilliant luster of the first variety, it also shows greater difference of structure, passing from the distinct crystals to the massive and radiated form. Also occurs in small particles in fillowite and in masses of some size immediately associated with eosphorite, triploidite, and dickinsonite.
'Fayalite-Forsterite Series'
Localities: Reported from at least 8 localities in this region.
'Feldspar Group'
Localities: Reported from at least 15 localities in this region.
'Feldspar Group var. Perthite'
Localities: Reported from at least 10 localities in this region.
Ferberite
Formula: FeWO4
Habit: pseudomorphs after bipyramidal scheelite
Colour: black to dark brown
Description: The only US locality for ferberite after scheelite crystals, with only about 8 other world-wide localities. First described by Silliman (1819-1822) but not recognized as pseudomorphic after scheelite for a few decades. Pseudomorph occurrence is locally restricted to the quartz/clinzoisite-rich contact between the amphibolite and marble at the upper mine pit, sometimes in small open spaces formed from the dissolution of calcite in that zone, and perhaps a nearby locality northeast of the "Burnett place" by Hobbs (1901). Occurs as anhedral lumps to euhedral crystals <1 to >10 cm, the latter size usually aggregates, in the amphibolite. Intermixed scheelite/ferberite partial replacement crystals are common. Some crystals reported with "spongy" texture, probably where tungstite formed and was weathered out. Typically called "wolframite" in most reports but Silliman's original wet chemical analysis shows it is what we now call ferberite and the use of the obsolete term "wolframite" should be abandoned. Januzzi (1994) confirms Silliman's Fe-dominant analysis: "Chemical analysis (Grand Junction Laboratory, Grand Junction, Colorado - Bauer) gave the following results: Tungsten 60.1%, Iron 17.8%, Manganese 0.21%. Non-fibrous material yielded 16.3% iron and 0.95% manganese."
'Fergusonite' ?
Colour: brownish yellow
Description: reported by Januzzi (1976) as "a small, brownish yellow nodule in feldspar". No analysis reported, no other finds reported/confirmed.
Ferricopiapite ?
Formula: Fe3+0.67Fe3+4(SO4)6(OH)2 · 20H2O
Description: Details of the find needed.
Ferri-ghoseite
Formula: ◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
Habit: lamellar or bladed
Colour: tan or green
Description: Reported by Dick Schooner as "Tirodite", reference below provides no details. An XRD analysis of a sample labeled "tirodite" from Dick Schooner's collection could not differentiate it from actinolite. However, Schooner (circa 1990) reports: "Tan or green tirodite, lamellar and bladed, was rather common at the Jail Hill quarry, usually with only spessartine or barite. Masses two inches across have been preserved. A few little silky-fibrous tufts proved to be tirodite, also. This material was studied at the University of Michigan." A dark green amphibole-rich Schooner specimen labeled as "tirodite" (photo 983892) was analysed via SEM-EDS by Micromounters New England in 2019 and was found to be ferro-actinolite (no Mn).
Ferrimolybdite
Formula: Fe2(MoO4)3 · nH2O
Colour: yellowish
Description: alteration of molybdenite
Ferro-actinolite
Formula: ◻Ca2Fe2+5(Si8O22)(OH)2
Habit: anhedral
Colour: very dark green
Description: As sub-cm grains in amphibolite rock with frosty, fine-grained scapolite.
'Ferro-actinolite-Tremolite Series'
Ferroberaunite
Formula: Fe2+Fe3+5(PO4)4(OH)5 · 6H2O
Ferro-hornblende
Formula: ◻Ca2(Fe2+4Al)(Si7Al)O22(OH)2
Habit: Slightly elongated prismatic
Colour: black
Description: Porphyroblasts in amphibole gneiss adjacent to the pegmatite, subhedral crystals to about 1 cm.
Ferrosaponite ?
Formula: Ca0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
Habit: micaceous or foliated globules or coatings
Colour: very dark green to black
Description: A late forming, fine-grained, very dark green to black micaceous mineral forming tiny globules or coating other minerals in vesicles in basalt. An SEM-EDS analysis conducted in 2017 concluded the mineral is an Fe-Mg-Ca aluminosilicate. The complete absence of K rules out stilpnomelane, biotite, celadonite. The Ca is too low for pumpellyite or julgoldite. A mindat.org mineral search by chemistry found ferrosaponite as a good match, as are its physical properties and geoenvironment of formation. However, XRD is needed for confirmation.
Fillowite (TL)
Formula: Na3CaMn2+11(PO4)9
Type Locality:
Habit: granular aggregates, rare micro rhombohedra in tiny pockets
Colour: honey-yellow, wax-yellow, also yellowish to reddish-brown
Description: Reddingite is very commonly associated with fillowite, and in many cases it is not easy to distinguish the two minerals.
Fluorapatite
Formula: Ca5(PO4)3F
Localities: Reported from at least 93 localities in this region.
Habit: short hexagonal prisms or tabular, terminated by pinacoids with modified edges
Colour: pale gray-green or rose pink to purple
Fluorescence: bright yellow
Description: Gray-green opaque crystals up to 2 cm common in quartz, albite, beryl, elbaite, lepidolite matrix. Translucent to clear crystals in pockets, either as stout hexagonal prisms or with a central fluorescent prism surrounded by tapered, non-fluorescent overgrowths up to a few cm across. Gray-green crystals show more forms than the rose pink to purple crystals.
Fluorapatite var. Manganese-bearing Fluorapatite
Formula: (Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Localities: Reported from at least 7 localities in this region.
Habit: anhedral to stubby subhedral hexagons
Colour: grayish green to blue-green, white, pale blue
Fluorescence: yellow
Description: An old term that should be abandoned, see description under fluorapatite.
Fluorapophyllite-(K)
Formula: KCa4(Si8O20)(F,OH) · 8H2O
Localities: Reported from at least 9 localities in this region.
Habit: bipyramidal
Colour: colorless to white
Description: Crystals can reach 2-3 cm, though commonly 1 cm or less. The tips of the pyramids are typically physically degraded and milky, leading to the term "snow-cone" habit for these crystals. 2018 SEM-EDS analyses or three samples has confirmed the "-(K)" nature of these crystals, but not whether they are "fluor" or "hydroxy".
Fluorite
Formula: CaF2
Localities: Reported from at least 47 localities in this region.
Habit: cubic, sometimes modified by dodecahedron and tetrahexahedron
Colour: purple and green shades to colorless, usually in layers
Fluorescence: blue-white to purplish blue under SW UV, often zoned with the daylight color.
Description: Very common in hydrothermal fault veins as coarse crystalline masses, found with most minerals present in these veins: quartz, calcite, galena, sphalerite, pyrite, zeolites, with open spaces lined by tightly packed, rough-surfaced (from many small sub-faces) crystals. Crystals to 7 cm were removed intact during the initial blasting of the railroad cut. As well-formed euhedral isolated crystals in voids with other minerals usually up to 2 cm.
Fluorite var. Chlorophane
Formula: CaF2
Localities: Reported from at least 11 localities in this region.
Habit: anhedral to modified octahedral
Colour: micro crystals colorless to pale pink with purple zones at the tips, larger crystals and masses are red to reddish black
Fluorescence: blue-green in SW, purple in LW, green phosphorescence
Description: Crystals mostly micros in pockets in the aplitic zone, larger crystals to a few cm rare, but they typically crumble into fragments when found. Typically as irregular masses to 10 cm. SW fluorescence is eventually lost if left exposed to any light, so immediately place and keep any finds in an opaque container to preserve this property.
'Fluor-uvite-Uvite Series' ?
Colour: black, dark brown
Description:
Foitite
Formula: ◻(Fe2+2Al)Al6(Si6O18)(BO3)3(OH)3(OH)
Description: Grading into elbaite, associated with wodginite, cassiterite, quartz and gobbinsite.
Forsterite
Formula: Mg2SiO4
Localities: Reported from at least 10 localities in this region.
Forsterite var. Peridot
Formula: Mg2SiO4
Fourmarierite
Formula: Pb(UO2)4O3(OH)4 · 4H2O
Habit: pseudomorphs after uraninite
Colour: reddish
Description: "In a study at Harvard University, in 1964, both fourmarierite and vandendriesscheite were identified, by X-ray diffraction, as components of hard "gummite" pseudomorphs after uraninite from the Rock Landing quarry. Fourmarierite is reddish; vandendriesscheite, yellow. The material came from the Charles Thomas collection." Schooner (circa 1980s).
Gahnite
Formula: ZnAl2O4
Localities: Reported from at least 9 localities in this region.
Habit: octahedral
Colour: dark green
Description: Usually small octahedra less than about 1 cm, associated with cleavelandite and very dark smoky quartz in the southern pegmatite. According to Schooner (1958), Mary E. Mrose, of the U. S. Geological Survey, established the identity of this material by an x-ray diffraction test.
Galaxite ?
Formula: Mn2+Al2O4
Colour: dark green
Description: A dusting of a dark green mineral is seen in alleghanyite-kutnohorite specimens from the Jail Hill quarry. X-ray diffraction of a mixed sample shows faint peaks that correspond rather well to galaxite.
Galena
Formula: PbS
Localities: Reported from at least 45 localities in this region.
Habit: cubic, octahedra rare
Colour: metallic gray
Description: Common as cleavable masses in the hydrothermal fault veins with fluorite, quartz, calcite, sphalerite, zeolites, etc. Crystals in open spaces typically range in size to about 5 cm, but a 7 kg galena crystal (10 cm on a side) was reportedly found by a workman at the site. Some <0.5 cm octahedra were also found.
Galena var. Silver-bearing Galena
Formula: PbS with Ag
Description: Included in a list by Januzzi with no details, apparently based on early reports by Silliman of minerals actually from Lane's mine of Monroe. No modern data regarding the Ag content of galena from Connecticut has been published.
Galenobismutite ?
Formula: PbBi2S4
'Garnet Group'
Formula: X3Z2(SiO4)3
Localities: Reported from at least 64 localities in this region.
References:
Gedrite
Formula: ◻{Mg2}{Mg3Al2}(Al2Si6O22)(OH)2
Habit: elongated prismatic
Colour: black to very dark greenish black
Description: In localized, very coarse-grained portions of the Middletown Formation in the Turkey Hill Reservoir area, associated with almandine, magnetite and phlogopite in albite-quartz matrix. Crystals up to several cm. Confirmed by both TEM-EDS and Raman spectroscopy - near the composition boundaries between gedrite, anthophyllite, ferro-anthophyllite and ferro-gedrite fields, under the current amphibole classification, but just within the gedrite range.
Gehlenite
Formula: Ca2Al[AlSiO7]
Habit: tetragonal prisms
Colour: light brown
Description: Tiny crystals in lens-like bodies of calc-silicate rock in the host Collins Hill Formation. Optical and X-ray study by Waldemar T. Schaller at the USGS indicate gehlenite, associated with diopside, grossular, wollastonite, and spurrite.
Gersdorffite
Formula: NiAsS
Habit: grains
Description: "An analysis by Fairchild, published in 1931, and quoted in the Seventh Edition of “Dana’s System of Mineralogy”, gave: iron 3.9, cobalt 0.7, nickel 31.6, antimony 9.1, arsenic 34.9, sulfur 17.1, and bismuth 0.4%" (Schooner 1958); with the ore minerals at Shepard's Lode (Gray 2005).
Gibbsite
Formula: Al(OH)3
Habit: radially fibrous masses, stalactitic and spherical concretions, and as incrustations
'Gmelinite Subgroup' ?
Description: This mineral is unknown from Connecticut trap rock. Likely confusion with chabazite variety phacolite.
Gobbinsite
Formula: Na5(Si11Al5)O32 · 11H2O
Description: Asociated with foitite grading into elbaite, wodginite, cassiterite, and quartz.
Goethite
Formula: α-Fe3+O(OH)
Localities: Reported from at least 69 localities in this region.
Habit: mostly earthy and massive, rarely radially fibrous masses, stalactitic, botryoidal, spherical
Colour: brown to dark brown nearly black, some botryoidal and lustrous specimens are iridescent
Description: Often misclassified as limonite, or "brown hematite" in older literature. Most material is massive dull earthy ore, best specimens have stalactitic to botryoidal forms with a highly lustrous, black surface.
Gold
Formula: Au
Gonnardite
Formula: (Na,Ca)2(Si,Al)5O10 · 3H2O
Goslarite ?
Formula: ZnSO4 · 7H2O
Description: No details on the find listed in the reference, simply "Found in Monroe".
Graftonite ?
Formula: Fe2+Fe2+2(PO4)2
Description: Reported by Schooner (circa 1980s) as occurring in pieces from the Charles Thomas collection, along with triphylite, scorzalite, siderite, fairfieldite, augelite. Possible they could have come from the Palermo mine.
Graphite
Formula: C
Localities: Reported from at least 29 localities in this region.
Grayite
Formula: (Th,Pb,Ca)(PO4) · H2O
Greenockite
Formula: CdS
Localities: Reported from at least 10 localities in this region.
Grossular
Formula: Ca3Al2(SiO4)3
Localities: Reported from at least 29 localities in this region.
Habit: dodecahedral
Colour: cinnamon to clove-brown
Description: Accessory in calc-silicate layers in the marble. Well-formed, gemmy crystals to 1.5 cm or so.
Grossular var. Hessonite
Formula: Ca3Al2(SiO4)3
Habit: dodecahedral
Colour: orange to cinnamon
Description: Massive matrix material and lustrous crystals to 1.5 inches lining voids or hiding under calcite.
Groutite
Formula: Mn3+O(OH)
Habit: massive crust
Colour: black
Description: Thick black crust on altered lithiophilite with hureaulite and hydroxylapatite.
Grunerite
Formula: ◻{Fe2+2}{Fe2+5}(Si8O22)(OH)2
Description: siderite layers up to 1/2 inch were common in a vein of marcasite, cronstedtite, grunerite, and quartz (Schooner, circa 1985).
'Gummite'
Localities: Reported from at least 8 localities in this region.
Description: Associated with uraninite, meta-autunite, uranophane, other alteration products. Fine gummite and uranophane pseudomorphs after uraninite have been found here.
Gypsum
Formula: CaSO4 · 2H2O
Localities: Reported from at least 27 localities in this region.
Gypsum var. Satin Spar Gypsum
Formula: CaSO4 · 2H2O
Gypsum var. Selenite
Formula: CaSO4 · 2H2O
Habit: flat prisms
Colour: colorless
Description: Micro crystals and coatings filling thin fractures in a loose, rusty, calcareous schist boulder.
Halloysite
Formula: Al2(Si2O5)(OH)4
Habit: earthy to waxy masses
Colour: tan
Description: Alteration of pollucite, so occurs as thin crusts and veins with elbaite, pollucite, cleavelandite.
Halotrichite ?
Formula: FeAl2(SO4)4 · 22H2O
Habit: fibrous
Colour: off-white to pale yellow
Description: Spongy mass of tiny fibrous crystals with included weathered-out mica flakes. May be all or in part pickeringite.
Harmotome
Formula: Ba2(Si12Al4)O32 · 12H2O
Habit: Cruciform Marburg twins, with or without re-entrants, or simpler Morvenite twins.
Colour: white
Description: White crystals to about 1 cm, commonly dusted with micro-pyrites. This zeolite has the same morphology as phillipsite, but according to Tschernich's 1992 "Zeolites of the World", harmotome is typical of lead deposits whereas phillipsite occurs in volcanics. This locality is thus favorable for harmotome. Henderson (1979) analyzed crystals and found that "...microprobe analysis shows the Ba:Si ratio to be 1.2:6, and the amounts of K, Na and Ca to be low. This data fits harmotome perfectly, and is not consistent with either phillipsite or wellsite."
Hastingsite
Formula: NaCa2(Fe2+4Fe3+)(Si6Al2)O22(OH)2
Habit: subhedral prismatic
Colour: black
Hedenbergite ?
Formula: CaFe2+Si2O6
Habit: radiating clusters
Colour: Greenish- Black
Helvine
Formula: Be3Mn2+4(SiO4)3S
Habit: tetragonal, slightly cavernous showing trigonal indentations
Colour: honey-brown
Description: Two 0.8mm crystals found on a single specimen associated with the other common site minerals. Crystal faces are slightly pitted with sub-vitreous luster, dusted with a small amount of sugary white alteration. Could possibly be genthelvite.
Hematite
Formula: Fe2O3
Localities: Reported from at least 58 localities in this region.
Habit: microscopic tabular plates and rosettes or botryoidal
Colour: maroon to black
Description: Black, platy rosettes ranging in size from super-micro to a more easily-seen three millimeters. As an inclusion in quartz, in which case it accounts for the bright red color of the host crystal. It also can be frequently observed as an inclusion in calcite. The red staining of any mineral found where can be attributed to hematite.
Hematite var. Iron Rose
Formula: Fe2O3
Hematite var. Specularite
Formula: Fe2O3
Description: In the baked arkose below the contact with the diabase.
Hemimorphite
Formula: Zn4Si2O7(OH)2 · H2O
Herderite
Formula: CaBe(PO4)F
Description: undoubtedly hydroxylherderite as there is still but one or two chemically verified herderite specimen in the world and even the so-called type locality for true herderite does not have the species by modern chemical analyses. "Chemical analysis of herderite, collected by the author, at the State Forest Mine in East Hampton, Connecticut, indicate that it is the hydroxyl variety" (Januzzi 1994).
Heterosite
Formula: (Fe3+,Mn3+)PO4
Colour: purple
Description: secondary after triphylite (Foye 1922)
Heulandite-Ca
Formula: (Ca,Na)5(Si27Al9)O72 · 26H2O
Localities: Reported from at least 15 localities in this region.
Habit: coffin-shaped prisms
Colour: white to almond, colorless
Description: Confirmed in 2018 via SEM-EDS analyses. Late forming crystals to 2 cm perched on quartz or prehnite with other zeolites and fluoapophyllite-K.
'Heulandite Subgroup'
Formula: (Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
Localities: Reported from at least 27 localities in this region.
Habit: coffin-shaped
Colour: colorless to pale yellow or tan
Description: Common in the hydrothermal fault veins with quartz, sphalerite, pyrite, galena. Pearly, translucent crystals usually <1 cm, but rarely up to 2.5 cm.
Hexahydrite ?
Formula: MgSO4 · 6H2O
Description: Discovered by Richard Schooner as an "efflorescence on schist" at an undisclosed Portland location, reported by Januzzi, but details lacking.
'Hornblende Root Name Group'
Formula: ◻Ca2(Z2+4Z3+)(AlSi7O22)(OH,F,Cl)2
Localities: Reported from at least 28 localities in this region.
Hübnerite ?
Formula: MnWO4
Description: Only confirmed ferberite pseudomorphs after scheelite have ever been found in the area, and only within the adjacent Old Mine Park. Analyses are needed to substantiate this mineral.
Hureaulite
Formula: Mn2+5(PO3OH)2(PO4)2 · 4H2O
Habit: short prismatic to tabular, in parallel growth
Colour: typically white to pink, pale violet to reddish brown and deep orange-red
Description: Massive, sub-resinous, white to pale material in the Yale collection reminiscent of massive scapolite. Tiny crystals in small vugs. Formed from an alteration of lithiophilite, intimately associated with dickinsonite, eosphorite, fairfieldite, reddingite, fillowite, triploidite. Difficult to distinguish from reddingite.
Hydrokenoelsmoreite ?
Formula: 2W2O6(H2O)
Description: Reference includes a list of minerals reportedly found by Dick Schooner in a quartz vein in East Hampton, but with no supporting details. The mineral is listed as "ferritungstite".
Hydrokenoelsmoreite var. Ferritungstite ?
Hydrotungstite
Formula: WO3 · 2H2O
Description: Dehydrates to tungstite, whose presence outside of neighboring Old Mine Park has not been validated.
Hydroxylapatite
Formula: Ca5(PO4)3(OH)
Habit: micro hexagonal prisms
Colour: colorless to white
Description: in pockets of altered triphylite with beraunite, whitmoreite, messelite, etc. Tested by XRD at the National Museum Prague (dr. Jiri Sejkora).
Hydroxylherderite
Formula: CaBe(PO4)(OH)
Habit: flat prisms with dome terminations
Colour: pale yellow
Description: Specimens analyzed by Leavens, et al. (1978) from New England were analyzed and found to be true hydroxylherderite. As the study was made after the reference cited and as there are only one or two analyzed true herderites in the world, the entry was changed to conform to modern nomenclature. Leavens, et al., 1978, Compositional and Refractive Index Variations of the Herderite-Hydroxyl-herderite Series, American Mineralogist, v 63, p. 913-917. "Chemical analysis of herderite, collected by the author, at the State Forest Mine in East Hampton, Connecticut, indicate that it is the hydroxyl variety" (Januzzi 1994). Described (as herderite) by Schooner (1958) as "twenty five 1/32 inch pale yellow tabular crystals in a vug of albite and altered siderite, near a contact with semi-columnar beryl"
Hydrozincite
Formula: Zn5(CO3)2(OH)6
'Hypersthene'
Formula: (Mg,Fe)SiO3
Ilmenite
Formula: Fe2+TiO3
Localities: Reported from at least 34 localities in this region.
Habit: platy to tabular
Colour: black submetallic
Description: Found in three modes: 1. As small (<1 cm) crystals scattered in schist, gneiss and amphibolite. 2. As deformed platy concentrations in quartz/albite/mica boudins in schist. Loose boudins as boulders vary in size from "turtle shell" pieces, to boulders pushing a meter across with overlapping, curved crystals or aggregates on the order of 10 cm. 3. As undeformed, tabular crystals exceeding 10-15 cm (mostly broken so hard to say exactly), 1 to 15 mm thick, that grew rooted in the chlorite-rich contact of schist with discordant quartz masses. These crystals typically oriented edge-on to the contact and surrounded by massive quartz that evidently filled in after they crystallized. Most of these "ilmenite" crystals are actually pseudomorphed by, to varying degrees, magnetite, hematite, rutile, chlorite, even within the same crystal. As ilmenite is weakly magnetic, it is easy to tell the strongly magnetic magnetite pseudos from ilmenite. The rutile/hematite pseudos are reddish and non-magnetic and blood-red, acicular microcrystals can be seen in them under a scope.
Ilmenite var. Iron(III)-bearing Ilmenite
Formula: (Fe2+,Fe3+)TiO3
'Indicolite'
Formula: A(D3)G6(T6O18)(BO3)3X3Z
References:
Iron
Formula: Fe
Iron var. Kamacite
Formula: (Fe,Ni)
Ishikawaite
Formula: U4+Fe2+Nb2O8
Habit: tabular
Colour: black with brown coating
Description: metamict crystals with obsidian-like conchoidal fracture
'Ixiolite-(Mn2+)-Ixiolite-(Fe2+) Series'
Formula: (Ta,Nb,Sn,Fe,Mn)4O8
Habit: tabular
Colour: black
Description: Schooner (circa 1990) - "Several beautiful ixiolite crystals, in compact grayish lepidolite, were collected at the Swanson mine, by Anthony J. Albini. These range up to half an inch; they are black, brilliant, flattened, and striated, much resembling wolframite. The identification was by X-ray methods."
'Ixiolite-(Mn2+)-Ixiolite-(Fe2+) Series var. Wolframoixiolite'
Formula: (Nb,W,Ta,Fe,Mn)2O4
Habit: acicular
Colour: black
Description: Elongated, thin crystals in albite/quartz/annite matrix, with unknown translucent, orange-red coating.
Jacobsite
Formula: Mn2+Fe3+2O4
Description: "Specimens of tephroite from the Jail Hill quarry contain magnetic grains, shown (by X-ray and microprobe study at the University of Michigan) to be jacobsite. The material ranges from ferroan jacobsite to manganoan magnetite, within individual grains. A few specimens show it rather abundantly." Specimens are in the Harvard Mineralogical Museum.
Jarosite
Formula: KFe3+3(SO4)2(OH)6
'Jasper'
Johannite
Formula: Cu(UO2)2(SO4)2(OH)2 · 8H2O
Description: "was attributed to some locality in Middletown...by C. U. Shephard, in 1850. In a recent communication to the author, Clifford Frondel of Harvard University said, 'The old reported occurrences of uranium sulfates are not valid'." Schooner (1958)
Johannsenite ?
Formula: CaMn2+Si2O6
Colour: tan or gray
Description: Fibrous tan or gray johannsenite is intergrown with pink bustamite in a few specimens from the Jail Hill quarry. The X-ray pattern indicates a clinopyroxene, and spectrographic analysis shows calcium and manganese as the principal cations of both minerals. The association is entirely characteristic.
Julgoldite-(Fe2+)
Formula: Ca2Fe2+Fe3+2[Si2O6OH][SiO4](OH)2(OH)
Habit: micro radiating acicular aggregates or botryoidal
Colour: dark green to black
Description: Associated with prehnite, calcite, quartz, pumpelleyite-(Fe3+) and sometimes with babingtonite. Few specimens have been confirmed by analyses to differentiate it from several other possible pumpellyite group minerals.
'Julgoldite Subgroup'
Formula: Ca2XFe3+2[Si2O6(OH)][SiO4](OH)2A
Habit: isolated botryoidal or "bow-tie" radiating crystal aggregates.
Colour: very dark green
Description: Identified by Raman spectroscopy as pumpellyite.
Kaersutite
Formula: NaCa2(Mg3AlTi4+)(Si6Al2)O22O2
Kaolinite
Formula: Al2(Si2O5)(OH)4
Localities: Reported from at least 17 localities in this region.
'K Feldspar'
Localities: Reported from at least 28 localities in this region.
Habit: "cauliflower-like" aggregates
Colour: Peach to tan
Description: Found in basalt cavities usually on top of datolite or prehnite indicating late crystallization.
'K Feldspar var. Adularia'
Formula: KAlSi3O8
Localities: Reported from at least 28 localities in this region.
Habit: "cauliflower-like" aggregates
Colour: Peach to tan
Description: Found in basalt cavities usually on top of datolite or prehnite indicating late crystallization.
Kutnohorite
Formula: CaMn2+(CO3)2
Habit: massive
Colour: pink
Description: "Light pink kutnohorite (verified at the University of Michigan) is the matrix for abundant reddish grains of alleghanyite (or an alleghanyite-like mineral) in the material collected, around 1960, at the Jail Hill quarry. Tephroite, jacobsite, and pyrophanite are also associated."
Kyanite
Formula: Al2(SiO4)O
Localities: Reported from at least 64 localities in this region.
Habit: elngated, tabular prisms
Colour: gray to pale blue-green with sky blue cores
Description: Occurs in two modes: 1. As gray crystals in schist and quartz/albite/mica boudins, randomly oriented along the foliation, crystals typically reaching 5 cm. These resistant crystals form rough surfaces on schist boulders where they are abundant. 2: As very long crystals to 10s of cms, commonly concentrated in parallel to subparallel arrangement in massive quartz and adjacent schist. These crystals are pale blue-green with sky blue cores along their lengths. There are +/- 1-meter cone to fan-shaped boulders with solid concentrations of these crystals.
Lacroixite
Formula: NaAl(PO4)F
Habit: granular
Colour: pale yellow
Description: From Schooner (circa 1985): "Mary E. Mrose [USGS] studied some exceptional material collected at the Strickland quarry by Charles Thomas, when the last sporadic work was done in the non-flooded pit. Lacroixite formed rather granular pale yellow areas in a mixture of augelite, brazilianite, and hydroxylapatite (?), replacing natromontebrasite. Her paper redefined the species, which had been in question." Natromontebrasite was discredited in 2007, being a mixture of montebrasite, lacroixite, and wardite.
Landesite ?
Formula: Mn2+3-xFe3+x(PO4)2(OH)x · (3-x)H2O
Habit: alteration
Colour: dark brown
Description: "Landesite may occur as a dark brown alteration product of reddingite at Branchville."
Langite
Formula: Cu4(SO4)(OH)6 · 2H2O
Description: SEM-EDS showed a copper sulfate. Visual identification compared to crystal drawing #1 under Langite (Goldschmidt) on Mindat.
'Lanthanite' ?
Colour: gray
Description: A possible weathering product of the basnaesite.
Larnite
Formula: Ca2SiO4
Colour: grayish
Description: Schooner (circa 1985): "One of the calc-silicate pods at the Strickland quarry contained the usual fine-grained diopside, grossularite, and wollastonite, with the addition of a 1/2 inch zone of grayish cleavable larnite, giving a distinct X-ray pattern." Studied by Waldemar T. Schaller of USGS.
Laueite
Formula: Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Habit: microscopic elongated prisms
Colour: red-orange
Description: "Tiny orange crystals are associated with strunzite fibers in vugs of altered messelite, with siderite and mitridatite" (Schooner 1961)
Laumontite
Formula: CaAl2Si4O12 · 4H2O
Localities: Reported from at least 27 localities in this region.
Habit: prismatic
Colour: white
Description: Common in many vesicles, some are filled with late forming crystals to 2-3 cm, which eventually crumble, sadly.
Lazulite ?
Formula: MgAl2(PO4)2(OH)2
Colour: blue
Description: "(?) This occurrence, unlike the vivianite, was observed embedded in altered rim of amblygonite (montebrasite). Not enough material for positive ID." Januzzi (1994)
Lechatelierite
Formula: SiO2
Lepidocrocite
Formula: γ-Fe3+O(OH)
'Lepidolite'
Localities: Reported from at least 14 localities in this region.
Habit: pseudo-hexagonal crystals, granular
Colour: purple
Description: As distinct crystals, up to 10 cm across; as overgrowths on a core of green muscovite and in turn overgrown by parallel schernikite fibers - all cleavable as one unit. As peach-blossom red crystals, often penetrated by elbaite. Fine-grained, granular masses in matrix with smoky quartz, cleavelandite, elbatite, beryl, fluorapatite.
Liandratite
Formula: U(Nb,Ta)2O8
Habit: massive
Colour: yellow
Description: Associated with petscheckite and columbite.
'Limonite'
Localities: Reported from at least 54 localities in this region.
Linarite
Formula: PbCu(SO4)(OH)2
Linnaeite
Formula: Co2+Co3+2S4
Litharge
Formula: PbO
Colour: tan
Description: From Schooner (circa 1980s): "Massicot was the most abundant of the lead oxides from the now-collapsed tunnel of the lead mine nearest the river. X-ray study, however, showed the presence of minor litharge. A sample of weathered galena, picked up on the cobalt mine dump below Great Hill, had a rather thick tan crust. It gave a very good X-ray pattern of litharge."
Lithiophilite (TL)
Formula: LiMn2+PO4
Habit: irregular blocky to rounded masses
Colour: bright salmon, honey-yellow, yellowish-brown to umber-brown
Description: The anhedral to subhedral masses are typically 1 to 3 inches in diameter and coated with a black alteration. Alteration sometimes has penetrated deep into the mass so that original color is only in the core. Secondary Mn phosphates are associated. Original type material analyzed in Brush and Dana (1878) had Mn/Mn + Fe ratio of about 0.9. Landes (1925) analyzed lithiophilite from this locality and found the Mn/Mn + Fe ratio was 0.72
Lithiophilite var. Sicklerite
Formula: Li1-x(Mn3+xMn2+1-x)PO4
Habit: crusts
Colour: brown, yellow-brown, reddish-brown
Description: An alteration product forming brown rinds around nodules of lithiophilite.
'Lithiophilite-Triphylite Series'
Description: Confusion with triplite and elbaite.
Lithiophorite ?
Formula: (Al,Li)MnO2(OH)2
Description: Listed as associated with rhabdophane but no site-specific details given.
Lizardite
Formula: Mg3(Si2O5)(OH)4
Habit: massive
Colour: yellow to dark green
Description: nodules or irregular masses, massive to variegated and mixed with calcite
References:
Löllingite
Formula: FeAs2
Localities: Reported from at least 6 localities in this region.
Description: Found "sparingly". Associated with siderite and sulfides.
Ludlamite
Formula: Fe2+3(PO4)2 · 4H2O
Habit: cleavable masses
Colour: pale green
Description: "Light green cleavages were associated with siderite and triphylite. It also formed thin borders along messelite areas in hydrothermally altered triphylite." (Schooner 1961)
Maghemite
Formula: (Fe3+0.670.33)Fe3+2O4
Habit: massive
Colour: brown
Description: Alteration of magnetite found on biotite gneiss in the rock quarry uphill from the pegmatite. Referenced and photographed by Weissmand and Nikischer of Excalibur Mineral Corp. Harold Moritz collection contains a similar specimen purchased from them.
Magnesio-hornblende
Formula: ◻Ca2(Mg4Al)(Si7Al)O22(OH)2
Localities: Reported from at least 7 localities in this region.
Habit: elongated prismatic
Colour: black
Description: Mostly as a metamorphic retrograde alteration of pyroxene in the host metagabbro, but also as an uncommon mineral in the open vein assemblage - a rarity in the state. Crystals to 1 cm.
Magnesite
Formula: MgCO3
Habit: rhombohedral
Colour: tan to brown
Description: Small rhombs <1 cm common, but crystals can reach several cm. Much more common than reported ankerite. Iron typically in the range of 0.05-0.30 apfu, though reportedly a few samples have outer rims grading to pure siderite.
Magnesite var. Iron-bearing Magnesite
Formula: (Mg,Fe)CO3
Habit: rhombohedral
Colour: tan to light brown
Description: Crystals to several cm. Much more common than reported ankerite. Iron typically in the range of 0.05-0.30 apfu, though reportedly a few samples have outer rims grading to pure siderite.
Magnetite
Formula: Fe2+Fe3+2O4
Localities: Reported from at least 78 localities in this region.
Habit: Striated octahedrons to dodecahedrons
Colour: metallic gray to black
Description: Typically coated with a thin layer of muscovite that can be carefully removed.
Malachite
Formula: Cu2(CO3)(OH)2
Localities: Reported from at least 64 localities in this region.
'Manganese Oxides'
Localities: Reported from at least 9 localities in this region.
'Manganese Oxides var. Manganese Dendrites'
Localities: Reported from at least 8 localities in this region.
Habit: dendritic coatings
Colour: black to dark brown
Manganite
Formula: Mn3+O(OH)
Description: Speculation by Schooner (1958). Black crusts associated with altered lithiophilite are groutite.
Marcasite
Formula: FeS2
Localities: Reported from at least 13 localities in this region.
Margarite
Formula: CaAl2(Al2Si2O10)(OH)2
Habit: micaceous, fibrous, compact
Colour: white, gray, pale green
Description: As bands of soft but brittle parallel fibers with pearly luster surrounding and/or replacing some topaz crystals. Grading to micaceous to granular, the latter especially in the cores of altered crystals. Associated with unaltered topaz, muscovite, quartz, fluorite in cross-cutting hydrothermal veins. Confirmed using Raman spectroscopy by Paul Bartholomew, U. New Haven, 2014.
'Margarodite'
Description: variety of muscovite found along the contact of cross-cutting quartz-topaz-fluorite-muscovite veins with the host amphibolite.
Marialite
Formula: Na4Al3Si9O24Cl
Habit: radiating acicular
Colour: white, pale to dark green
Fluorescence: pink to lavender
Description: As large radiating acicular masses in the amphibolite associated with microcline, oligoclase, quartz, sulfides and clinochlore. Also along contact zones of the amphibolite with the cross-cutting quartz-topaz-fluorite-muscovite veins associated with phlogopite and beryl.
Massicot
Formula: PbO
Colour: yellowish
Description: From Schooner (circa 1980s)" "Some rich specimens, showing soft yellowish massicot in cellular quartz, derived from the alteration of galena, were found in the last lead mine tunnel toward the river. X-ray study indicates a mixture of massicot and litharge, with massicot predominating."
Masutomilite
Formula: (K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2
Meionite
Formula: Ca4Al6Si6O24CO3
Melanterite
Formula: Fe2+(H2O)6SO4 · H2O
Localities: Reported from at least 16 localities in this region.
References:
Mesolite
Formula: Na2Ca2Si9Al6O30 · 8H2O
Habit: acicular, radiating
Colour: white
Description: At least some of what has been considered natrolite (visually) from this locality proved to be mesolite (EDS), though other crystals could still be natrolite.
Messelite
Formula: Ca2Fe2+(PO4)2 · 2H2O
Habit: massive curved, lamellar aggregates, acicular microcrystals
Colour: white to tan, sometimes a green coating of an unknown.
Description: "Many solid white or tan masses, with a curved lamellar structure, were collected; some were two inches across. The messelite was intergrown with siderite, or embedded in triphylite. Distinct crystals, with a pearly luster, were noted in vugs of the massive mineral." Schooner (1961). Associated with triphylite, siderite, strunzite, laueite, mitridatite, ludlamite, vivianite. A green mineral thought to be beraunite was tested by XRD (with some matrix) at the National Museum Prague (dr. Jiri Sejkora) and found to be "no beraunite but something similar to messelite". The green may be only a coating.
Meta-autunite
Formula: Ca(UO2)2(PO4)2 · 6H2O
Localities: Reported from at least 28 localities in this region.
Habit: encrustations
Colour: yellow
Fluorescence: green
Description: excellent halos surrounding other uranium secondary minerals and altered uraninite.
Metaswitzerite
Formula: Mn2+3(PO4)2 · 4H2O
Description: Januzzi reported it as switzerite, which dehydrates to metaswitzerite according to Zanazzi (1986). Januzzi reference provides no details. Caption for http://www.mindat.org/photo-199679.html indicates confirmation by unknown methods.
Metatorbernite
Formula: Cu(UO2)2(PO4)2 · 8H2O
Localities: Reported from at least 14 localities in this region.
Habit: tabular
Colour: emerald green
Description: micaceous flakes are quite large, being about one-eighth inch across (Jones (1960)) magnificent specimens...was common, around l94l or 1942 (Schooner (1958) sometimes covers the specimens so thickly as to give them a solid green appearance (Little 1942)
'Mica Group'
Microcline
Formula: K(AlSi3O8)
Localities: Reported from at least 187 localities in this region.
Habit: blocky to prismatic
Colour: white and salmon-pink
Fluorescence: bluish-white
Description: Crystals in cavities reach 20 cm or more across, and up to 120 cm across as crude crystals in the core. One large crystal was presented to the American Museum of Natural History, NYC by E. Schernikow. As "perthite", a major component of the pegmatite in general.
Microcline var. Amazonite
Formula: K(AlSi3O8)
Habit: massive to subhedral prismatic
Colour: pale green
Description: Concentrated at the intermediate/quartz core zone boundary where inward oriented, subhedral prismatic crystals reach 30 cm. Color is generally pale and patchy within crytals, but some zones approach aqua.
Microcline var. Hyalophane
Formula: (K,Ba)[Al(Si,Al)Si2O8]
Habit: prismatic
Colour: pale yellow-white
Description: "A few nicely formed yellowish hyalophane crystals (adularia type) were found in vugs of spessartine crystals at the Jail Hill quarry in Haddam, associated with a lens of manganese silicates and oxides. Spectrographic analysis indicates the hyalophane is manganoan." Schooner (circa 1985). Crystals reach about 1 cm.
'Microlite Group'
Formula: A2-mTa2X6-wZ-n
Localities: Reported from at least 20 localities in this region.
Habit: octahedral with dodecahedral and cubic modifications
Colour: pale to dark brown to black, yellow-green
Description: Crystals up to "almost half an inch" (Schooner, 1958) associated with cleavelandite and very dark smoky quartz in the southern pegmatite.
Milarite
Formula: K(◻H2O)Ca2(Be2Al)[Si12O30]
Mimetite
Formula: Pb5(AsO4)3Cl
Minium
Formula: Pb3O4
Colour: orange-red
Description: From Schooner (circa 1980s): "Dull orange-red minium is one of the lead oxides found at the lowest of the tunnels between River Road and the Connecticut River, in Middletown. This material did not yield the good X-ray pattern of the other lead oxides, massicot, litharge, and plattnerite. It is assumed to be fine-grained or impure. Interestingly, no hematite peaks were seen."
Mitridatite
Formula: Ca2Fe3+3(PO4)3O2 · 3H2O
Habit: coatings
Colour: greenish yellow
Description: Greenish yellow coatings on the phosphate minerals in the Yale collection, some are labeled as mitridatite.
Molybdenite
Formula: MoS2
Localities: Reported from at least 34 localities in this region.
Habit: hexagonal, tabular
Colour: metallic gray
Description: Excellent euhedral crystals to 5 cm
'Monazite'
Formula: REE(PO4)
Localities: Reported from at least 9 localities in this region.
Colour: yellow-brown
Description: "beautiful yellowish-brown monazite crystals, up to a couple of inches long and quite glassy, are sometimes found. [David] Seaman has established their identity by an x-ray test." Schooner (1961).
Monazite-(Ce)
Formula: Ce(PO4)
Localities: Reported from at least 17 localities in this region.
Colour: brown to red-brown
Description: "in a very limited quantity. It occurs in small, brownish or hyacinthine red crystals...disseminated through bucholzite [sillimanite], in a red feldspathic granite, contained in gneiss. The crystals are rarely above a quarter of an inch in length, and one-sixth of an inch in thickness." Shepard (1837)
Montebrasite
Formula: LiAl(PO4)(OH)
Colour: white
Description: locally in the core zone in crystals which commonly show a good but rough crystal form. Some of its crystals reach three or four inches in length. The outer crystal edges are usually altered on the surfaces to a tan colored alteration product.
Montmorillonite
Formula: (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Localities: Reported from at least 8 localities in this region.
Habit: earthy
Colour: pink
Description: As crumbly, soft, pink masses where spodumene has decomposed.
'Moonstone'
Moraesite
Formula: Be2(PO4)(OH) · 4H2O
Habit: Acicular, encrustations
Colour: white
Description: Merged sprays of acicular crystals forming a white crust on massive beryl, with hydroxylherderite.
Mordenite
Formula: (Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Morinite ?
Formula: NaCa2Al2(PO4)2(OH)F4 · 2H2O
Description: Unconfirmed. According to Schooner (circa 1985): "A few masses of Strickland quarry natromontebraesite, from the pollucite zone in the middle eastern wall, halfway down, are composed of intergrown metasomatic or hydrothermal alterations. Pink brazilianite, containing a trace of Mn (analysis by the USGS), is associated with augelite, lacroixite, and hydroxylapatite. This mineral was collected by Charles Thomas, and studied by Mary E. Mrose [USGS]. Ronald E. Januzzi had earlier collected material, on the old dumps, in which the brazilianite occurs as confused white aggregates, with hydroxylapatite and possibly morinite."
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Localities: Reported from at least 207 localities in this region.
Habit: tabular, waxy secondary replacement of gemmy almandine
Colour: yellowish-green to pale brown
Description: According to Cameron et al (1954), in the albite-quartz-muscovite wall zone muscovite forms books 2 inches to 6 feet broad and ½ to 12 inches thick. These were heavily mined in the early 1940s. Smaller crystals occur in the other zones, except the quartz core. The output of the Schoonmaker mine and Strickland Quarry places the Strickland pegmatite among the most productive mica pegmatites in the country with a total yield estimated at more than 4,500 tons of mine-run mica. Waxy, yellow fine-grained replacement of gemmy almandine (both confirmed by Raman spectroscopy at the University of New Haven) showing included, remnant, etched pieces of the garnet.
Muscovite var. Damourite
Formula: KAl2(AlSi3O10)(OH)2
Habit: anhedral scales, pseudomorphs after kyanite
Description: "as pearly scales in quartz and as more compact talc-like masses that are apparently pseudomorphs after kyanite", Januzzi, 1959.
Muscovite var. Fuchsite
Formula: K(Al,Cr)3Si3O10(OH)2
Muscovite var. Illite
Formula: K0.65Al2.0[Al0.65Si3.35O10](OH)2
Habit: earthy
Colour: pastel pink
Description: clay-like masses in small voids in the aplitic zone of the pegmatite.
Muscovite var. Schernikite (FRL)
Formula: KAl2(AlSi3O10)(OH)2
Habit: Rhombic fibers in parallel or twin-position
Colour: white, tan, pink
Description: A variety of pink fibrous muscovite so far unique to Gillette, as described by Scovil (1992): "Bowman (1902) goes into great detail in his analysis of muscovite and lepidolite from Gillette. The two form interesting overgrowths, with pale green muscovite at the center. This core is surrounded by a sharply defined zone of pink lepidolite. The lepidolite was subsequently overgrown by pink fibrous muscovite. The fibers are rhombic in cross section and are in parallel or twin-position so that the mass can be cleaved as if a single crystal...The fibrous muscovite also occurs as inclusions in quartz crystals. The muscovite starts at a pin point in the quartz crystals interior and becomes a divergent sub-parallel bundle of fibers as it reaches the surface where it is often the preferred site for a cookeite hemisphere."
Muscovite var. Sericite
Formula: KAl2(AlSi3O10)(OH)2
Nacrite ?
Formula: Al2(Si2O5)(OH)4
Description: No details on the find in the reference, just "found at Ridgefield".
Nantokite
Formula: CuCl
Habit: micro tetrahedra, etched to skeletal or in parallel groups
Colour: colorless to white
Description: Henderson (1967) reports: colorless translucent to white opaque 0.5 mm tetrahedra with and on cuprite and atacamite. Some of the crystals showed triangular etch pits on the tetrahedron faces (Fig. 1) and many were skeletal (Fig. 2) or occurred in parallel growth. Identification was made as follows. Very few white tetrahedral minerals are known, and of these, only nantokite CuCl and marshite CuI were likely to form from copper in the presence of sea water. Both these minerals are optically isotropic, and the above material was found to be so. In addition, the index of refraction was found to be about 1.93. Nantokite has an index of 1.930 while marshite has an index of 2.346. As a matter of fact, the index of refraction is alone sufficient to identify this mineral as nantokite since only a handful of minerals have indices as high as 1.9, and the above are the only tetrahedral minerals in the group. Many of the nantokite crystals were altered in part or entirely to a lime green mineral, and a few to a sulfur yellow material. It is interesting to note that nantokite has been reported to alter in air to the green mineral paratacamite.
Natrolite
Formula: Na2Al2Si3O10 · 2H2O
Localities: Reported from at least 14 localities in this region.
Habit: acicular with flat pyramidal termination
Colour: colorless, white
Description: Radiating open sprays of individual crystals, at least 1 cm long. At least one potential natrolite specimen has proven to be mesolite (via EDS), so perhaps more or all are actually the latter mineral.
'Natromontebrasite'
Description: Schooner (circa 1985) reports: "A few years ago, John Gillespie did a spectrographic analysis on a sample submitted by the author, finding much Na and hardly any Li. It is quite possible that natromontebrasite was fairly common... A few masses of Strickland quarry natromontebrasite, from the pollucite zone in the middle eastern wall, halfway down, are composed of intergrown metasomatic or hydrothermal alterations. Pink brazilianite, containing a trace of Mn (analysis by the USGS), is associated with augelite, lacroixite, and hydroxylapatite. This mineral was collected by Charles Thomas, and studied by Mary E. Mrose [USGS]." This mineral was discredited in 2007 as a mixture of montebrasite, lacroixite and wardite.
Natrophilite (TL)
Formula: NaMn2+PO4
Habit: massive, local alterations within lithiophilite
Colour: deep, wine-yellow
Description: Small regions within lithiophilite nodules. Description of type material from Brush and Dana (1890): "The luster is brilliant resinous to nearly adamantine; it was, in fact, the brilliancy of the luster which first attracted our attention, and which is, so far as the eye is concerned, its most distinguishing character. The mineral itself is perfectly clear and transparent, but the masses are much fractured and rifted. The surfaces are often covered by a very thin scale of an undetermined mineral, having a fine fibrous form, a delicate yellowish color and silky luster. This same mineral penetrates the masses wherever there is a fracture surface of cleavage or otherwise. What the exact nature of this mineral is we are unable to say, since the amount is too small to admit of a satisfactory determination - it appears to be a manganesian phosphate. It is evidently an alteration-product and would seem to imply that natrophilite is rather subject to easy chemical change. In any case this silky film is one of the characteristic features of the mineral, and directs attention to it at once even over the surface of a hand specimen where it is associated with lithiophilite and perhaps three or four other of these phosphates."
Nepheline
Formula: Na3K(Al4Si4O16)
Habit: anhedral to subhedral grains
Colour: pale gray
Description: Major component of the rock.
Nickeline
Formula: NiAs
Nickelskutterudite
Formula: (Ni,Co,Fe)As3
Habit: grains
Description: "Shepard [1837] initially identified the Co-Ni bearing arsenide as the cubic di-arsenide, smaltite but after obtaining and studying additional material from his own mine he pronounced it to be a new orthorhombic tri-arsenide for which he proposed the name "Chathamite"....In the mid 1850s Genth (in Goodrich, 1854) questioned Shepard's identification and suggested that Chathamite was simply an iron rich variety of the cubic arsenide chloanthite (a misconception that perpetuated up to, and including, the 7th edition of Dana's Manual of Mineralogy). As it turns out, Shepard's Chathamite is indeed orthorhombic, but today would be classified as a nickel-cobalt rich loellingite." Gray (2005)
Nontronite
Formula: Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Habit: clay
Colour: greenish
Description: A greenish clay mineral, forming a vein or zone, near the contact of a nepheline-bearing dike and granite gneiss has been identified as nontronite. It was studied by X-ray diffraction.
Opal
Formula: SiO2 · nH2O
Localities: Reported from at least 54 localities in this region.
Habit: bubbly coatings
Colour: colorless to aqua
Fluorescence: green
Description: Coatings mostly invisible unless illuminated by SW UV, rarely colored blue-green in daylight and if thick enough has a translucent, fine-grained bubbly appearance.
Opal var. Hyalite
Formula: SiO2 · nH2O
Opal var. Opal-AN
Formula: SiO2 · nH2O
Localities: Reported from at least 50 localities in this region.
Habit: bubbly coatings
Colour: colorless to aqua
Fluorescence: green
Description: Coatings mostly invisible unless illuminated by SW UV, rarely colored blue-green in daylight and if thick enough has a translucent, fine-grained bubbly appearance.
Orthoclase
Formula: K(AlSi3O8)
Localities: Reported from at least 20 localities in this region.
'Orthopyroxene Subgroup'
Oxy-dravite
Formula: Na(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
Palermoite
Formula: (Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Colour: colorless
Description: "A colorless acicular mineral, found by the author in a vug of messelite, at the State Forest Mine in East Hampton, does not fit the description of any typical species except palermoite. Unfortunately, very little was obtained; an excellent sample was sent away for testing, but was evidently lost" (Schooner 1961). Most likely, this was a very poor guess.
Palygorskite ?
Formula: ◻Al2Mg22Si8O20(OH)2(H2O)4 · 4H2O
Habit: fibrous
Colour: white
Description: Included in a list of minerals without details. Most likely this fibrous mineral is actually sepiolite. TEM-EDS analysis of a similar sample from the marble in Danbury proved to be sepiolite.
Paragonite
Formula: NaAl2(AlSi3O10)(OH)2
Habit: anhedral
Colour: white to gray
Description: Sillimanite, collected in a quartz vein through schist, is altered, in a few samples, to a very soft, greasy-feeling, white or gray material. X-ray study indicates a mixture of fine-grained paragonite and subsidiary pyrophyllite. A fingernail easily scratches it.
Paratacamite ?
Formula: Cu3(Cu,Zn)(OH)6Cl2
Colour: lime green
Description: Many of the nantokite crystals were altered in part or entirely to a lime green mineral, which may be paratacamite.
Pargasite ?
Formula: NaCa2(Mg4Al)(Si6Al2)O22(OH)2
Colour: bright green
Description: Included in lists, with no details. Probably confusion with diopside.
Parsonsite
Formula: Pb2(UO2)(PO4)2
Habit: alteration of uraninite
Description: Schooner (circa 1985) reports: "A soft uraninite alteration, on a Wesleyan University sample from the Strickland quarry, gave the X-ray pattern of parsonsite. The available material was consumed in testing."
Pectolite
Formula: NaCa2Si3O8(OH)
Localities: Reported from at least 9 localities in this region.
Habit: spherical aggregates of radiating acicular crystals
Colour: white, light tan
Description: "The author was given several fine specimens of radiating white pectolite, with anhydrite and thaumasite, from a road cut, in trap-rock, at Tariffville. The material was very clean, though it has since become tan, and, occurred in extremely hard and non-porous basalt." Schooner (1961).
Pentlandite
Formula: (NixFey)Σ9S8
Petalite
Formula: LiAl(Si4O10)
Habit: granular to cleavable masses
Colour: pale grey to white
Description: Schooner (1958) says: "sparingly associated with the pollucite which the author discovered at the Strickland Quarry in Portland in l954. It was in the form of glassy white or colorless cleavages and coarsely crystalline aggregates." Later, in Schooner (circa 1985), he elaborates: "Good specimens of white petalite, closely associated with colorless pollucite, were collected deep in the Strickland quarry, in the early 1950s. The author appears to have the only such material. It is usually granular, so the perfect cleavage is not as conspicuous as might be expected. The petalite was verified by X-ray diffraction. Similar petalite has been found on the dumps, intergrown with spodumene; the spodumene may be thoroughly altered to 'pinite', whereas the petalite, being much more stable, is in a fresh condition."
'Petroleum'
References:
'Petroleum var. Albertite'
References:
'Petroleum var. Bitumen'
Localities: Reported from at least 17 localities in this region.
Habit: amorphous
Colour: black
Description: amorphous, vitreous masses with conchoidal fracture
Petscheckite ?
Formula: UFe(Nb,Ta)2O8
Habit: massive
Colour: black
Description: Glassy metamict material associated with liandratite and columbite. Data required to substantiate this entry.
Pharmacosiderite
Formula: KFe3+4(AsO4)3(OH)4 · 6-7H2O
Phenakite
Formula: Be2SiO4
Habit: striated, slightly etched elongated prisms
Colour: colorless
Description: Clear crystals to 3 mm in vug in cleavalandite with K-rich albite, bertrandite to 5 mm, quartz and goethite after pyrite.
'Phillipsite Subgroup'
Description: This zeolite has the same morphology as harmotome, but according to Tschernich's 1992 "Zeolites of the World", harmotome is typical of lead deposits whereas phillipsite occurs in volcanics. This locality is thus favorable for harmotome. Henderson (1979) analyzed crystals and found that "...microprobe analysis shows the Ba:Si ratio to be 1.2:6, and the amounts of K, Na and Ca to be low. This data fits harmotome perfectly, and is not consistent with either phillipsite or wellsite."
Phlogopite
Formula: KMg3(AlSi3O10)(OH)2
Localities: Reported from at least 24 localities in this region.
Phosphophyllite
Formula: Zn2Fe(PO4)2 · 4H2O
Colour: green
Description: "occurs as a hydrothermal alteration of sphalerite and triphylite, in vugs of messelite, with vivianite, at the State Forest Mine in East Hampton. Very few specimens have been found, and they are small; the crystals are green and quite glassy, the largest being about an eighth of an inch in diameter. The author suspected the identity of this material from the time he discovered it, several years ago, but it was not confirmed until recently. Some of the optical data follows: R. I. 1.615; optical angle 45 degrees, more or less; optic sign negative; birefringence high." (Schooner 1961)
Phosphuranylite
Formula: KCa(H3O)3(UO2)7(PO4)4O4 · 8H2O
Pickeringite
Formula: MgAl2(SO4)4 · 22H2O
Localities: Reported from at least 9 localities in this region.
Habit: reniform crusts
Colour: white
Description: Schooner (1955) says that it "used to be found in magnificent specimens at the small cut above the main part of the Strickland Quarry. Water from the adjacent Schoonmaker shaft, in flowing over a ledge of schist, decomposed the sulphides and mica, producing this hydrosoluble sulphate in limited abundance when the pumping was halted for a while." In Schooner (1958) he elaborates: "At times, especially when water was being drained down over the ledges, the author saw several square feet of rock surface completely covered with reniform pickeringite. Even leaves and twigs, on the ground below, were incrusted. The color was frequently pure white, and the material was solid enough to obtain in sizeable pieces. A peculiar mass, over an inch thick, was found under an overhanging ledge in the principal part of the quarry."
Piemontite
Formula: (CaCa)(AlAlMn3+)O[Si2O7][SiO4](OH)
Pigeonite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Habit: grains
Colour: colorless to white
Description: Common accessory in local diabasic and basaltic rocks.
'Pinite'
Habit: massive, fine-grained alteration of spodumene
Colour: grayish shades of green, yellow, purple
Description: Multi-colored alteration pseudomorphs after spodumene, with a soapy feel, like serpentine. Schooner (1958) elaborates: "During the active period at the locality, a bewildering array of 'pinite' specimens were encountered. They were of all colors and resembled jade, petrified wood, and other things. Many were perfect pseudomorphs after the original mineral."
Pitticite ?
Formula: (Fe, AsO4, H2O) (?)
Description: Reported by Dick Schooner in Januzzi (1976) but no details provided.
'Plagioclase'
Formula: (Na,Ca)[(Si,Al)AlSi2]O8
Localities: Reported from at least 8 localities in this region.
Planerite
Formula: Al6(PO4)2(PO3OH)2(OH)8 · 4H2O
Description: Schooner (circa 1985) writes that "A Boston Mineral Club list of Strickland quarry minerals, dating from about 1940, describes planerite as green crusts on fractured quartz. Several pieces of that material, resembling variscite, were collected at the time; unfortunately, none is now available for study."
Plattnerite
Formula: PbO2
Colour: sooty black
Description: From Schooner (circa 1980s): "Plattnerite formed a sooty black coating on altered galena, with considerable massicot and litharge, at one of the Middletown lead mines. The identity was established by X-ray study."
'Plessite'
Plumbogummite
Formula: PbAl3(PO4)(PO3OH)(OH)6
Habit: rhombohedral
Colour: bluish-green
Description: Very microscopic crystals forming crusts on quartz.
Pollucite
Formula: (Cs,Na)2(Al2Si4O12) · 2H2O
Colour: colorless
Description: In the lithium mineral zone of the western pegmatite. Masses and cleavages to as much as a foot in length and six to eight inches in width have been recovered. It is closely associated with spodumene crystals, rubellite and other colored lithium tourmalines, caesium beryl, lepidolite, montebrasite, blue and white cleavelandite, and smoky quartz. It has a platy structure or it occurs as fractured masses, the fractures often being filled by dull white chalcedony.
Powellite
Formula: Ca(MoO4)
Habit: powdery
Colour: white, yellowish or greenish
Description: powdery white, yellowish or greenish material lining vugs, or as excellent plates alternating with plates of molybdenite.
Prehnite
Formula: Ca2Al2Si3O10(OH)2
Localities: Reported from at least 62 localities in this region.
Habit: botryoidal to spherical aggregates of tabular crystals
Colour: white, pale yellow to green to blue-green
Description: Mostly lining gas vesicles, but the best specimens are floaters known as "hearts" that formed as replacements over now dissolved datolite. These can reach over 15 cm.
Pseudomalachite ?
Formula: Cu5(PO4)2(OH)4
'Pumpellyite Group'
Formula: Ca2XZ2[Si2O6(OH)][SiO4](OH)2A
Habit: microfibrous, botryoidal, bowtie aggergates
Colour: dark olive green, blue-green, black
Description: The group includes pumpellyite series and julgoldite series. The former usually lines cavities while that latter may form late on top of other minerals. Few specimens are differentiated by analyses, however.
Pumpellyite-(Mg)
Formula: Ca2MgAl2(Si2O7)(SiO4)(OH)2 · H2O
Habit: fibrous micro-crystals
Colour: dark olive green
Description: Based on the chemical formula given in Garabedian (1998), the species is pumpellyite-(Mg). Few specimens have been confirmed by analyses to differentiate it from several other possible pumpellyite group minerals. One of the first minerals to crystallize in vesicles, so is typically present between later minerals and the basalt matrix, a second stage crystallization came after early calcite, anhydrite, chalcedony, a trapezohedral zeolite, and datolite and so may coat or replace these minerals. May by itself fill entire vesicles.
'Pumpellyite Subgroup'
Formula: Ca2XAl2[Si2O6(OH)][SiO4](OH)2A
Localities: Reported from at least 10 localities in this region.
Purpurite
Formula: Mn3+(PO4)
Habit: encrustations, coatings
Colour: purple
Description: "Supergene alteration resulted in the formation of manganese oxide and purpurite from lithiophilite" Shainin (1946). Yale collection has a few specimens that show purple coating on black exterior of altered lithiophilite nodules.
Pyrite
Formula: FeS2
Localities: Reported from at least 152 localities in this region.
Habit: pyritohedral and in combination with cube
Colour: pale brassy
Description: Excellent striated to smooth-faced pyritohedrons up to several cm across, commonly in aggregates, embedded in siderite and sphalerite
'Pyrochlore Group'
Formula: A2Nb2(O,OH)6Z
Colour: yellow
Description: Bruce Jarnot did find and confirm pyrochlore from the Hale Quarry. The single specimen was an aggregate of tapiolite crystals about 0.5 inches that had altered 50% to pyrochlore. It resembled a hard yellow marble that, when split, showed the remains of tapiolite xls in the center. The IDs were made by EDX (element ratios) and X-ray unit crystal pattern.
'Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)'
Formula: (Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Description: Specimen in Andrew Kruegel collection identified by SEM-EDS.
Pyrolusite
Formula: Mn4+O2
Localities: Reported from at least 26 localities in this region.
Habit: massive, botryoidal or as lustrous tabular crystals to 3mm in pockets in goethite.
Colour: black
Description: According to Schairer (1931): "Occurs crystallized (probably pseudomorphous) at Salisbury and Kent, also as aggregates of coarse columnar grains or needles or as coatings on limonite. The quality of the iron produced at the iron mines of northwestern Connecticut was due to the presence of this mineral in the ore."
Pyromorphite
Formula: Pb5(PO4)3Cl
Localities: Reported from at least 12 localities in this region.
Habit: radiating groups of elongated prismatic
Colour: green
Description: Fine green crystals, some of which comprise radiating groups. Schooner (1961) describes "beautiful specimens...These are equally small, compared with pyromorphite from classical localities, but they are clean and quite attractive. Some show the mineral, associated with wulfenite crystals, in vugs of pegmatite, near ore veins; others have pyromorphite filling seams in green and purple fluorite."
Pyrope
Formula: Mg3Al2(SiO4)3
Pyrophanite
Formula: Mn2+TiO3
Habit: tabular
Colour: dark red to black
Description: "Very small brilliant tabular crystals, looking black through dark red under strong magnification, are commonly embedded in tephroite, kutnohorite, pyroxymangite, and spessartine from the Jail Hill quarry. Studies at the USGS and the University of Michigan have confirmed the identification."
Pyrophyllite
Formula: Al2Si4O10(OH)2
Description: Sillimanite, collected in a quartz vein through schist, is altered, in a few samples, to a very soft, greasy-feeling, white or gray material. X-ray study indicates a mixture of fine-grained paragonite and subsidiary pyrophyllite. A fingernail easily scratches it.
'Pyroxene Group'
Formula: ADSi2O6
Localities: Reported from at least 8 localities in this region.
Pyroxmangite
Formula: Mn2+SiO3
Habit: cleavable masses
Colour: pink
Description: Bustamite and pyroxmangite occurred at the Jail Hill quarry; one light pink, with spessartine and dolomite; the other a deeper pink, and with a more fibrous cleavage, associated with tephroite and yellow spessartine. X-ray patterns were carefully studied and spectrographic tests made. Only a few rich specimens were found. Earlier, both of these minerals had been dismissed as "rhodonite".
Pyrrhotite
Formula: Fe1-xS
Localities: Reported from at least 40 localities in this region.
Habit: tabular pseudohexagonal
Colour: bronzy
Description: A rare accessory mineral of the open vein assemblage. Euhedral crystals to 1.5 cm very rare in Connecticut - this may be the only such locality.
Quartz
Formula: SiO2
Localities: Reported from at least 400 localities in this region.
Habit: Tessin habit, scepters, reverse scepters
Colour: colorless to white, smoky
Description: A very common mineral in the open vein assemblage (and an accessory in the host metagabbro). Mostly small <1-1.5 cm crystals with wide variety of complex forms, Tessin and scepters, reverse scepters and combinations. Many are doubly-terminated. Larger crystals can reach up to 7 cm and are typically Tessin habit showing the various steep positive rhombohedra, such as {20bar21}, {30bar31} and {50bar53} and their negative equivalents {03bar32}, {02bar21}, {03bar31} and {05bar53}.
Quartz var. Agate
Localities: Reported from at least 14 localities in this region.
Colour: Typical (for the Orenaug Basalt) bands of white, blue-gray, smoky brown.
Quartz var. Amethyst
Formula: SiO2
Localities: Reported from at least 46 localities in this region.
Habit: scepters
Colour: purple
Description: hoppered, complex scepters on milky quartz to 9 cm
Quartz var. Blue Quartz
Formula: SiO2
Quartz var. Carnelian
Quartz var. Chalcedony
Formula: SiO2
Localities: Reported from at least 33 localities in this region.
Habit: banded fortification agate
Colour: blue, white to gray
Description: Formed early in the paragenesis, typically lining vesicle walls as blue to gray fortification agate, encrusted by fine-grained, white chalky-looking quartz or quartz crystal druses. Commonly pseudomorphed by quartz, datolite, pumpellyite. May encrust "water level" calcite wafers.
Quartz var. Citrine
Formula: SiO2
Description: Schooner (1958): "Citrine, of fine gem quality, was formerly found at the Strickland Quarry, and a few stones were facetted from it... evidently the “topaz” which some people say was taken from there."
Quartz var. Ferruginous Quartz
Formula: SiO2
Quartz var. Milky Quartz
Formula: SiO2
Localities: Reported from at least 10 localities in this region.
Habit: short to elongated prisms, scepter overgrowths
Colour: milky white
Description: Voids of all sizes host subparallel, prismatic quartz on the walls, which grew from grains in the brecciated quartzite. Crystals can be colorless and clear or milky with parasitic "corn-cob" crystals. Scepter overgrowths also occur. Crystals can reach 8 cm.
Quartz var. Rock Crystal
Formula: SiO2
Habit: large distorted crystals and delicate elongated micro-crystals
Colour: colorless
Description: Large blocky, distorted crystals that are overgrowths on earlier fragmented quartz can be colorless, though they are typically smoky. In vugs with secondary minerals such as K-rich albite, bertrandite, micas, cookeite, etc., it occurs as delicate, glassy, doubly-terminated microcrystals sometimes in spindly aggregates.
Quartz var. Rose Quartz
Formula: SiO2
Localities: Reported from at least 17 localities in this region.
Quartz var. Rutilated Quartz
Formula: SiO2
Quartz var. Sard
Formula: SiO2
Colour: deep red, bluish red, and yellow
Description: Found as loose rocks in glacial till.
Quartz var. Sardonyx
Formula: SiO2
Colour: deep red, bluish red, and yellow
Description: Found as loose rocks in glacial till.
Quartz var. Sceptre Quartz
Formula: SiO2
Quartz var. Smoky Quartz
Formula: SiO2
Localities: Reported from at least 74 localities in this region.
Habit: hexagonal prisms with rhombohedral terminations, sometimes flattened or etched, or oddly shaped overgrowths on earlier fragments
Colour: pale gray to black, brown
Description: Besides being a major component of the pegmatite matrix in general, where it is massive, it is abundant in miarolitic cavities as euhedral crystals. Some show phantoms or inclusions of schernikite fibers and elbaite and some are encrusted with cookeite blebs or show surface pit scars where cookeite was naturally removed. One 1.8-meter pocket contained nothing but jet-black smoky quartz crystals up to 14 cm in length. Etched crystals or oddly-shaped overgrowths on earlier fragments of quartz also known. Beautiful, doubly terminated crystals are often penetrated by elbaite. "One of these crystals, very flat and with several tourmalines inclosed, was worn as a watch-charm by the son of M. P. Gillette. This crystal in its natural state has as fine a polish as though it had just come from the lapidary's hand." (Davis, 1901).
Rammelsbergite ?
Formula: NiAs2
Description: Reported by Dick Schooner in Januzzi (1976) p. 235, no details provided.
Realgar ?
Formula: As4S4
Description: According to an unconfirmed report by Schooner (circa 1980s), very sparingly associated with arsenopyrite.
Reddingite (TL)
Formula: (Mn2+,Fe2+)3(PO4)2 · 3H2O
Habit: bipyramidal, pseudo-octahedral - in tiny pockets in massive material
Colour: pale rose-pink to yellowish-white, sometimes brown
Description: From the type material description in Brush and Dana (1878): "Reddingite occurs sparingly in minute octahedral crystals; belonging to the orthorhombic system. It is also found more generally massive with granular structure; it is associated with dickinsonite, and sometimes with triploidite. As compared with the other species which have been described it is a decidedly rare mineral. The massive mineral shows a distinct cleavage in one plane...crystals are occasionally coated dark from surface alteration" Difficult to distinguish from pink hureaulite or yellowish fillowite.
Rhabdophane-(La) (TL)
Formula: La(PO4) · H2O
Type Locality:
Habit: botryoidal to stalagtitic
Colour: brownish to pale yellow-white, pinkish
Rhabdophane-(Nd) (TL)
Formula: Nd(PO4) · H2O
Type Locality:
Habit: botryoidal to stalagtitic
Colour: brownish to pale yellow-white, pinkish
Rhodochrosite
Formula: MnCO3
Habit: cleavable masses
Colour: white to pink
Description: Associated with eosphorite, dickinsonite, triploidite, quartz, also included in lithiophilite. Also chabazite, quartz, and fluorapatite crystallized in cavities in rhodochrosite associated with clove-brown lithiophilite, quartz, apatite, and dickinsonite. Typically with black alteration crust.
Rhodonite
Formula: CaMn3Mn[Si5O15]
Description: An historical error. May have been confused with thulite, which has been found in calc-silicate rocks (in Haddam) within the Collins Hill formation that hosts the western pegmatites in this area.
Rockbridgeite
Formula: Fe2+Fe3+4(PO4)3(OH)5
Habit: stains and encrustations
Colour: dark greenish-black to black
Description: Mostly as thin crusts and stains in matrix near triphylite pods and as a black rind around the pods, associated with vivianite. "found intimately associated with vivianite where it occurs in small greenish black masses, and in stalactitic form with a radial fibrous structure. The surface of the incrustations are composed of indistinct microcrystallized individuals of rockbridgeite" Januzzi and Seaman (1976)
Romanèchite
Formula: (Ba,H2O)2(Mn4+,Mn3+)5O10
Habit: botryoidal
Colour: very dark brown to black
Description: As masses with conchoidal fracture and black streak in quartz with azurite and malachite. Analyzed 2016 by Peter Cristofono and Tom Mortimer using EDS. Closest other analytical possibility is hollandite, which has a slightly higher Ba:Mn ratio, and doesn't match the physical properties of this material as well as romanechite does.
Rosasite
Formula: (Cu,Zn)2(CO3)(OH)2
Habit: micro duses to radiating acicular aggregates
Colour: pale blue
Description: Henderson (1967) reports: found in several habits. Druses of very small, pale blue, velvety crystals were common; on occasion, the larger crystals of acicular habit formed radiating aggregates. A few single crystals were noted: these formed tapering prisms with wedge shape terminations. An occasional arborescent group of crystals was noted (Fig. 4). The rosasite tended to be further from copper and cuprite than either the nantokite or atacamite and often occurred in the seams of half-consumed coke. The material was identified as rosasite by its color, crystal form and positive test for carbonate and negative test for sulfate. Its optical properties were those of rosasite. It was distinguished from the high-zinc end member of the series, aurichalcite, by its color, aurichalcite tend¬ing toward green.
Roscherite ?
Formula: Ca2Mn2+5Be4(PO4)6(OH)4 · 6H2O
Description: Needs verification because of lack of data. May be greifensteinite described after the reference date.
Rozenite
Formula: FeSO4 · 4H2O
Rutherfordine
Formula: (UO2)CO3
Description: Speculation.
Rutile
Formula: TiO2
Localities: Reported from at least 40 localities in this region.
Rutile var. Strüverite
Formula: (Ti,Ta,Fe)O2
Safflorite ?
Formula: (Co,Ni,Fe)As2
Description: Reported by Dick Schooner in Januzzi (1976) p. 235, no details provided.
Samarskite-(Y)
Formula: YFe3+Nb2O8
Localities: Reported from at least 13 localities in this region.
Habit: radiating to subparallel prismatic groups with dome terminations
Colour: black
Description: Crystals usually in aggregates (up to 15 cm) typically well terminated but very brittle and easily damaged due to incipient fractures and metamict nature. Fractures conchoidally with lustrous, pitch-black surface. Commonly associated with columbite-(Fe) that has a duller luster especially on the fracture face. Coated with clays from altered surrounding feldspars that are reddish colored, and thin muscovite, both can be removed with micro-blasting using soft abrasive.
References:
Saponite
Formula: Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Locality: Cheshire, New Haven County, Connecticut, USA - erroneously reported
Description: confusion with pumpellyite
Sarcolite
Formula: Na4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
Habit: fibrous
Colour: white
Description: According to Januzzi and Seaman (1976), X-ray studies were conducted by Professor Horace Winchell at the mineralogical laboratories at Yale. Associated with triphylite and vivianite. Under the microscope appears as tiny masses of matted fibers and exceedingly fine crystals.
'Scapolite'
Localities: Reported from at least 37 localities in this region.
Habit: radiating acicular
Colour: white, pale to dark green
Description: A large amount of material was found by Mike Otto in 2010. It was originally thought to be Tremolite but testing of a piece of material collected by David Bernstein ( Testing- Bart Cannon) revealed it to be Scapolite
References:
Scheelite
Formula: Ca(WO4)
Localities: Reported from at least 18 localities in this region.
Colour: White to Honey Yellow
Fluorescence: Light Blue
Description: Excellent crystals of this scheelite are well-known among New England collectors. Primary Tungsten-bearing mineral from the locality. Occasionally, one may find a Wolframite after Scheelite crystal.
References:
Schorl
Formula: NaFe2+3Al6(Si6O18)(BO3)3(OH)3(OH)
Localities: Reported from at least 116 localities in this region.
Habit: elongated prisms
Colour: black
Description: Typically as large subhedral prisms in pegmatite matrix and as small scattered crystals in contacting schist. Can reach several inches in cross-section. Some concentrically overgrown by blue-green and olive-green elbaite. Schooner (1958) reports: "Enormous black crystals, occasionally well developed, were encountered in considerable profusion during the operation of the quarry in 1952 and 1953. They were embedded in cleavelandite, with manganapatite and spodumene; the point of origin in the pegmatite was a tunnel, perhaps two hundred feet below the surface."
Scolecite
Formula: CaAl2Si3O10 · 3H2O
Scorodite
Formula: Fe3+AsO4 · 2H2O
Localities: Reported from at least 8 localities in this region.
Habit: botryoidal crusts, pyramidal microcrystals
Colour: pale-green, violet-pink
Description: "in botryoidal crusts that are almost sub-translucent" associated with arsenolite (Januzzi 1976); "Common as pale-green masses resulting from the decomposition of arsenopyrite" (Schairer 1931) Very rare violet-pink microcrystals embedded in matrix.
Scorzalite ?
Formula: Fe2+Al2(PO4)2(OH)2
Colour: blue
Description: "Several lean examples of scorzalite and siderite, labeled "Rock Landing quarry", came from the Charles Thomas collection. They had been obtained when the locality was active in the late 1930s. The scorzalite, erroneously called "vivianite" on the label, is of a rich blue color and partly crystallized. The X-ray pattern suggests a composition somewhere between scorzalite and lazulite. A little augelite is intergrown." Schooner (circa 1980s).
Sepiolite
Formula: Mg4(Si6O15)(OH)2 · 6H2O
Habit: fibrous mats
Colour: white to pale gray-brown
Description: Found as a thin layer sandwiched between opposing calcite crystals. Analyzed in 2017 via TEM-EDS. Januzzi (1994) incorrectly called it palygorskite and includes a photo.
'Serpentine Subgroup'
Formula: D3[Si2O5](OH)4
Localities: Reported from at least 16 localities in this region.
Colour: white, yellow, green
Description: massive, variegated
'Serpentine Subgroup var. Picrolite'
Formula: D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Habit: columnar
Colour: pale green
Description: In parallel veins up to 5 cm thick cross-cutting lizardite.
Siderite
Formula: FeCO3
Localities: Reported from at least 24 localities in this region.
Habit: rhombohedrons
Colour: tan to light brown
Description: Typically as cleavable masses, some lustrous, curved rhombohedral crystals are found in small cavities or frozen in quartz
Sillénite ?
Formula: Bi12SiO20
Habit: coating
Colour: white or yellowish
Description: According to Schooner (circa 1980s) a "thin white or yellowish coating on bismuthinite crystals" may be this mineral. Needs confirmation.
Sillimanite (TL)
Formula: Al2(SiO4)O
Localities: Reported from at least 34 localities in this region.
Silver
Formula: Ag
Description: trace amounts associated with acanthite
Skutterudite
Formula: CoAs3
Description: "Shepard [1837] initially identified the Co-Ni bearing arsenide as the cubic di-arsenide, smaltite but after obtaining and studying additional material from his own mine he pronounced it to be a new orthorhombic tri-arsenide for which he proposed the name "Chathamite"....In the mid 1850s Genth (in Goodrich, 1854) questioned Shepard's identification and suggested that Chathamite was simply an iron rich variety of the cubic arsenide chloanthite (a misconception that perpetuated up to, and including, the 7th edition of Dana's Manual of Mineralogy). As it turns out, Shepard's Chathamite is indeed orthorhombic, but today would be classified as a nickel-cobalt rich loellingite." Gray (2005)
Smithsonite
Formula: ZnCO3
'Soapstone'
Sodalite
Formula: Na4(Si3Al3)O12Cl
Colour: white
Description: Much altered to zeolites.
Spessartine
Formula: Mn2+3Al2(SiO4)3
Localities: Reported from at least 25 localities in this region.
Habit: trapezohedral modified by the hexoctahedron and dodecahedron
Colour: dark red to orange-red to yellowish-orange
Description: Mostly massive, cherty looking with conchoidal fracture, hundreds of pounds have been recovered; the small crystals, which range from microscopic up to a half of an inch in diameter, are of a brighter orange-red color. Most of the small crystals show the trapezohedron as the dominant crystal form modified by the hexoctahedron. Some show the trapezohedron modified by both the hexoctahedron and the dodecahedron. Associated with quartz, bustamite-pyroxmangite-alleghanyite, tephroite, actinolite. Confirmed as spessartine using XRD, XRF and Raman spectroscopy. One of the few bona-fide spessartine localities in Connecticut.
Sphalerite
Formula: ZnS
Localities: Reported from at least 55 localities in this region.
Habit: pagoda-like polysynthetic twins on (111) resulting in pseudo-hexagonal "prisms" with re-entrant striae
Colour: dark reddish-brown, dark brown, black
Description: In hydrothermal fault veins associated with barite, calcite, fluorite, galena, pyrite, quartz, and zeolites. Pete Dunn analyzed crystals in 1973: “It has been said that the wurtzite from Thomaston Dam, Connecticut, was of a type that changed to sphalerite under the crushing necessary for a powder x-ray photo. This thought intrigued me and I checked it out by taking a regular powder photo after crushing the sample in the usual fashion, and then took another x-ray using the Gandolfi camera which gives powder photos from single crystals. Result — both photos perfect sphalerite patterns, and identical" (Yedlin, 1973a). Henderson (1979) showed diagrams of sphalerite crystals epitaxial on supposed wurtzite, and the other way around, with a (0001) (pinacoidal) face of "wurtzite" matching a (111) (tetrahedral) face of sphalerite. In any case, the crystals from this locality, commonly labeled "wurtzite" appear to be polysynthetically twinning, combined positive and negative tetrahedra of sphalerite on a 6-sided (111) face. Note the re-entrant angles that circumscribe the "prisms" of these crystals, which are indicative of twinning.
Spinel
Formula: MgAl2O4
Habit: octahedral
Description: "Mr. Cornish states that the limestone ledge is on the land of Mr. Ralph Crissy, near a spring southeast of his house, associated with hard gneiss, granite and some hornblendic rocks, which have in general a high eastward dip; and that it afforded him octahedrons of spinel (some of them half an inch across), together with a little chondrodite. The outcrop is only 15 yards long and 20 wide"
Spodumene
Formula: LiAlSi2O6
Localities: Reported from at least 12 localities in this region.
Habit: subhedral prisms, flattened parallel to a {100}, with dome terminations
Colour: white to peach
Description: rarely as gemmy kunzite, usually white. The prisms average 1 foot long, 6 inches wide and 3/4 inch thick but can reach up to 3 or 4 feet long and 8 to 9 inches thick. Much of it is altered to an albite/eucryptite parallel intergrowth mixture, to "cymatolite" (a parallel intergrowth mixture or albite and muscovite), to granular microcline, or to massive albite and muscovite - or a progressive combination of these replacements.
Spodumene var. Kunzite
Formula: LiAlSi2O6
Habit: generally broad or flat, and comparatively thin; well terminated by dome
Colour: rose-pink or amethystine-purple
Description: Usually in the unaltered core of externally altered cyrstals and only very rarely transparent.
Spurrite
Formula: Ca5(SiO4)2(CO3)
Colour: bluish-gray
Description: Schooner (circa 1985): "In some of the wollastonite pods at the Strickland quarry, bluish-gray spurrite occurs as very thin layers with grossularite and larnite. X-ray confirmation was obtained from a number of samples. Spurrite also is mixed with the granular wollastonite and its embedded minute gehlenite crystals; only X-ray peaks revealed its presence in that material." Studied by Waldemar T. Schaller of USGS.
Staurolite
Formula: Fe2+2Al9Si4O23(OH)
Localities: Reported from at least 43 localities in this region.
Habit: elongated prisms, penetration twins
Colour: dark brown
Description: Crystals reach about 3 cm long, but typically around 1 cm.
Stellerite ?
Formula: Ca4(Si28Al8)O72 · 28H2O
Habit: bowties and sheaf aggregates
Colour: orange
Description: This specimen https://www.mindat.org/photo-618484.html was analyzed by SEM-EDS and showed no more than a trace of Na or K, making it a good candidate for stellerite, although this method alone is not definitive. Stellerite cannot be visually distinguished from stilbite-Ca.
Stewartite ?
Formula: Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Colour: pale yellow
Description: According to Schooner (circa 1985) occurs as tiny yellow crystals in altered hureaulite. Specimens of hureaulite from the dump bulldozed in 1984 show small areas of a yellow alteration, possibly stewartite. So far an SEM-EDS analysis (2017) of yellow grains in lithiophilite have proven to be natrophilite.
Stibnite ?
Formula: Sb2S3
Stilbite-Ca
Formula: NaCa4(Si27Al9)O72 · 28H2O
Localities: Reported from at least 15 localities in this region.
Habit: tabular elongated or in wheat sheave crystal aggregates
Colour: tan, pale yellow to yellow-orange
Description: In 2018, two specimens were analyzed via SEM-EDS and were determined to be probably stilbite-Ca www.mindat.org/photo-492320.html (as opposed to stellerite) and possibly stellerite www.mindat.org/photo-768454.html, which cannot be visually differentiated.
'Stilbite Subgroup'
Formula: M6-7[Al8-9Si27-28O72] · nH2O
Localities: Reported from at least 61 localities in this region.
Habit: tabular, wheat-sheaf and bow tie aggregates
Colour: white, tan, yellow-orange
Description: Late-forming crystals on prehnite or quartz to 2 cm, with other zeolites and apophyllite.
Stilpnomelane
Formula: (K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
Localities: Reported from at least 9 localities in this region.
Habit: flaky aggregates
Colour: gray-brown
Description: As pearly gray-brown microcrystalline aggregates on quartz.
Strengite
Formula: FePO4 · 2H2O
Strunzite
Formula: Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Habit: radiating acicular needles and fibers
Colour: golden to yellow-orange
Description: "occurs as typical aggregates of golden fibers, associated with [messelite] and siderite, as well as sulfides....The strunzite is rare, and no more than half a dozen specimens have been secured...and none of them could be described as of outstanding quality. The identity of this material was confirmed by Clifford Frondel of Harvard University." (Schooner 1958) Associated with triphylite secondaries.
Sulphur
Formula: S8
Localities: Reported from at least 9 localities in this region.
Switzerite
Formula: Mn2+3(PO4)2 · 7H2O
Sylvanite ?
Formula: AgAuTe4
Description: "supposedly occurs"
'Synchysite'
Formula: Ca(Ce/Nd/Y/REE)(CO3)2F
'Synchysite Group'
Habit: tabular hexagonal
Colour: chalky white
Description: Microcrystalline aggregates in thin Alpine clefts.
Synchysite-(Y)
Formula: CaY(CO3)2F
Habit: aggregates of hexagonal plates
Colour: white (due to alteration)
Description: Micro-crystals with adularia, anatase, quartz in thin alpine clefts.
Szomolnokite
Formula: FeSO4 · H2O
Taenite
Formula: (Fe,Ni)
Talc
Formula: Mg3Si4O10(OH)2
Localities: Reported from at least 31 localities in this region.
Habit: fibrous. massive, as steatite.
Colour: gray-green
Description: As fibers intergrown with radiating spheres of fibrous talc. Confirmed in 2016 using EDS and selected area electron diffraction (SAED) zone patterns. Rarely found as steatite.
Talc var. Steatite
Formula: Mg3(Si4O10)(OH)2
'Tantalite'
Formula: (Mn,Fe)(Ta,Nb)2O6
Localities: Reported from at least 9 localities in this region.
Tantalite-(Fe)
Formula: Fe2+Ta2O6
Habit: rectangular prismatic
Colour: black with bluish iridescence
Description: One columbite-tantalite crystal (https://www.mindat.org/photo-275489.html) suspected from its high SG of being tantalite was analyzed by SEM-EDS and found to be tantalite-(Fe). There may be more as each crystal would need to be tested to confirm and few have been.
Tantalite-(Mn)
Formula: Mn2+Ta2O6
Habit: subhedral; highly modified, flattened, and distorted
Colour: red-brown, reddish orange
Description: occurs as small browish-red to reddish-orange, and orange-brown, highly modified, flattened, and distorted crystals to about two inches in length. They are often partially or completely embedded in spodumene cleavelandite, lepidolite, or quartz. A characteristic occurrence is as small crystals grown upon or near to the outer surfaces of spodumene crystals, or partially enclosed within them but projecting above the edges of the spodumene crystals. The flattened tantalite crystals look very much like flattened crystals of zircon but an x-ray powder photograph revealed that they are tantalite.
Tanteuxenite-(Y)
Formula: Y(Ta,Nb,Ti)2(O,OH)6
Habit: subhedral grains
Colour: dark brown
Description: Semi-quantitative data from SEM/EDS analyzed using the method of Ercit (2005).
'Tapiolite'
Formula: (Fe,Mn)(Ta,Nb)2O6
Description: Bruce Jarnot did find and confirm tapiolite from the Hale Quarry. There were two specimens, one a complex crystal group (about 0.5 inches) and the other a similar size group that had altered 50% to pyrochlore. It resembled a hard yellow marble that, when split, showed the remains of tapiolite xls in the center. The IDs were made by EDX (element ratios) and X-ray unit crystal pattern.
Tapiolite-(Fe)
Formula: Fe2+Ta2O6
Habit: Complex, twinned short prisms or pyramidal tetragonal.
Colour: black
Description: Three specimens are known, with very similar with crystals about 3-4 cm, in quartz, albite and/or muscovite. Two are complexly crystallized apparently twinned, that somewhat resemble garnets, but of course black and submetallic. Other than one specimen from the Hale Quarry, this is the only known Connecticut location for this mineral. An additional three specimens were collected in the 1980's by David Busha but remained unidentified until 2019.
Tellurium
Formula: Te
Description: A careful reading of Silliman (1819a, 1819b, 1819c) indicates the tellurium was not native but chemically extracted from ferberite, which was also not from Monroe, but from the unique ferberite after scheelite deposit in Trumbull also worked by Ephraim Lane. Their origin was cleared up by Hitchcock and Silliman (1826). Januzzi misreads Silliman and mentions "tellurides" in his publications. Because the ferberite crystals from Lane's Mine of Trumbull have the shape of scheelite crystals (they are pseudomorphs with which he had no experience and was quite perplexed by) he thought he had a new mineral with tellurium in it. Silliman never mentions tellurides and his extraction of tellurium from ferberite has never been replicated.
Tephroite
Formula: Mn2+2SiO4
Habit: anhedral
Colour: tan, brown, dark brown
Description: Reported by Dick Schooner. Specimens mostly are pure masses of anhedral grains, or scattered grains associated with bustamite and spessartine, all with black staining. According to Schooner: "Several bodies of more complex mineralogy, within the spessartine, consisted for the most part of brownish tephroite, intimately intergrown with dolomite and kutnohorite, as well as yellow spessartine, alleghanyite, jacobsite, pyrophanite, etc. A few solid dark gray resinous-looking cleavages, up to an inch, were obtained. The main concentration was eventually removed as a boulder, over two feet in diameter, which may well hold the world's record for toughness; it took the author two days of steady pounding to reduce it!"
Tetrataenite
Formula: FeNi
Thaumasite
Formula: Ca3(SO4)[Si(OH)6](CO3) · 12H2O
Thorite
Formula: Th(SiO4)
Habit: anhedral grains
Colour: dark brown to brownish black
Description: "as anhedral (without external faces) grains and small masses having a dark brown to brownish black color and vitreous to resinous luster. Because of the anhedral nature of the material I should strongly suspect the thorite to be of the uranothorite variety. The samples sent to Dr. Brian Mason for confirmation clearly demonstrated that they were almost metamict, with a refractive index of about 1.78, and gave good X-ray patterns of thorite after heating for about two hours at 1100 degrees. The thorite occurs here intimately associated with quartz, feldspar, pyroxene, amphibole, sphene, zircon and biotite. Regular and irregular distribution of color areas ranging from orange to yellow material of varying luster occurs in many of the hand specimens containing apparently unaltered thorite." Januzzi (1976). Januzzi (1994) includes a photo. Thorite grains, in coarse-grained albite with minor zircon, reach about 1 cm.
Thorite var. Calciothorite
Formula: (Th,Ca2)SiO4 · 3.5H2O
Description: Speculation.
Thorite var. Thorogummite
Formula: (Th,U)(SiO4)1-x(OH)4x
Colour: pale yellow
Description: Specimen in the collection of Andrew Kruegel identified by SEM-EDS.
Titanite
Formula: CaTi(SiO4)O
Localities: Reported from at least 55 localities in this region.
Habit: rectangular, tabular prisms
Colour: yellow-green
Description: Schooner (1961) states: "Golden crystals, up to a couple of inches across, and fairly thick, have been collected, by the author, at the Mansfield Hollow Dam; they accompany hornblende."
Titanite var. Lederite (of Shepard)
Formula: CaTi(SiO4)O
Todorokite ?
Formula: (Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Colour: black
Description: Reportedly one of the black Mn-rich alteration crusts.
Topaz
Formula: Al2(SiO4)(F,OH)2
Localities: Reported from at least 18 localities in this region.
Habit: equant or flattened with multiple terminal forms
Colour: colorless to pale blue, orange (altered)
Description: First found in the mid-1950s and so often unrecognized in earlier collections, topaz occurs rarely as equant, rhombic cross-section crystals up to 1 cm in the cavities or more commonly up to 5.6 cm embedded in quartz-albite-muscovite matrix. Greasy, orange-brown crystals are partially or wholly altered to muscovite and were earlier mistaken for "pinite" pseudomorphs after spodumene.
Torbernite
Formula: Cu(UO2)2(PO4)2 · 12H2O
Localities: Reported from at least 15 localities in this region.
Description: Dick Schooner reports (via Betts, 1999) good crystals found here, but that may be in allusion to Foye (1922), who is actually referring to an alternate name for the Howe #1 quarry.
'Tourmalinated Quartz'
'Tourmaline'
Formula: AD3G6 (T6O18)(BO3)3X3Z
Localities: Reported from at least 52 localities in this region.
Habit: elongated, striated, trigonal prisms capped by pinacoids or rhombohedra
Colour: black to green, rarely pink to colorless, with yellow, pink, pale green, blue terminations
Description: See comments under elbaite and schorl.
'Tourmaline var. Achroite'
Formula: A(D3)G6(T6O18)(BO3)3X3Z
'Tourmaline var. Rubellite'
Formula: A(D3)G6(T6O18)(BO3)3X3Z
Habit: elongated prisms
Colour: red to pink
Description: typically with blue color "cap" on the pedion
'Tourmaline var. Verdelite'
Formula: A(D3)G6(T6O18)(BO3)3X3Z
'Tourmaline var. Watermelon Tourmaline'
Formula: A(D3)G6(T6O18)(BO3)3X3Z
Habit: unterminated, elongated prisms
Colour: pink core, pale green rims
Description: In the mineralized core zone.
Tremolite
Formula: ◻Ca2Mg5(Si8O22)(OH)2
Localities: Reported from at least 37 localities in this region.
Habit: Primary - bladed, pseudomorphs after diopside are flattened short to elongated prisms
Colour: white, pale gray, pale green
Fluorescence: light blue-gray under SW
Description: As primary crystal to 15 cm as individual crystals or even larger as parallel to fan-shaped aggregates, or as pseudomorphs after diopside (originally called canaanite) to 10 cm.
Tridymite ?
Formula: SiO2
Triphylite
Formula: LiFe2+PO4
Localities: Reported from at least 8 localities in this region.
Triphylite var. Ferrisicklerite
Formula: Li1-x(Fe3+xFe2+1-x)PO4
Description: sparingly with the triphylite
References:
Triplite
Formula: Mn2+2(PO4)F
Habit: massive
Colour: reddish to maroon
Description: As irregular masses, commonly in bunches intergrown with blue elbaite and dark purple lepidolite and hosted by cleavelandite/elbaite/quartz. Tan alteration rind around the edges is probably hydroxylapatite (see below) and Schooner reports finding hureaulite. These minerals are characteristic of alteration from primary lithiophilite but none has ever been reported, so it is difficult to say if the triplite is primary. Masses of garnet may appear similar, but are harder and show a network of rhombic etch patterns on fracture surfaces. Descriptions from the literature are below: Shannon (1920) - "bunches and masses up to several inches across of a flesh red to brownish red material resembling massive garnet, which upon analysis proves to be triplite...In places the triplite has oxidized to a black manganese oxide, which stains the cleavelandite." Foye (1922) - "intimately intergrown with a dark blue, massive tourmaline". Schooner (1958) – "Large masses, up to a foot square, occurred in a mixture of that mineral and cleavelandite. The author was fortunate in securing a large specimen of completely fresh material from a weathered boulder on the oldest dump. Most examples show what are probably crude crystals, bordered with blue tourmaline. Much of the triplite is altered to a cellular tan mineral which has not been thoroughly identified. One piece, evidently from deep in the pegmatite, has undergone a more complex alteration to a foliated dull green substance…negatively identified as not being dickinsonite. Such material could easily be confused with chloritized garnet. Indeed, the fresh triplite resembles massive garnet; its comparative softness and its cleavages should distinguish it. Mary E. Mrose x-rayed this triplite for the author and found it to give a characteristic pattern. E. V. Shannon, who originally described the occurrence in 1920, gave the following analysis: calcium oxide 3.18, magnesium oxide 0.58, iron oxide 4.95, manganese oxide 52.40, phosphorous oxide 32.81, fluorine 9.09, water 0.35, and remainder 1.17. The specific gravity of the sample was 3.58." Schooner (1961) - "Reddish-brown cleavages, bordered with blue tourmaline, definitely identified as such, were apparently quite common in the original lepidolite pit, where that mineral, together with quartz and cleavelandite, occurred as coarse intergrowths. The author found a solid mass, over six inches across, in the old dump there; some of the triplite bodies must easily have been a foot in diameter. In many cases, the triplite is partially or completely altered to a granular yellow or tan mineral; x-ray study proves this to be apatite, of a surprisingly normal kind. This work was done by Peacor."
Triploidite (TL)
Formula: Mn2+2(PO4)(OH)
Type Locality:
Habit: divergent to parallel-fibrous to columnar crystalline aggregates, compact, massive. rarely prismatic
Colour: yellowish to reddish-brown, topaz- to wine-yellow, hyacinth-red
Description: mostly columnar, fibrous, radiating, rare isolated but typically vitreous and transparent crystals to a length of an inch or more. Associated with quartz and the other Mn phosphates and rhododchrosite.
Troilite
Formula: FeS
Tungstenite ?
Formula: WS2
Colour: Dark-Metallic
Description: Very rare microcrystals possibly of this mineral occasionally found in marble. Analyses needed. This ID is very doubtful given that the only report of tungstenite (a rare alteration of scheelite or ferberite) from the adjacent Old Mine Park by Schairer (1931) (a summary of other information) is almost certainly a misspelling of tungstite. The scheelite (or ferberite) is restricted to the amphibolite and does not occur in the marble. These could be primary ferberite micro-crystals (see photos).
References:
Tungstite (TL)
Formula: WO3 · H2O
Habit: massive
Colour: orange-yellow, chrome yellow, yellowish gray
Description: An alteration of ferberite pseudomorphs after sheelite, coating and occupying cavities in these crystals from the upper mine pit. Looks like "broken sulfur". Very little of this material has been found since the mid-19th century as the highly weathered portion of the outcrop worked then by Charles Lane has long been removed by subsequent mining. Originally and incorrectly attributed to Lane's mine in Monroe, neither ferberite pseudomorphs after scheelite, nor scheelite occur there and so the type locality for this mineral is actually here.
Tyuyamunite
Formula: Ca(UO2)2(VO4)2 · 5-8H2O
Uraninite
Formula: UO2
Localities: Reported from at least 40 localities in this region.
Habit: octahedral
Colour: Black
'Uranmicrolite (of Hogarth 1977)'
Formula: (Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
Habit: dipyramidal
Colour: very dark brown to black
Description: Reportedly analyzed by Schooner. Identified by Bruce Jarnot (personal communication 2011) by: 1) euhedral microlite dipyramid crystal form, 2) strong uranium peak in its EDX spectrum, 3) strongly radioactive. Associations and properties of anhedral grains are similar to that of analyzed tanteuxenite-(Y) and could prove to be this mineral.
Uranophane
Formula: Ca(UO2)2(SiO3OH)2 · 5H2O
Localities: Reported from at least 25 localities in this region.
Description: fine examples
Vanadinite ?
Formula: Pb5(VO4)3Cl
Description: "In the [Marcelle and Charles] Weber collection, the author saw a specimen of oxidized metallic minerals, from the Thomaston Dam railroad cut, containing tiny brown prisms of what may be the endlichite variety of this mineral. This remains in the problematical category." Schooner (1961)
Vandendriesscheite
Formula: PbU7O22 · 12H2O
Habit: pseudomorphs after uraninite
Colour: yellow
Description: "In a study at Harvard University, in 1964, both fourmarierite and vandendriesscheite were identified, by X-ray diffraction, as components of hard "gummite" pseudomorphs after uraninite from the Rock Landing quarry. Fourmarierite is reddish; vandendriesscheite, yellow. The material came from the Charles Thomas collection." Schooner (circa 1980s).
Vesuvianite
Formula: Ca19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
Localities: Reported from at least 10 localities in this region.
Violarite
Formula: Fe2+Ni3+2S4
Vivianite
Formula: Fe2+Fe2+2(PO4)2 · 8H2O
Localities: Reported from at least 8 localities in this region.
Habit: elongated, terminated prisms and cleavable masses
Colour: dark blue
Description: "transparent blue vivianite crystals, some spear-shaped, in vugs of messelite and siderite...While the vivianite crystals are small, they are of fine quality." (Schooner 1961) Also as coatings on triphylite and associated with messelite, siderite, mitridatite, strunzite and sulfides.
'Wad'
Wardite
Formula: NaAl3(PO4)2(OH)4 · 2H2O
Description: Schooner (circa 1985) reports that "Wardite and wavellite occurred in a fine-grained replacement of natromontebrasite from the Strickland quarry. The rest of the sample was quartz. X-ray study revealed their existence." Natromontebrasite was discredited in 2007 as a mixture of wardite, montebrasite and lacroixite, which were all documented here by the study Schooner mentions.
Whitmoreite
Formula: Fe2+Fe3+2(PO4)2(OH)2 · 4H2O
Habit: radiating acicular crystals in micro spherical "naval mine" aggregates
Colour: golden brown
Description: Reported by Dick Schooner, no details in the references. Identified by Van King from posted photographs.
Willemite
Formula: Zn2SiO4
Habit: aggregates of acicular crystals
Colour: white
Fluorescence: green
Description: Solid aggregates to about 1 cm of unterminated clear/white crystals embedded in calcite with bornite, barite, malachite typical of the locality.
Wodginite
Formula: Mn2+Sn4+Ta2O8
Habit: tapered, elongated prisms
Colour: dark brown with iridescence
Description: Fantastic tapered crystals, 2 to 6 cm long, translucent and sometimes showing a little iridescence. Typically in cleavelandite, associated with cassiterite, foitite grading into elbaite, gobbinsite and quartz. Long misidentified as cassiterite or tantalite-(Mn) (going back to even 1935 - see Jarnot (2011)) and too bad as it was not "discovered" until 1963 in Canada and Australia. Strickland could have been the type locality had it been recognized as a new mineral when the quarry was active. Schooner (circa 1990) summarizes its identification: A decade ago, the author found a loose 4 inch mass of montebrasite, studded with sharply formed little dark brown crystals, on one of the Strickland quarry dumps. These were tentatively classified as manganotantalite, despite visual differences. The X-ray pattern was later rechecked, with wodginite in mind, and the fit was close enough to warrant a spectrographic test, which showed the presence of tin. Pete J. Dunn and Peter Cerny have since made probe studies of the material. The original mass was broken into several rich specimens. The wodginite is in equant crystals, transparent under magnification, with a few little tabular amber crystals of manganotantalite. This material obviously represented only part of a concentration of wodginite in montebrasite. Several years ago, Bruce Jarnot encountered a small cleavelandite boulder, on the long narrow dump along the western edge of the hill, yielding maybe a dozen superb thumbnails of sharp, euhedral, reddish-black wodginite crystals, of a pyramidal aspect, up to almost an inch. These, too, were thought to be manganotantalite, until X-ray study proved them to be wodginite. At that point, the author became suspicious of an iridescent brown mineral, embedded in columnar green elbaite, collected around 1950. The X-ray pattern shows it to be wodginite, in yet another habit. Obviously, the mineral has been mistaken for other things!
'Wolframite Group'
Habit: bipyramidal pseudomorphs after scheelite
Colour: dark brown to black
Description: Actually long known to be the iron-rich end-member species ferberite. The use of the term "wolframite" for crystals from here should be abandoned. See more description under ferberite.
Wollastonite
Formula: Ca3(Si3O9)
Localities: Reported from at least 6 localities in this region.
Wulfenite
Formula: Pb(MoO4)
Localities: Reported from at least 8 localities in this region.
Habit: peudocubic, bipyramidal
Colour: orange-red
Description: "Here and there small microscopic wulfenites occur both as pseudocubic (similar to the Loudville, Massachusetts, material only considerably smaller) as well as bipyramidal crystals (Marcelle Weber, personal communication, 1984)." (Segeler & Molon, 1985). At least one former Ron Januzzi specimen of a platy orange mineral in crude micro-crystals turned out to be calcite.
Wurtzite ?
Formula: (Zn,Fe)S
Wurtzite var. Voltzite ?
Formula: (Zn,Fe)S
Xanthoxenite ?
Formula: Ca4Fe3+2(PO4)4(OH)2 · 3H2O
Description: may occur associated with lithiophilite
Xenotime-(Y)
Formula: Y(PO4)
Localities: Reported from at least 11 localities in this region.
Habit: bipyramidal
Colour: brown
Description: Microcrystals in pegmatite matrix found in 2019. SEM-EDS spectra here https://www.mindat.org/photo-1007556.html https://www.mindat.org/photo-1007557.html
'Yttrocolumbite-(Y)' ?
Formula: Y(U4+,Fe2+)Nb2O8
Description: Extremely rare mineral. No chemical data available.
'Zinnwaldite'
Habit: micaceous
Colour: golden-brown, purplish-grey
Description: Found in the cleavelandite-quartz intermediate zone. Schooner (circa 1985) reports that "X-ray and spectrographic study, quite recently, have identified rich specimens, consisting of coarse golden-brown aggregates with zoned elbaite-schorl tourmaline. It can also be purplish-gray."
Zircon
Formula: Zr(SiO4)
Localities: Reported from at least 58 localities in this region.
Habit: prismatic bi-pyramidal
Colour: brown
Description: "An outstanding isolated occurrence of zircon crystals was discovered by John and Robert Gruss in a granite matrix at Mill Ridge, west of Danbury. The crystals were opaque, brown prismatic bi-pyramidal contact twins over an inch in length." Januzzi (1959).
Zircon var. Calyptolite
Formula: Zr(SiO4)
Zircon var. Cyrtolite
Formula: Zr[(SiO4),(OH)4]
Localities: Reported from at least 17 localities in this region.
Habit: short prismatic, parallel groups
Colour: brown or black
Description: Schooner (1955) says that: "crystals are of small size. Parallel groups are often found in cleavelandite and smoky quartz, and other matrices include manganapatite, microcline, lithiophilite, and various mixtures. The crystals have such short prisms that they resemble distorted dodecahedrons, probably being mistaken for opaque garnets by some collectors." The size rarely exceeds 1/4 inch.
Zoisite
Formula: (CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
Localities: Reported from at least 14 localities in this region.
Habit: subhedral, striated, elongated prismatic
Colour: pink
Fluorescence: purple
Description: Crystals in matrix can reach a few cm. Associated with anorthite, quartz, actinolite, scapolite.
Zoisite var. Thulite
Formula: {Ca2}{Al,Mn3+3}(Si2O7)(SiO4)O(OH)
Habit: subhedral, striated, elongated prismatic
Colour: pink
Fluorescence: purple
Description: Crystals in matrix can reach a few cm. Associated with anorthite, quartz, actinolite, scapolite.

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Silver1.AA.05Ag
Copper1.AA.05Cu
Gold1.AA.05Au
Iron
var. Kamacite
1.AE.05(Fe,Ni)
1.AE.05Fe
Taenite1.AE.10(Fe,Ni)
Tetrataenite1.AE.10FeNi
Bismuth1.CA.05Bi
Arsenic ?1.CA.05As
Antimony ?1.CA.05Sb
Graphite1.CB.05aC
Diamond1.CB.10aC
Sulphur1.CC.05S8
Tellurium ?1.CC.10Te
Group 2 - Sulphides and Sulfosalts
Djurleite2.BA.05Cu31S16
Chalcocite2.BA.05Cu2S
Digenite2.BA.10Cu9S5
Bornite2.BA.15Cu5FeS4
Acanthite2.BA.35Ag2S
Pentlandite2.BB.15(NixFey)Σ9S8
Covellite2.CA.05aCuS
Sphalerite2.CB.05aZnS
Chalcopyrite
var. Blister Copper
2.CB.10aCuFeS2
2.CB.10aCuFeS2
Wurtzite
var. Voltzite ?
2.CB.45(Zn,Fe)S
?2.CB.45(Zn,Fe)S
Greenockite2.CB.45CdS
Breithauptite ?2.CC.05NiSb
Nickeline2.CC.05NiAs
Troilite2.CC.10FeS
Pyrrhotite2.CC.10Fe1-xS
Galena
var. Silver-bearing Galena
2.CD.10PbS with Ag
2.CD.10PbS
Violarite2.DA.05Fe2+Ni3+2S4
Linnaeite2.DA.05Co2+Co3+2S4
Stibnite ?2.DB.05Sb2S3
Bismuthinite2.DB.05Bi2S3
Sylvanite ?2.EA.05AgAuTe4
Molybdenite2.EA.30MoS2
Tungstenite ?2.EA.30WS2
Pyrite2.EB.05aFeS2
Marcasite2.EB.10aFeS2
Rammelsbergite ?2.EB.15aNiAs2
Safflorite ?2.EB.15a(Co,Ni,Fe)As2
Löllingite2.EB.15aFeAs2
Arsenopyrite2.EB.20FeAsS
var. Danaite2.EB.20(Fe0.90Co0.10)AsS - (Fe0.65Co0.35)AsS
Cobaltite2.EB.25CoAsS
Gersdorffite2.EB.25NiAsS
Skutterudite ?2.EC.05CoAs3
Nickelskutterudite ?2.EC.05(Ni,Co,Fe)As3
Realgar ?2.FA.15aAs4S4
Cuprobismutite2.JA.10aCu8AgBi13S24
Galenobismutite ?2.JC.25ePbBi2S4
Group 3 - Halides
Nantokite3.AA.05CuCl
Fluorite3.AB.25CaF2
var. Chlorophane3.AB.25CaF2
Atacamite3.DA.10aCu2(OH)3Cl
Paratacamite ?3.DA.10cCu3(Cu,Zn)(OH)6Cl2
Group 4 - Oxides and Hydroxides
'Ixiolite-(Mn2+)-Ixiolite-(Fe2+) Series
var. Wolframoixiolite'
4..(Nb,W,Ta,Fe,Mn)2O4
''4..(Ta,Nb,Sn,Fe,Mn)4O8
Goethite4.00.α-Fe3+O(OH)
'Pyrochlore Group
var. Uranpyrochlore (of Hogarth 1977)'
4.00.(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
''4.00.A2Nb2(O,OH)6Z
'Microlite Group'4.00.A2-mTa2X6-wZ-n
Cuprite
var. Chalcotrichite
4.AA.10Cu2O
4.AA.10Cu2O
Litharge4.AC.20PbO
Massicot4.AC.25PbO
Chrysoberyl4.BA.05BeAl2O4
Galaxite ?4.BB.05Mn2+Al2O4
Gahnite4.BB.05ZnAl2O4
Spinel4.BB.05MgAl2O4
Chromite4.BB.05Fe2+Cr3+2O4
Magnetite4.BB.05Fe2+Fe3+2O4
Jacobsite4.BB.05Mn2+Fe3+2O4
Maghemite4.BB.15(Fe3+0.670.33)Fe3+2O4
Minium4.BD.05Pb3O4
Hematite
var. Specularite
4.CB.05Fe2O3
Corundum
var. Sapphire
4.CB.05Al2O3
4.CB.05Al2O3
Hematite
var. Iron Rose
4.CB.05Fe2O3
Ilmenite4.CB.05Fe2+TiO3
Pyrophanite4.CB.05Mn2+TiO3
Hematite4.CB.05Fe2O3
Ilmenite
var. Iron(III)-bearing Ilmenite
4.CB.05(Fe2+,Fe3+)TiO3
Claudetite ?4.CB.45As2O3
Arsenolite ?4.CB.50As2O3
Bismite4.CB.60Bi2O3
Sillénite ?4.CB.70Bi12SiO20
Davidite-(La)4.CC.40La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
Quartz
var. Sard
4.DA.05SiO2
var. Amethyst4.DA.05SiO2
var. Rose Quartz4.DA.05SiO2
var. Blue Quartz4.DA.05SiO2
var. Citrine4.DA.05SiO2
4.DA.05SiO2
var. Rutilated Quartz4.DA.05SiO2
var. Smoky Quartz4.DA.05SiO2
var. Agate4.DA.05SiO2
var. Carnelian4.DA.05SiO2
var. Rock Crystal4.DA.05SiO2
var. Milky Quartz4.DA.05SiO2
var. Sceptre Quartz4.DA.05SiO2
var. Sardonyx4.DA.05SiO2
var. Ferruginous Quartz4.DA.05SiO2
var. Chalcedony4.DA.05SiO2
Opal
var. Opal-AN
4.DA.10SiO2 · nH2O
Tridymite ?4.DA.10SiO2
Opal4.DA.10SiO2 · nH2O
var. Hyalite4.DA.10SiO2 · nH2O
Lechatelierite4.DA.30SiO2
Pyrolusite4.DB.05Mn4+O2
Rutile4.DB.05TiO2
Plattnerite4.DB.05PbO2
Rutile
var. Strüverite
4.DB.05(Ti,Ta,Fe)O2
Cassiterite4.DB.05SnO2
Tapiolite-(Fe)4.DB.10Fe2+Ta2O6
Ishikawaite4.DB.25U4+Fe2+Nb2O8
Samarskite-(Y)4.DB.25YFe3+Nb2O8
'Yttrocolumbite-(Y)' ?4.DB.25Y(U4+,Fe2+)Nb2O8
Ferberite4.DB.30FeWO4
Hübnerite ?4.DB.30MnWO4
'Wolframite Group'4.DB.30 va
Tantalite-(Mn)4.DB.35Mn2+Ta2O6
Columbite-(Mn)4.DB.35Mn2+Nb2O6
Columbite-(Fe)4.DB.35Fe2+Nb2O6
Tantalite-(Fe)4.DB.35Fe2+Ta2O6
Wodginite4.DB.40Mn2+Sn4+Ta2O8
Anatase4.DD.05TiO2
Brookite4.DD.10TiO2
Bismutotantalite4.DE.30Bi(Ta,Nb)O4
Tanteuxenite-(Y)4.DG.05Y(Ta,Nb,Ti)2(O,OH)6
Euxenite-(Y) ?4.DG.05(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
Hydrokenoelsmoreite ?4.DH.152W2O6(H2O)
var. Ferritungstite ?4.DH.152W2O6(H2O)
Liandratite4.DH.35U(Nb,Ta)2O8
Petscheckite ?4.DH.35UFe(Nb,Ta)2O8
Cryptomelane4.DK.05aK(Mn4+7Mn3+)O16
Todorokite ?4.DK.10(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Romanèchite4.DK.10(Ba,H2O)2(Mn4+,Mn3+)5O10
Uraninite4.DL.05UO2
Diaspore4.FD.10AlO(OH)
Groutite4.FD.10Mn3+O(OH)
Manganite ?4.FD.15Mn3+O(OH)
Brucite ?4.FE.05Mg(OH)2
Gibbsite4.FE.10Al(OH)3
Lepidocrocite4.FE.15γ-Fe3+O(OH)
Lithiophorite ?4.FE.25(Al,Li)MnO2(OH)2
Tungstite (TL)4.FJ.10WO3 · H2O
Hydrotungstite ?4.FJ.15WO3 · 2H2O
Birnessite4.FL.45(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Becquerelite4.GB.10Ca(UO2)6O4(OH)6 · 8H2O
Fourmarierite4.GB.25Pb(UO2)4O3(OH)4 · 4H2O
Vandendriesscheite4.GB.40PbU7O22 · 12H2O
Carnotite4.HB.05K2(UO2)2(VO4)2 · 3H2O
Tyuyamunite4.HB.25Ca(UO2)2(VO4)2 · 5-8H2O
Group 5 - Nitrates and Carbonates
Rhodochrosite5.AB.05MnCO3
Magnesite5.AB.05MgCO3
var. Iron-bearing Magnesite5.AB.05(Mg,Fe)CO3
Calcite5.AB.05CaCO3
Siderite5.AB.05FeCO3
Calcite
var. Iron-bearing Calcite
5.AB.05(Ca,Fe)CO3
Smithsonite5.AB.05ZnCO3
Dolomite
var. Iron-bearing Dolomite
5.AB.10Ca(Mg,Fe)(CO3)2
5.AB.10CaMg(CO3)2
Kutnohorite5.AB.10CaMn2+(CO3)2
Ankerite5.AB.10Ca(Fe2+,Mg)(CO3)2
Aragonite5.AB.15CaCO3
Cerussite5.AB.15PbCO3
Azurite5.BA.05Cu3(CO3)2(OH)2
Rosasite5.BA.10(Cu,Zn)2(CO3)(OH)2
Malachite5.BA.10Cu2(CO3)(OH)2
Aurichalcite5.BA.15(Zn,Cu)5(CO3)2(OH)6
Hydrozincite5.BA.15Zn5(CO3)2(OH)6
Bastnäsite-(Ce)5.BD.20aCe(CO3)F
Synchysite-(Y)5.BD.20cCaY(CO3)2F
Bismutite5.BE.25(BiO)2CO3
Beyerite ?5.BE.35Ca(BiO)2(CO3)2
Rutherfordine ?5.EB.05(UO2)CO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Anhydrite7.AD.30CaSO4
Anglesite7.AD.35PbSO4
Celestine7.AD.35SrSO4
Baryte7.AD.35BaSO4
Brochantite7.BB.25Cu4(SO4)(OH)6
Jarosite7.BC.10KFe3+3(SO4)2(OH)6
Linarite7.BC.65PbCu(SO4)(OH)2
Szomolnokite7.CB.05FeSO4 · H2O
Rozenite7.CB.15FeSO4 · 4H2O
Chalcanthite7.CB.20CuSO4 · 5H2O
Hexahydrite ?7.CB.25MgSO4 · 6H2O
Melanterite7.CB.35Fe2+(H2O)6SO4 · H2O
Epsomite7.CB.40MgSO4 · 7H2O
Goslarite ?7.CB.40ZnSO4 · 7H2O
Halotrichite ?7.CB.85FeAl2(SO4)4 · 22H2O
Pickeringite7.CB.85MgAl2(SO4)4 · 22H2O
Gypsum
var. Selenite
7.CD.40CaSO4 · 2H2O
var. Satin Spar Gypsum7.CD.40CaSO4 · 2H2O
7.CD.40CaSO4 · 2H2O
Ferricopiapite ?7.DB.35Fe3+0.67Fe3+4(SO4)6(OH)2 · 20H2O
Copiapite7.DB.35Fe2+Fe3+4(SO4)6(OH)2 · 20H2O
Langite7.DD.10Cu4(SO4)(OH)6 · 2H2O
Devilline7.DD.30CaCu4(SO4)2(OH)6 · 3H2O
Thaumasite7.DG.15Ca3(SO4)[Si(OH)6](CO3) · 12H2O
Johannite ?7.EB.05Cu(UO2)2(SO4)2(OH)2 · 8H2O
Powellite7.GA.05Ca(MoO4)
Wulfenite7.GA.05Pb(MoO4)
Scheelite7.GA.05Ca(WO4)
Ferrimolybdite7.GB.30Fe2(MoO4)3 · nH2O
Group 8 - Phosphates, Arsenates and Vanadates
Purpurite8.AB.10Mn3+(PO4)
Heterosite8.AB.10(Fe3+,Mn3+)PO4
Triphylite
var. Ferrisicklerite
8.AB.10Li1-x(Fe3+xFe2+1-x)PO4
Lithiophilite (TL)8.AB.10LiMn2+PO4
Triphylite8.AB.10LiFe2+PO4
Lithiophilite
var. Sicklerite
8.AB.10Li1-x(Mn3+xMn2+1-x)PO4
Natrophilite (TL)8.AB.10NaMn2+PO4
Graftonite ?8.AB.20Fe2+Fe2+2(PO4)2
Alluaudite ?8.AC.10(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Fillowite (TL)8.AC.50Na3CaMn2+11(PO4)9
Xenotime-(Y)8.AD.35Y(PO4)
Monazite-(Ce)8.AD.50Ce(PO4)
Hydroxylherderite8.BA.10CaBe(PO4)(OH)
Herderite ?8.BA.10CaBe(PO4)F
Amblygonite ?8.BB.05LiAl(PO4)F
Montebrasite8.BB.05LiAl(PO4)(OH)
Triplite8.BB.10Mn2+2(PO4)F
Triploidite (TL)8.BB.15Mn2+2(PO4)(OH)
Lazulite ?8.BB.40MgAl2(PO4)2(OH)2
Scorzalite ?8.BB.40Fe2+Al2(PO4)2(OH)2
Rockbridgeite8.BC.10Fe2+Fe3+4(PO4)3(OH)5
Pseudomalachite ?8.BD.05Cu5(PO4)2(OH)4
Augelite8.BE.05Al2(PO4)(OH)3
Dickinsonite-(KMnNa) (TL)8.BF.05(KNa)(Mn2+◻)Ca(Na2Na)Mn2+13Al(PO4)11(PO4)(OH)2
Arrojadite-(KFe) ?8.BF.05(KNa)(Fe2+◻)Ca(Na2◻)Fe2+13Al(PO4)11(PO3OH)(OH)2
Lacroixite8.BH.10NaAl(PO4)F
Palermoite ?8.BH.25(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Brazilianite8.BK.05NaAl3(PO4)2(OH)4
Plumbogummite8.BL.10PbAl3(PO4)(PO3OH)(OH)6
Crandallite ?8.BL.10CaAl3(PO4)(PO3OH)(OH)6
Fluorapatite8.BN.05Ca5(PO4)3F
var. Manganese-bearing Fluorapatite8.BN.05(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Mimetite8.BN.05Pb5(AsO4)3Cl
Hydroxylapatite8.BN.05Ca5(PO4)3(OH)
Pyromorphite8.BN.05Pb5(PO4)3Cl
Vanadinite ?8.BN.05Pb5(VO4)3Cl
Phosphophyllite8.CA.40Zn2Fe(PO4)2 · 4H2O
Hureaulite8.CB.10Mn2+5(PO3OH)2(PO4)2 · 4H2O
Landesite ?8.CC.05Mn2+3-xFe3+x(PO4)2(OH)x · (3-x)H2O
Reddingite (TL)8.CC.05(Mn2+,Fe2+)3(PO4)2 · 3H2O
Scorodite8.CD.10Fe3+AsO4 · 2H2O
Strengite8.CD.10FePO4 · 2H2O
Ludlamite8.CD.20Fe2+3(PO4)2 · 4H2O
Metaswitzerite8.CE.25Mn2+3(PO4)2 · 4H2O
Switzerite ?8.CE.25Mn2+3(PO4)2 · 7H2O
Annabergite8.CE.40Ni3(AsO4)2 · 8H2O
Erythrite8.CE.40Co3(AsO4)2 · 8H2O
Vivianite8.CE.40Fe2+Fe2+2(PO4)2 · 8H2O
Fairfieldite (TL)8.CG.05Ca2Mn2+(PO4)2 · 2H2O
Messelite8.CG.05Ca2Fe2+(PO4)2 · 2H2O
Rhabdophane-(Nd) (TL)8.CJ.45Nd(PO4) · H2O
Rhabdophane-(La) (TL)8.CJ.45La(PO4) · H2O
Grayite8.CJ.45(Th,Pb,Ca)(PO4) · H2O
Churchite-(Y)8.CJ.50Y(PO4) · 2H2O
Moraesite8.DA.05Be2(PO4)(OH) · 4H2O
Roscherite ?8.DA.10Ca2Mn2+5Be4(PO4)6(OH)4 · 6H2O
Pitticite ?8.DB.05(Fe, AsO4, H2O) (?)
Diadochite8.DB.05Fe3+2(PO4)(SO4)(OH) · 6H2O
Whitmoreite8.DC.15Fe2+Fe3+2(PO4)2(OH)2 · 4H2O
Strunzite8.DC.25Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Beraunite ?8.DC.27Fe3+6(PO4)4O(OH)4 · 6H2O
Laueite8.DC.30Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Stewartite ?8.DC.30Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Planerite ?8.DD.15Al6(PO4)2(PO3OH)2(OH)8 · 4H2O
Eosphorite (TL)8.DD.20Mn2+Al(PO4)(OH)2 · H2O
Ferroberaunite8.DH.Fe2+Fe3+5(PO4)4(OH)5 · 6H2O
Mitridatite8.DH.30Ca2Fe3+3(PO4)3O2 · 3H2O
Xanthoxenite ?8.DH.40Ca4Fe3+2(PO4)4(OH)2 · 3H2O
Pharmacosiderite8.DK.10KFe3+4(AsO4)3(OH)4 · 6-7H2O
Wardite8.DL.10NaAl3(PO4)2(OH)4 · 2H2O
Morinite ?8.DM.05NaCa2Al2(PO4)2(OH)F4 · 2H2O
Parsonsite8.EA.10Pb2(UO2)(PO4)2
Autunite8.EB.05Ca(UO2)2(PO4)2 · 10-12H2O
Torbernite8.EB.05Cu(UO2)2(PO4)2 · 12H2O
Metatorbernite8.EB.10Cu(UO2)2(PO4)2 · 8H2O
Meta-autunite8.EB.10Ca(UO2)2(PO4)2 · 6H2O
Phosphuranylite8.EC.10KCa(H3O)3(UO2)7(PO4)4O4 · 8H2O
Group 9 - Silicates
Chrysotile9..Mg3(Si2O5)(OH)4
Phenakite9.AA.05Be2SiO4
Willemite9.AA.05Zn2SiO4
Eucryptite (TL)9.AA.05LiAlSiO4
Forsterite
var. Peridot
9.AC.05Mg2SiO4
Tephroite9.AC.05Mn2+2SiO4
Forsterite9.AC.05Mg2SiO4
Larnite9.AD.05Ca2SiO4
Pyrope ?9.AD.25Mg3Al2(SiO4)3
Andradite9.AD.25Ca3Fe3+2(SiO4)3
Grossular
var. Hessonite
9.AD.25Ca3Al2(SiO4)3
9.AD.25Ca3Al2(SiO4)3
Spessartine9.AD.25Mn2+3Al2(SiO4)3
Almandine9.AD.25Fe2+3Al2(SiO4)3
Andradite
var. Topazolite
9.AD.25Ca3Fe3+2(SiO4)3
var. Melanite9.AD.25Ca3(Fe3+,Ti)2(SiO4)3
Zircon
var. Calyptolite
9.AD.30Zr(SiO4)
Thorite9.AD.30Th(SiO4)
Zircon
var. Cyrtolite
9.AD.30Zr[(SiO4),(OH)4]
Coffinite9.AD.30U(SiO4) · nH2O
Thorite
var. Calciothorite ?
9.AD.30(Th,Ca2)SiO4 · 3.5H2O
Zircon9.AD.30Zr(SiO4)
Thorite
var. Thorogummite
9.AD.30(Th,U)(SiO4)1-x(OH)4x
Euclase ?9.AE.10BeAl(SiO4)(OH)
Sillimanite (TL)9.AF.05Al2(SiO4)O
Andalusite9.AF.10Al2(SiO4)O
Kyanite9.AF.15Al2(SiO4)O
Staurolite9.AF.30Fe2+2Al9Si4O23(OH)
Topaz9.AF.35Al2(SiO4)(F,OH)2
Chondrodite9.AF.45Mg5(SiO4)2F2
Alleghanyite9.AF.45Mn2+5(SiO4)2(OH)2
Titanite
var. Lederite (of Shepard)
9.AG.15CaTi(SiO4)O
9.AG.15CaTi(SiO4)O
Cerite-(CeCa) ?9.AG.20(Ce7Ca2)◻Mg(SiO4)3(SiO3OH)4(OH)3
Spurrite9.AH.15Ca5(SiO4)2(CO3)
Dumortierite ?9.AJ.10Al(Al2O)(Al2O)2(SiO4)3(BO3)
Datolite9.AJ.20CaB(SiO4)(OH)
Uranophane9.AK.15Ca(UO2)2(SiO3OH)2 · 5H2O
Gehlenite9.BB.10Ca2Al[AlSiO7]
Bertrandite9.BD.05Be4(Si2O7)(OH)2
Hemimorphite9.BD.10Zn4Si2O7(OH)2 · H2O
Axinite-(Fe)9.BD.20Ca2Fe2+Al2BSi4O15OH
Epidote9.BG.05a(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Clinozoisite9.BG.05a(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
Piemontite9.BG.05a(CaCa)(AlAlMn3+)O[Si2O7][SiO4](OH)
Clinozoisite
var. Clinothulite
9.BG.05a{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Epidote
var. Tawmawite
9.BG.05a{Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
Allanite-(Ce)9.BG.05b(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
Zoisite9.BG.10(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
var. Thulite9.BG.10{Ca2}{Al,Mn3+3}(Si2O7)(SiO4)O(OH)
Julgoldite-(Fe2+)9.BG.20Ca2Fe2+Fe3+2[Si2O6OH][SiO4](OH)2(OH)
Pumpellyite-(Mg)9.BG.20Ca2MgAl2(Si2O7)(SiO4)(OH)2 · H2O
Vesuvianite9.BG.35Ca19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
Beryl
var. Heliodor
9.CJ.05Be3Al2(Si6O18)
var. Aquamarine9.CJ.05Be3Al2Si6O18
Bazzite9.CJ.05Be3Sc2(Si6O18)
Beryl
var. Goshenite
9.CJ.05Be3Al2(Si6O18)
var. Morganite9.CJ.05Be3Al2(Si6O18)
var. Emerald9.CJ.05Be3Al2(Si6O18)
9.CJ.05Be3Al2(Si6O18)
Cordierite9.CJ.10(Mg,Fe)2Al3(AlSi5O18)
Dravite9.CK.05NaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
Schorl9.CK.05NaFe2+3Al6(Si6O18)(BO3)3(OH)3(OH)
Oxy-dravite9.CK.05Na(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
Foitite9.CK.05◻(Fe2+2Al)Al6(Si6O18)(BO3)3(OH)3(OH)
Elbaite9.CK.05Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Milarite9.CM.05K(◻H2O)Ca2(Be2Al)[Si12O30]
Enstatite9.DA.05Mg2Si2O6
var. Bronzite9.DA.05(Mg,Fe2+)2[SiO3]2
Pigeonite9.DA.10(CaxMgyFez)(Mgy1Fez1)Si2O6
Johannsenite ?9.DA.15CaMn2+Si2O6
Diopside9.DA.15CaMgSi2O6
Augite
var. Titanium-bearing Augite
9.DA.15(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
Diopside
var. Canaanite
9.DA.15CaMgSi2O6
Augite9.DA.15(CaxMgyFez)(Mgy1Fez1)Si2O6
Hedenbergite ?9.DA.15CaFe2+Si2O6
Augite
var. Fassaite
9.DA.15(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Aegirine-augite9.DA.20(NaaCabFe2+cMgd)(Fe3+eAlfFe2+gMgh)Si2O6
Aegirine9.DA.25NaFe3+Si2O6
Spodumene9.DA.30LiAlSi2O6
var. Kunzite9.DA.30LiAlSi2O6
Anthophyllite9.DD.05◻{Mg2}{Mg5}(Si8O22)(OH)2
Gedrite9.DD.05◻{Mg2}{Mg3Al2}(Al2Si6O22)(OH)2
Cummingtonite9.DE.05◻{Mg2}{Mg5}(Si8O22)(OH)2
Grunerite9.DE.05◻{Fe2+2}{Fe2+5}(Si8O22)(OH)2
Magnesio-hornblende9.DE.10◻Ca2(Mg4Al)(Si7Al)O22(OH)2
Ferro-actinolite9.DE.10◻Ca2Fe2+5(Si8O22)(OH)2
Ferro-hornblende9.DE.10◻Ca2(Fe2+4Al)(Si7Al)O22(OH)2
Tremolite9.DE.10◻Ca2Mg5(Si8O22)(OH)2
Actinolite9.DE.10◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Pargasite ?9.DE.15NaCa2(Mg4Al)(Si6Al2)O22(OH)2
Hastingsite9.DE.15NaCa2(Fe2+4Fe3+)(Si6Al2)O22(OH)2
Kaersutite9.DE.15NaCa2(Mg3AlTi4+)(Si6Al2)O22O2
Ferri-ghoseite9.DE.20◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
Bavenite9.DF.25Ca4Be2Al2Si9O26(OH)2
Pectolite9.DG.05NaCa2Si3O8(OH)
Bustamite9.DG.05CaMn2+(Si2O6)
Wollastonite9.DG.05Ca3(Si3O9)
Rhodonite9.DK.05CaMn3Mn[Si5O15]
Babingtonite9.DK.05Ca2(Fe,Mn)FeSi5O14(OH)
Pyroxmangite9.DO.05Mn2+SiO3
Prehnite9.DP.20Ca2Al2Si3O10(OH)2
Fluorapophyllite-(K)9.EA.15KCa4(Si8O20)(F,OH) · 8H2O
Talc9.EC.05Mg3Si4O10(OH)2
var. Steatite9.EC.05Mg3(Si4O10)(OH)2
Pyrophyllite9.EC.10Al2Si4O10(OH)2
Paragonite9.EC.15NaAl2(AlSi3O10)(OH)2
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var. Illite9.EC.15K0.65Al2.0[Al0.65Si3.35O10](OH)2
Celadonite9.EC.15K(MgFe3+◻)(Si4O10)(OH)2
Muscovite
var. Sericite
9.EC.15KAl2(AlSi3O10)(OH)2
var. Fuchsite9.EC.15K(Al,Cr)3Si3O10(OH)2
var. Schernikite (TL)9.EC.15KAl2(AlSi3O10)(OH)2
var. Damourite9.EC.15KAl2(AlSi3O10)(OH)2
Annite9.EC.20KFe2+3(AlSi3O10)(OH)2
Masutomilite9.EC.20(K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2
Phlogopite9.EC.20KMg3(AlSi3O10)(OH)2
Margarite9.EC.30CaAl2(Al2Si2O10)(OH)2
Bityite9.EC.35CaLiAl2(AlBeSi2O10)(OH)2
Nontronite9.EC.40Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Montmorillonite9.EC.40(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Ferrosaponite ?9.EC.45Ca0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
Saponite ?9.EC.45Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Clinochlore
var. Diabantite ?
9.EC.55(Mg,Fe,Al)6((Si,Al)4O10)(OH)8
Cookeite9.EC.55(LiAl4◻)[AlSi3O10](OH)8
Clinochlore
var. Ripidolite
9.EC.55(Mg,Fe,Al)6(Si,Al)4O10(OH)8
9.EC.55Mg5Al(AlSi3O10)(OH)8
Nacrite ?9.ED.05Al2(Si2O5)(OH)4
Dickite9.ED.05Al2(Si2O5)(OH)4
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Halloysite9.ED.10Al2(Si2O5)(OH)4
Caryopilite9.ED.15Mn2+3Si2O5(OH)4
Lizardite9.ED.15Mg3(Si2O5)(OH)4
Cronstedtite9.ED.15Fe2+2Fe3+((Si,Fe3+)2O5)(OH)4
Antigorite9.ED.15Mg3(Si2O5)(OH)4
Allophane9.ED.20(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Chrysocolla9.ED.20Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O, x < 1
Bismutoferrite9.ED.25Fe3+2Bi(SiO4)2(OH)
Bementite ?9.EE.05Mn7Si6O15(OH)8
Palygorskite ?9.EE.20◻Al2Mg22Si8O20(OH)2(H2O)4 · 4H2O
Sepiolite9.EE.25Mg4(Si6O15)(OH)2 · 6H2O
Petalite9.EF.05LiAl(Si4O10)
'Chalcodite'9.EG.40K(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
Stilpnomelane9.EG.40(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
Sarcolite9.EH.15Na4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
Nepheline9.FA.05Na3K(Al4Si4O16)
Orthoclase9.FA.30K(AlSi3O8)
Microcline
var. Amazonite
9.FA.30K(AlSi3O8)
var. Hyalophane9.FA.30(K,Ba)[Al(Si,Al)Si2O8]
9.FA.30K(AlSi3O8)
Albite
var. Cleavelandite
9.FA.35Na(AlSi3O8)
Anorthite
var. Bytownite
9.FA.35(Ca,Na)[Al(Al,Si)Si2O8]
Albite
var. Peristerite
9.FA.35Na(AlSi3O8)
9.FA.35Na(AlSi3O8)
Anorthite9.FA.35Ca(Al2Si2O8)
Albite
var. Andesine
9.FA.35(Na,Ca)[Al(Si,Al)Si2O8]
var. Oligoclase9.FA.35(Na,Ca)[Al(Si,Al)Si2O8]
Anorthite
var. Labradorite
9.FA.35(Ca,Na)[Al(Al,Si)Si2O8]
Danburite (TL)9.FA.65CaB2Si2O8
Sodalite9.FB.10Na4(Si3Al3)O12Cl
Helvine9.FB.10Be3Mn2+4(SiO4)3S
Marialite9.FB.15Na4Al3Si9O24Cl
Meionite9.FB.15Ca4Al6Si6O24CO3
Mesolite9.GA.05Na2Ca2Si9Al6O30 · 8H2O
Gonnardite9.GA.05(Na,Ca)2(Si,Al)5O10 · 3H2O
Natrolite9.GA.05Na2Al2Si3O10 · 2H2O
Scolecite9.GA.05CaAl2Si3O10 · 3H2O
Pollucite9.GB.05(Cs,Na)2(Al2Si4O12) · 2H2O
Analcime9.GB.05Na(AlSi2O6) · H2O
Laumontite9.GB.10CaAl2Si4O12 · 4H2O
Gobbinsite9.GC.05Na5(Si11Al5)O32 · 11H2O
Harmotome9.GC.10Ba2(Si12Al4)O32 · 12H2O
Chabazite-Ca9.GD.10(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
Mordenite9.GD.35(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Epistilbite9.GD.45CaAl2Si6O16 · 5H2O
Heulandite-Ca9.GE.05(Ca,Na)5(Si27Al9)O72 · 26H2O
Stilbite-Ca9.GE.10NaCa4(Si27Al9)O72 · 28H2O
Stellerite ?9.GE.15Ca4(Si28Al8)O72 · 28H2O
Unclassified
'Plessite'-
'Garnet Group'-X3Z2(SiO4)3
'K Feldspar
var. Adularia'
-KAlSi3O8
'Serpentine Subgroup'-D3[Si2O5](OH)4
'Hypersthene'-(Mg,Fe)SiO3
'Columbite-Tantalite'-
'Amphibole Supergroup
var. Byssolite'
-AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Tourmaline
var. Watermelon Tourmaline'
-A(D3)G6(T6O18)(BO3)3X3Z
'Fergusonite' ?-
'Petroleum
var. Albertite'
-
'Chabazite
var. Phacolite'
-
'Lanthanite' ?-
'Orthopyroxene Subgroup'-
'Heulandite Subgroup'-(Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
'Calcium Amphibole Subgroup
var. Hornblende'
-AnCa2(Z2+5-mZ3+m)(Si8-(n+m)Al(n+m))(OH,F,Cl)2
'Manganese Oxides'-
'Indicolite'-A(D3)G6(T6O18)(BO3)3X3Z
'Pumpellyite Group'-Ca2XZ2[Si2O6(OH)][SiO4](OH)2A
'Allanite Group'-(A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
'Columbite Group'-
'Lepidolite'-
'Calciomicrolite'-
'Columbite-(Mn)-Tantalite-(Mn) Series'-
'Brewsterite Subgroup' ?-
'Julgoldite Subgroup' ?-Ca2XFe3+2[Si2O6(OH)][SiO4](OH)2A
'Limonite'-
'Synchysite Group'-
'Lithiophilite-Triphylite Series' ?-
'Copiapite Group'-
'Tourmalinated Quartz'-
'Axinite Group' ?-
'Apatite'-Ca5(PO4)3(Cl/F/OH)
'Phillipsite Subgroup' ?-
'Asbestos'-
'Serpentine Subgroup
var. Picrolite'
-D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
'Pumpellyite Subgroup'-Ca2XAl2[Si2O6(OH)][SiO4](OH)2A
'Jasper'-
'Pyroxene Group'-ADSi2O6
'Margarodite'-
'Manganese Oxides
var. Manganese Dendrites'
-
'Gummite'-
'Alkali Feldspar'-
'K Feldspar'-
'Fahlunite'-(Mg,Fe)Al2Si3O10 · 2H2O
'Mica Group'-
'Natromontebrasite'-
'Almandine-Pyrope Series
var. Rhodolite' ?
-Mg3Al2(SiO4)3
'Feldspar Group
var. Perthite'
-
'Chlorophyllite'-
'Chlorite Group'-
'Amphibole Supergroup'-AB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Stilbite Subgroup'-M6-7[Al8-9Si27-28O72] · nH2O
'Cymatolite'-
'Apophyllite Group'-AB4[Si8O22]X · 8H2O
'Aeschynite' ?-
'Zinnwaldite'-
'Tantalite'-(Mn,Fe)(Ta,Nb)2O6
'Tapiolite'-(Fe,Mn)(Ta,Nb)2O6
'Moonstone'-
'Alum Group'-XAl(SO4)2 · 12H2O
'Tourmaline'-AD3G6 (T6O18)(BO3)3X3Z
'Amphibole Supergroup
var. Uralite' ?
-AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Uranmicrolite (of Hogarth 1977)'-(Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
'Wad'-
'Fluor-uvite-Uvite Series' ?-
'Monazite'-REE(PO4)
'Synchysite'-Ca(Ce/Nd/Y/REE)(CO3)2F
'Petroleum'-
'Dravite-Schorl Series'-
'Elaterite'-(C,H,O,S)
'Petroleum
var. Bitumen'
-
'Pinite'-
'Soapstone'-
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
'Plagioclase'-(Na,Ca)[(Si,Al)AlSi2]O8
'Tourmaline
var. Verdelite'
-A(D3)G6(T6O18)(BO3)3X3Z
'Asbestos
var. Mountain Leather'
-
'Hornblende Root Name Group'-◻Ca2(Z2+4Z3+)(AlSi7O22)(OH,F,Cl)2
'Scapolite'-
'Columbite-(Fe)-Columbite-(Mn) Series'-
'Feldspar Group'-
'Fayalite-Forsterite Series'-
'Ferro-actinolite-Tremolite Series'-
'Almandine-Spessartine Series'-
'Chrysoprase'-
'Calamine'-
'Gmelinite Subgroup' ?-
'Clinopyroxene Subgroup'-
'Bloodstone'-SiO2
'Chabazite'-
'Tourmaline
var. Achroite'
-A(D3)G6(T6O18)(BO3)3X3Z
'var. Rubellite'-A(D3)G6(T6O18)(BO3)3X3Z

List of minerals for each chemical element

HHydrogen
H Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
H Allanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
H AlleghanyiteMn52+(SiO4)2(OH)2
H Allophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
H Alum GroupXAl(SO4)2 · 12H2O
H Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
H AnalcimeNa(AlSi2O6) · H2O
H AnnabergiteNi3(AsO4)2 · 8H2O
H AnniteKFe32+(AlSi3O10)(OH)2
H Anthophyllite◻{Mg2}{Mg5}(Si8O22)(OH)2
H AntigoriteMg3(Si2O5)(OH)4
H Apophyllite GroupAB4[Si8O22]X · 8H2O
H Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
H AtacamiteCu2(OH)3Cl
H Aurichalcite(Zn,Cu)5(CO3)2(OH)6
H AutuniteCa(UO2)2(PO4)2 · 10-12H2O
H AzuriteCu3(CO3)2(OH)2
H AugeliteAl2(PO4)(OH)3
H BabingtoniteCa2(Fe,Mn)FeSi5O14(OH)
H BaveniteCa4Be2Al2Si9O26(OH)2
H BecquereliteCa(UO2)6O4(OH)6 · 8H2O
H BementiteMn7Si6O15(OH)8
H BerauniteFe63+(PO4)4O(OH)4 · 6H2O
H BertranditeBe4(Si2O7)(OH)2
H BismutoferriteFe23+Bi(SiO4)2(OH)
H BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
H Birnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
H BityiteCaLiAl2(AlBeSi2O10)(OH)2
H BrazilianiteNaAl3(PO4)2(OH)4
H BrochantiteCu4(SO4)(OH)6
H BruciteMg(OH)2
H Thorite var. Calciothorite(Th,Ca2)SiO4 · 3.5H2O
H CarnotiteK2(UO2)2(VO4)2 · 3H2O
H CaryopiliteMn32+Si2O5(OH)4
H CeladoniteK(MgFe3+◻)(Si4O10)(OH)2
H Cerite-(CeCa)(Ce7Ca2)◻Mg(SiO4)3(SiO3OH)4(OH)3
H ChalcanthiteCuSO4 · 5H2O
H ChrysotileMg3(Si2O5)(OH)4
H ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O, x < 1
H Churchite-(Y)Y(PO4) · 2H2O
H ClinochloreMg5Al(AlSi3O10)(OH)8
H Clinozoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
H CoffiniteU(SiO4) · nH2O
H Cookeite(LiAl4◻)[AlSi3O10](OH)8
H CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
H CrandalliteCaAl3(PO4)(PO3OH)(OH)6
H CronstedtiteFe22+Fe3+((Si,Fe3+)2O5)(OH)4
H Cummingtonite◻{Mg2}{Mg5}(Si8O22)(OH)2
H Davidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
H DevillineCaCu4(SO4)2(OH)6 · 3H2O
H Clinochlore var. Diabantite(Mg,Fe,Al)6((Si,Al)4O10)(OH)8
H DiadochiteFe23+(PO4)(SO4)(OH) · 6H2O
H DiasporeAlO(OH)
H Dickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
H DickiteAl2(Si2O5)(OH)4
H DraviteNaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
H DatoliteCaB(SiO4)(OH)
H ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
H EosphoriteMn2+Al(PO4)(OH)2 · H2O
H Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
H EpistilbiteCaAl2Si6O16 · 5H2O
H EpsomiteMgSO4 · 7H2O
H ErythriteCo3(AsO4)2 · 8H2O
H EuclaseBeAl(SiO4)(OH)
H Fahlunite(Mg,Fe)Al2Si3O10 · 2H2O
H FairfielditeCa2Mn2+(PO4)2 · 2H2O
H Axinite-(Fe)Ca2Fe2+Al2BSi4O15OH
H FerricopiapiteFe3+0.67Fe43+(SO4)6(OH)2 · 20H2O
H FerrimolybditeFe2(MoO4)3 · nH2O
H Ferro-actinolite◻Ca2Fe52+(Si8O22)(OH)2
H Ferro-hornblende◻Ca2(Fe42+Al)(Si7Al)O22(OH)2
H Fluorapophyllite-(K)KCa4(Si8O20)(F,OH) · 8H2O
H Foitite◻(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3(OH)
H FourmarieritePb(UO2)4O3(OH)4 · 4H2O
H Muscovite var. FuchsiteK(Al,Cr)3Si3O10(OH)2
H Gedrite◻{Mg2}{Mg3Al2}(Al2Si6O22)(OH)2
H GibbsiteAl(OH)3
H GobbinsiteNa5(Si11Al5)O32 · 11H2O
H Goethiteα-Fe3+O(OH)
H Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
H GoslariteZnSO4 · 7H2O
H Grayite(Th,Pb,Ca)(PO4) · H2O
H GroutiteMn3+O(OH)
H Grunerite◻{Fe22+}{Fe52+}(Si8O22)(OH)2
H GypsumCaSO4 · 2H2O
H HalloysiteAl2(Si2O5)(OH)4
H HalotrichiteFeAl2(SO4)4 · 22H2O
H HarmotomeBa2(Si12Al4)O32 · 12H2O
H HastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
H HemimorphiteZn4Si2O7(OH)2 · H2O
H Heulandite Subgroup(Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
H HexahydriteMgSO4 · 6H2O
H HureauliteMn52+(PO3OH)2(PO4)2 · 4H2O
H Opal var. Opal-ANSiO2 · nH2O
H HydroxylherderiteCaBe(PO4)(OH)
H HydrotungstiteWO3 · 2H2O
H HydroxylapatiteCa5(PO4)3(OH)
H HydrozinciteZn5(CO3)2(OH)6
H Muscovite var. IlliteK0.65Al2.0[Al0.65Si3.35O10](OH)2
H JarositeKFe33+(SO4)2(OH)6
H JohanniteCu(UO2)2(SO4)2(OH)2 · 8H2O
H Julgoldite-(Fe2+)Ca2Fe2+Fe23+[Si2O6OH][SiO4](OH)2(OH)
H KaoliniteAl2(Si2O5)(OH)4
H LandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
H LangiteCu4(SO4)(OH)6 · 2H2O
H LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
H LaumontiteCaAl2Si4O12 · 4H2O
H LazuliteMgAl2(PO4)2(OH)2
H Lepidocrociteγ-Fe3+O(OH)
H LinaritePbCu(SO4)(OH)2
H Lithiophorite(Al,Li)MnO2(OH)2
H LizarditeMg3(Si2O5)(OH)4
H LudlamiteFe32+(PO4)2 · 4H2O
H ManganiteMn3+O(OH)
H Magnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
H MalachiteCu2(CO3)(OH)2
H Fluorapatite var. Manganese-bearing Fluorapatite(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
H MargariteCaAl2(Al2Si2O10)(OH)2
H Masutomilite(K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2
H MelanteriteFe2+(H2O)6SO4 · H2O
H MesoliteNa2Ca2Si9Al6O30 · 8H2O
H MesseliteCa2Fe2+(PO4)2 · 2H2O
H Meta-autuniteCa(UO2)2(PO4)2 · 6H2O
H MetaswitzeriteMn32+(PO4)2 · 4H2O
H MetatorberniteCu(UO2)2(PO4)2 · 8H2O
H MilariteK(◻H2O)Ca2(Be2Al)[Si12O30]
H MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
H MontebrasiteLiAl(PO4)(OH)
H MoraesiteBe2(PO4)(OH) · 4H2O
H Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
H MoriniteNaCa2Al2(PO4)2(OH)F4 · 2H2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
H NacriteAl2(Si2O5)(OH)4
H NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
H NatroliteNa2Al2Si3O10 · 2H2O
H OpalSiO2 · nH2O
H Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
H Palygorskite◻Al2Mg22Si8O20(OH)2(H2O)4 · 4H2O
H ParagoniteNaAl2(AlSi3O10)(OH)2
H ParatacamiteCu3(Cu,Zn)(OH)6Cl2
H PargasiteNaCa2(Mg4Al)(Si6Al2)O22(OH)2
H PectoliteNaCa2Si3O8(OH)
H PhosphophylliteZn2Fe(PO4)2 · 4H2O
H PhosphuranyliteKCa(H3O)3(UO2)7(PO4)4O4 · 8H2O
H PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
H PhlogopiteKMg3(AlSi3O10)(OH)2
H PickeringiteMgAl2(SO4)4 · 22H2O
H Piemontite(CaCa)(AlAlMn3+)O[Si2O7][SiO4](OH)
H Pitticite(Fe, AsO4, H2O) (?)
H PlaneriteAl6(PO4)2(PO3OH)2(OH)8 · 4H2O
H PlumbogummitePbAl3(PO4)(PO3OH)(OH)6
H Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
H PrehniteCa2Al2Si3O10(OH)2
H PseudomalachiteCu5(PO4)2(OH)4
H Pumpellyite SubgroupCa2XAl2[Si2O6(OH)][SiO4](OH)2A
H Pumpellyite-(Mg)Ca2MgAl2(Si2O7)(SiO4)(OH)2 · H2O
H Pyrochlore GroupA2Nb2(O,OH)6Z
H PyrophylliteAl2Si4O10(OH)2
H Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
H Rhabdophane-(La)La(PO4) · H2O
H Rhabdophane-(Nd)Nd(PO4) · H2O
H Clinochlore var. Ripidolite(Mg,Fe,Al)6(Si,Al)4O10(OH)8
H RockbridgeiteFe2+Fe43+(PO4)3(OH)5
H Romanèchite(Ba,H2O)2(Mn4+,Mn3+)5O10
H Rosasite(Cu,Zn)2(CO3)(OH)2
H RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
H RozeniteFeSO4 · 4H2O
H SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
H SarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
H Muscovite var. SchernikiteKAl2(AlSi3O10)(OH)2
H SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
H ScoleciteCaAl2Si3O10 · 3H2O
H ScoroditeFe3+AsO4 · 2H2O
H ScorzaliteFe2+Al2(PO4)2(OH)2
H SepioliteMg4(Si6O15)(OH)2 · 6H2O
H StauroliteFe22+Al9Si4O23(OH)
H Talc var. SteatiteMg3(Si4O10)(OH)2
H StelleriteCa4(Si28Al8)O72 · 28H2O
H StewartiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
H Stilbite SubgroupM6-7[Al8-9Si27-28O72] · nH2O
H Stilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
H StrengiteFePO4 · 2H2O
H StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
H SwitzeriteMn32+(PO4)2 · 7H2O
H SzomolnokiteFeSO4 · H2O
H TalcMg3Si4O10(OH)2
H Tanteuxenite-(Y)Y(Ta,Nb,Ti)2(O,OH)6
H ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
H Thorite var. Thorogummite(Th,U)(SiO4)1-x(OH)4x
H Zoisite var. Thulite{Ca2}{Al,Mn33+}(Si2O7)(SiO4)O(OH)
H Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
H TopazAl2(SiO4)(F,OH)2
H TorberniteCu(UO2)2(PO4)2 · 12H2O
H Tremolite◻Ca2Mg5(Si8O22)(OH)2
H TriploiditeMn22+(PO4)(OH)
H TungstiteWO3 · H2O
H TyuyamuniteCa(UO2)2(VO4)2 · 5-8H2O
H Amphibole Supergroup var. UraliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
H Uranmicrolite (of Hogarth 1977)(Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
H UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
H Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
H VandendriesscheitePbU7O22 · 12H2O
H VivianiteFe2+Fe22+(PO4)2 · 8H2O
H VesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
H WarditeNaAl3(PO4)2(OH)4 · 2H2O
H WhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
H XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
H Zoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
H Gypsum var. SeleniteCaSO4 · 2H2O
H Chabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
H Heulandite-Ca(Ca,Na)5(Si27Al9)O72 · 26H2O
H Stilbite-CaNaCa4(Si27Al9)O72 · 28H2O
H Zircon var. CyrtoliteZr[(SiO4),(OH)4]
H Gypsum var. Satin Spar GypsumCaSO4 · 2H2O
H Muscovite var. DamouriteKAl2(AlSi3O10)(OH)2
H Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
H Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
H Elaterite(C,H,O,S)
H Epidote var. Tawmawite{Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
H Amphibole Supergroup var. ByssoliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
H Oxy-draviteNa(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
H Serpentine SubgroupD3[Si2O5](OH)4
H Ferri-ghoseite◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
H Serpentine Subgroup var. PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
H Clinozoisite var. Clinothulite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
H Hydrokenoelsmoreite2W2O6(H2O)
H FerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
H ApatiteCa5(PO4)3(Cl/F/OH)
H Pumpellyite GroupCa2XZ2[Si2O6(OH)][SiO4](OH)2A
H Opal var. HyaliteSiO2 · nH2O
H ChalcoditeK(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
H Julgoldite SubgroupCa2XFe23+[Si2O6(OH)][SiO4](OH)2A
H Allanite Group(A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
H FerroberauniteFe2+Fe53+(PO4)4(OH)5 · 6H2O
LiLithium
Li AmblygoniteLiAl(PO4)F
Li BityiteCaLiAl2(AlBeSi2O10)(OH)2
Li Cookeite(LiAl4◻)[AlSi3O10](OH)8
Li ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Li EucryptiteLiAlSiO4
Li Triphylite var. FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
Li Spodumene var. KunziteLiAlSi2O6
Li LithiophiliteLiMn2+PO4
Li Lithiophorite(Al,Li)MnO2(OH)2
Li Masutomilite(K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2
Li MontebrasiteLiAl(PO4)(OH)
Li Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Li PetaliteLiAl(Si4O10)
Li Lithiophilite var. SickleriteLi1-x(Mnx3+Mn2+1-x)PO4
Li SpodumeneLiAlSi2O6
Li TriphyliteLiFe2+PO4
BeBeryllium
Be Beryl var. AquamarineBe3Al2Si6O18
Be BaveniteCa4Be2Al2Si9O26(OH)2
Be BazziteBe3Sc2(Si6O18)
Be BertranditeBe4(Si2O7)(OH)2
Be BityiteCaLiAl2(AlBeSi2O10)(OH)2
Be BerylBe3Al2(Si6O18)
Be ChrysoberylBeAl2O4
Be Beryl var. EmeraldBe3Al2(Si6O18)
Be EuclaseBeAl(SiO4)(OH)
Be HelvineBe3Mn42+(SiO4)3S
Be HerderiteCaBe(PO4)F
Be HydroxylherderiteCaBe(PO4)(OH)
Be MilariteK(◻H2O)Ca2(Be2Al)[Si12O30]
Be MoraesiteBe2(PO4)(OH) · 4H2O
Be Beryl var. MorganiteBe3Al2(Si6O18)
Be PhenakiteBe2SiO4
Be RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Be Beryl var. HeliodorBe3Al2(Si6O18)
Be Beryl var. GosheniteBe3Al2(Si6O18)
BBoron
B Tourmaline var. AchroiteA(D3)G6(T6O18)(BO3)3X3Z
B DanburiteCaB2Si2O8
B DraviteNaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
B DumortieriteAl(Al2O)(Al2O)2(SiO4)3(BO3)
B DatoliteCaB(SiO4)(OH)
B ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
B Axinite-(Fe)Ca2Fe2+Al2BSi4O15OH
B Foitite◻(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3(OH)
B IndicoliteA(D3)G6(T6O18)(BO3)3X3Z
B Tourmaline var. RubelliteA(D3)G6(T6O18)(BO3)3X3Z
B SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
B TourmalineAD3G6 (T6O18)(BO3)3X3Z
B Tourmaline var. VerdeliteA(D3)G6(T6O18)(BO3)3X3Z
B Tourmaline var. Watermelon TourmalineA(D3)G6(T6O18)(BO3)3X3Z
B Oxy-draviteNa(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
CCarbon
C AnkeriteCa(Fe2+,Mg)(CO3)2
C AragoniteCaCO3
C Aurichalcite(Zn,Cu)5(CO3)2(OH)6
C AzuriteCu3(CO3)2(OH)2
C Bastnäsite-(Ce)Ce(CO3)F
C BeyeriteCa(BiO)2(CO3)2
C Bismutite(BiO)2CO3
C Magnesite var. Iron-bearing Magnesite(Mg,Fe)CO3
C CalciteCaCO3
C CerussitePbCO3
C DiamondC
C DolomiteCaMg(CO3)2
C GraphiteC
C HydrozinciteZn5(CO3)2(OH)6
C KutnohoriteCaMn2+(CO3)2
C MagnesiteMgCO3
C MalachiteCu2(CO3)(OH)2
C MeioniteCa4Al6Si6O24CO3
C RhodochrositeMnCO3
C Rosasite(Cu,Zn)2(CO3)(OH)2
C Rutherfordine(UO2)CO3
C SarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
C SideriteFeCO3
C SmithsoniteZnCO3
C SpurriteCa5(SiO4)2(CO3)
C Synchysite-(Y)CaY(CO3)2F
C ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
C SynchysiteCa(Ce/Nd/Y/REE)(CO3)2F
C Elaterite(C,H,O,S)
C Calcite var. Iron-bearing Calcite(Ca,Fe)CO3
C Dolomite var. Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
OOxygen
O Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
O K Feldspar var. AdulariaKAlSi3O8
O AegirineNaFe3+Si2O6
O Aegirine-augite(NaaCabFec2+Mgd)(Fee3+AlfFeg2+Mgh)Si2O6
O AlbiteNa(AlSi3O8)
O Allanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
O AlleghanyiteMn52+(SiO4)2(OH)2
O Allophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
O Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
O Alum GroupXAl(SO4)2 · 12H2O
O Microcline var. AmazoniteK(AlSi3O8)
O AmblygoniteLiAl(PO4)F
O Quartz var. AmethystSiO2
O Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
O AnalcimeNa(AlSi2O6) · H2O
O AnataseTiO2
O AndalusiteAl2(SiO4)O
O Albite var. Andesine(Na,Ca)[Al(Si,Al)Si2O8]
O AndraditeCa3Fe23+(SiO4)3
O AnglesitePbSO4
O AnhydriteCaSO4
O AnkeriteCa(Fe2+,Mg)(CO3)2
O AnnabergiteNi3(AsO4)2 · 8H2O
O AnniteKFe32+(AlSi3O10)(OH)2
O AnorthiteCa(Al2Si2O8)
O Anthophyllite◻{Mg2}{Mg5}(Si8O22)(OH)2
O AntigoriteMg3(Si2O5)(OH)4
O Apophyllite GroupAB4[Si8O22]X · 8H2O
O Beryl var. AquamarineBe3Al2Si6O18
O ArsenoliteAs2O3
O AragoniteCaCO3
O Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
O AtacamiteCu2(OH)3Cl
O Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
O Aurichalcite(Zn,Cu)5(CO3)2(OH)6
O AutuniteCa(UO2)2(PO4)2 · 10-12H2O
O AzuriteCu3(CO3)2(OH)2
O AugeliteAl2(PO4)(OH)3
O AlmandineFe32+Al2(SiO4)3
O Tourmaline var. AchroiteA(D3)G6(T6O18)(BO3)3X3Z
O BabingtoniteCa2(Fe,Mn)FeSi5O14(OH)
O BaryteBaSO4
O Bastnäsite-(Ce)Ce(CO3)F
O BaveniteCa4Be2Al2Si9O26(OH)2
O BazziteBe3Sc2(Si6O18)
O BecquereliteCa(UO2)6O4(OH)6 · 8H2O
O BementiteMn7Si6O15(OH)8
O BerauniteFe63+(PO4)4O(OH)4 · 6H2O
O BertranditeBe4(Si2O7)(OH)2
O BeyeriteCa(BiO)2(CO3)2
O BismutotantaliteBi(Ta,Nb)O4
O BismutoferriteFe23+Bi(SiO4)2(OH)
O BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
O Birnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
O BismiteBi2O3
O Bismutite(BiO)2CO3
O BityiteCaLiAl2(AlBeSi2O10)(OH)2
O BrazilianiteNaAl3(PO4)2(OH)4
O Magnesite var. Iron-bearing Magnesite(Mg,Fe)CO3
O BrochantiteCu4(SO4)(OH)6
O BrookiteTiO2
O BustamiteCaMn2+(Si2O6)
O Anorthite var. Bytownite(Ca,Na)[Al(Al,Si)Si2O8]
O BerylBe3Al2(Si6O18)
O BruciteMg(OH)2
O Thorite var. Calciothorite(Th,Ca2)SiO4 · 3.5H2O
O CalciteCaCO3
O CarnotiteK2(UO2)2(VO4)2 · 3H2O
O CaryopiliteMn32+Si2O5(OH)4
O CassiteriteSnO2
O CeladoniteK(MgFe3+◻)(Si4O10)(OH)2
O CelestineSrSO4
O Cerite-(CeCa)(Ce7Ca2)◻Mg(SiO4)3(SiO3OH)4(OH)3
O CerussitePbCO3
O ChalcanthiteCuSO4 · 5H2O
O Quartz var. ChalcedonySiO2
O ChrysotileMg3(Si2O5)(OH)4
O Cuprite var. ChalcotrichiteCu2O
O ChondroditeMg5(SiO4)2F2
O ChromiteFe2+Cr23+O4
O ChrysoberylBeAl2O4
O ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O, x < 1
O Churchite-(Y)Y(PO4) · 2H2O
O Quartz var. CitrineSiO2
O ClaudetiteAs2O3
O ClinochloreMg5Al(AlSi3O10)(OH)8
O Clinozoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
O CoffiniteU(SiO4) · nH2O
O Cookeite(LiAl4◻)[AlSi3O10](OH)8
O CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
O Cordierite(Mg,Fe)2Al3(AlSi5O18)
O CorundumAl2O3
O CrandalliteCaAl3(PO4)(PO3OH)(OH)6
O CronstedtiteFe22+Fe3+((Si,Fe3+)2O5)(OH)4
O CryptomelaneK(Mn74+Mn3+)O16
O Cummingtonite◻{Mg2}{Mg5}(Si8O22)(OH)2
O CupriteCu2O
O DanburiteCaB2Si2O8
O Davidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
O DevillineCaCu4(SO4)2(OH)6 · 3H2O
O Clinochlore var. Diabantite(Mg,Fe,Al)6((Si,Al)4O10)(OH)8
O DiadochiteFe23+(PO4)(SO4)(OH) · 6H2O
O DiasporeAlO(OH)
O Dickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
O DickiteAl2(Si2O5)(OH)4
O DiopsideCaMgSi2O6
O DolomiteCaMg(CO3)2
O DraviteNaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
O DumortieriteAl(Al2O)(Al2O)2(SiO4)3(BO3)
O DatoliteCaB(SiO4)(OH)
O ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
O Beryl var. EmeraldBe3Al2(Si6O18)
O EnstatiteMg2Si2O6
O EosphoriteMn2+Al(PO4)(OH)2 · H2O
O Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
O EpistilbiteCaAl2Si6O16 · 5H2O
O EpsomiteMgSO4 · 7H2O
O ErythriteCo3(AsO4)2 · 8H2O
O EuclaseBeAl(SiO4)(OH)
O EucryptiteLiAlSiO4
O Euxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
O Fahlunite(Mg,Fe)Al2Si3O10 · 2H2O
O FairfielditeCa2Mn2+(PO4)2 · 2H2O
O Axinite-(Fe)Ca2Fe2+Al2BSi4O15OH
O FerberiteFeWO4
O FerricopiapiteFe3+0.67Fe43+(SO4)6(OH)2 · 20H2O
O FerrimolybditeFe2(MoO4)3 · nH2O
O Triphylite var. FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
O Ferro-actinolite◻Ca2Fe52+(Si8O22)(OH)2
O Columbite-(Fe)Fe2+Nb2O6
O Ferro-hornblende◻Ca2(Fe42+Al)(Si7Al)O22(OH)2
O Tantalite-(Fe)Fe2+Ta2O6
O Tapiolite-(Fe)Fe2+Ta2O6
O FillowiteNa3CaMn112+(PO4)9
O FluorapatiteCa5(PO4)3F
O Fluorapophyllite-(K)KCa4(Si8O20)(F,OH) · 8H2O
O Foitite◻(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3(OH)
O ForsteriteMg2SiO4
O FourmarieritePb(UO2)4O3(OH)4 · 4H2O
O Muscovite var. FuchsiteK(Al,Cr)3Si3O10(OH)2
O GahniteZnAl2O4
O GalaxiteMn2+Al2O4
O Gedrite◻{Mg2}{Mg3Al2}(Al2Si6O22)(OH)2
O GehleniteCa2Al[AlSiO7]
O GibbsiteAl(OH)3
O GobbinsiteNa5(Si11Al5)O32 · 11H2O
O Goethiteα-Fe3+O(OH)
O Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
O GoslariteZnSO4 · 7H2O
O GraftoniteFe2+Fe22+(PO4)2
O Grayite(Th,Pb,Ca)(PO4) · H2O
O GrossularCa3Al2(SiO4)3
O GroutiteMn3+O(OH)
O Grunerite◻{Fe22+}{Fe52+}(Si8O22)(OH)2
O GypsumCaSO4 · 2H2O
O HalloysiteAl2(Si2O5)(OH)4
O HalotrichiteFeAl2(SO4)4 · 22H2O
O HarmotomeBa2(Si12Al4)O32 · 12H2O
O HastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
O HedenbergiteCaFe2+Si2O6
O HelvineBe3Mn42+(SiO4)3S
O HematiteFe2O3
O HemimorphiteZn4Si2O7(OH)2 · H2O
O HerderiteCaBe(PO4)F
O Grossular var. HessoniteCa3Al2(SiO4)3
O Heterosite(Fe3+,Mn3+)PO4
O Heulandite Subgroup(Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
O HexahydriteMgSO4 · 6H2O
O HübneriteMnWO4
O HureauliteMn52+(PO3OH)2(PO4)2 · 4H2O
O Opal var. Opal-ANSiO2 · nH2O
O Microcline var. Hyalophane(K,Ba)[Al(Si,Al)Si2O8]
O HydroxylherderiteCaBe(PO4)(OH)
O HydrotungstiteWO3 · 2H2O
O HydroxylapatiteCa5(PO4)3(OH)
O HydrozinciteZn5(CO3)2(OH)6
O Hypersthene(Mg,Fe)SiO3
O Muscovite var. IlliteK0.65Al2.0[Al0.65Si3.35O10](OH)2
O IlmeniteFe2+TiO3
O IndicoliteA(D3)G6(T6O18)(BO3)3X3Z
O IshikawaiteU4+Fe2+Nb2O8
O JacobsiteMn2+Fe23+O4
O JarositeKFe33+(SO4)2(OH)6
O JohanniteCu(UO2)2(SO4)2(OH)2 · 8H2O
O JohannseniteCaMn2+Si2O6
O Julgoldite-(Fe2+)Ca2Fe2+Fe23+[Si2O6OH][SiO4](OH)2(OH)
O KaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
O KaoliniteAl2(Si2O5)(OH)4
O Spodumene var. KunziteLiAlSi2O6
O KutnohoriteCaMn2+(CO3)2
O KyaniteAl2(SiO4)O
O Anorthite var. Labradorite(Ca,Na)[Al(Al,Si)Si2O8]
O LacroixiteNaAl(PO4)F
O LandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
O LangiteCu4(SO4)(OH)6 · 2H2O
O LarniteCa2SiO4
O LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
O LaumontiteCaAl2Si4O12 · 4H2O
O LazuliteMgAl2(PO4)2(OH)2
O LechatelieriteSiO2
O Lepidocrociteγ-Fe3+O(OH)
O LiandratiteU(Nb,Ta)2O8
O LinaritePbCu(SO4)(OH)2
O LithiophiliteLiMn2+PO4
O Lithiophorite(Al,Li)MnO2(OH)2
O LizarditeMg3(Si2O5)(OH)4
O LudlamiteFe32+(PO4)2 · 4H2O
O LithargePbO
O MagnesiteMgCO3
O ManganiteMn3+O(OH)
O Columbite-(Mn)Mn2+Nb2O6
O Tantalite-(Mn)Mn2+Ta2O6
O Magnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
O Maghemite(Fe3+0.670.33)Fe23+O4
O MagnetiteFe2+Fe23+O4
O MalachiteCu2(CO3)(OH)2
O Ilmenite var. Iron(III)-bearing Ilmenite(Fe2+,Fe3+)TiO3
O Fluorapatite var. Manganese-bearing Fluorapatite(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
O MargariteCaAl2(Al2Si2O10)(OH)2
O MarialiteNa4Al3Si9O24Cl
O MassicotPbO
O Masutomilite(K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2
O MeioniteCa4Al6Si6O24CO3
O MelanteriteFe2+(H2O)6SO4 · H2O
O MesoliteNa2Ca2Si9Al6O30 · 8H2O
O MesseliteCa2Fe2+(PO4)2 · 2H2O
O Meta-autuniteCa(UO2)2(PO4)2 · 6H2O
O MetaswitzeriteMn32+(PO4)2 · 4H2O
O MetatorberniteCu(UO2)2(PO4)2 · 8H2O
O MicroclineK(AlSi3O8)
O MilariteK(◻H2O)Ca2(Be2Al)[Si12O30]
O MimetitePb5(AsO4)3Cl
O MiniumPb3O4
O MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
O MonaziteREE(PO4)
O Monazite-(Ce)Ce(PO4)
O MontebrasiteLiAl(PO4)(OH)
O MoraesiteBe2(PO4)(OH) · 4H2O
O Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
O Beryl var. MorganiteBe3Al2(Si6O18)
O MoriniteNaCa2Al2(PO4)2(OH)F4 · 2H2O
O MuscoviteKAl2(AlSi3O10)(OH)2
O Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
O NacriteAl2(Si2O5)(OH)4
O NatrophiliteNaMn2+PO4
O NephelineNa3K(Al4Si4O16)
O NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
O NatroliteNa2Al2Si3O10 · 2H2O
O Albite var. Oligoclase(Na,Ca)[Al(Si,Al)Si2O8]
O OpalSiO2 · nH2O
O OrthoclaseK(AlSi3O8)
O Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
O Palygorskite◻Al2Mg22Si8O20(OH)2(H2O)4 · 4H2O
O ParagoniteNaAl2(AlSi3O10)(OH)2
O ParatacamiteCu3(Cu,Zn)(OH)6Cl2
O PargasiteNaCa2(Mg4Al)(Si6Al2)O22(OH)2
O ParsonsitePb2(UO2)(PO4)2
O PectoliteNaCa2Si3O8(OH)
O PetaliteLiAl(Si4O10)
O PetscheckiteUFe(Nb,Ta)2O8
O PhosphophylliteZn2Fe(PO4)2 · 4H2O
O PhosphuranyliteKCa(H3O)3(UO2)7(PO4)4O4 · 8H2O
O PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
O PhenakiteBe2SiO4
O PhlogopiteKMg3(AlSi3O10)(OH)2
O PickeringiteMgAl2(SO4)4 · 22H2O
O Piemontite(CaCa)(AlAlMn3+)O[Si2O7][SiO4](OH)
O Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
O Pitticite(Fe, AsO4, H2O) (?)
O PlaneriteAl6(PO4)2(PO3OH)2(OH)8 · 4H2O
O PlattneritePbO2
O PlumbogummitePbAl3(PO4)(PO3OH)(OH)6
O Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
O PowelliteCa(MoO4)
O PrehniteCa2Al2Si3O10(OH)2
O PseudomalachiteCu5(PO4)2(OH)4
O Pumpellyite SubgroupCa2XAl2[Si2O6(OH)][SiO4](OH)2A
O Pumpellyite-(Mg)Ca2MgAl2(Si2O7)(SiO4)(OH)2 · H2O
O PurpuriteMn3+(PO4)
O Pyrochlore GroupA2Nb2(O,OH)6Z
O PyrolusiteMn4+O2
O PyromorphitePb5(PO4)3Cl
O PyropeMg3Al2(SiO4)3
O PyrophaniteMn2+TiO3
O PyrophylliteAl2Si4O10(OH)2
O PyroxmangiteMn2+SiO3
O QuartzSiO2
O Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
O Rhabdophane-(La)La(PO4) · H2O
O Rhabdophane-(Nd)Nd(PO4) · H2O
O RhodochrositeMnCO3
O RhodoniteCaMn3Mn[Si5O15]
O Clinochlore var. Ripidolite(Mg,Fe,Al)6(Si,Al)4O10(OH)8
O RockbridgeiteFe2+Fe43+(PO4)3(OH)5
O Romanèchite(Ba,H2O)2(Mn4+,Mn3+)5O10
O Rosasite(Cu,Zn)2(CO3)(OH)2
O RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
O Quartz var. Rose QuartzSiO2
O RozeniteFeSO4 · 4H2O
O Tourmaline var. RubelliteA(D3)G6(T6O18)(BO3)3X3Z
O Rutherfordine(UO2)CO3
O Quartz var. Rutilated QuartzSiO2
O RutileTiO2
O Samarskite-(Y)YFe3+Nb2O8
O SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
O Corundum var. SapphireAl2O3
O SarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
O ScheeliteCa(WO4)
O Muscovite var. SchernikiteKAl2(AlSi3O10)(OH)2
O SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
O ScoleciteCaAl2Si3O10 · 3H2O
O ScoroditeFe3+AsO4 · 2H2O
O ScorzaliteFe2+Al2(PO4)2(OH)2
O SepioliteMg4(Si6O15)(OH)2 · 6H2O
O Lithiophilite var. SickleriteLi1-x(Mnx3+Mn2+1-x)PO4
O SideriteFeCO3
O SillimaniteAl2(SiO4)O
O SilléniteBi12SiO20
O SmithsoniteZnCO3
O Quartz var. Smoky QuartzSiO2
O SodaliteNa4(Si3Al3)O12Cl
O SpessartineMn32+Al2(SiO4)3
O SpinelMgAl2O4
O SpodumeneLiAlSi2O6
O SpurriteCa5(SiO4)2(CO3)
O StauroliteFe22+Al9Si4O23(OH)
O Talc var. SteatiteMg3(Si4O10)(OH)2
O StelleriteCa4(Si28Al8)O72 · 28H2O
O StewartiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
O Stilbite SubgroupM6-7[Al8-9Si27-28O72] · nH2O
O Stilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
O StrengiteFePO4 · 2H2O
O StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
O Rutile var. Strüverite(Ti,Ta,Fe)O2
O SwitzeriteMn32+(PO4)2 · 7H2O
O Synchysite-(Y)CaY(CO3)2F
O SzomolnokiteFeSO4 · H2O
O TalcMg3Si4O10(OH)2
O Tantalite(Mn,Fe)(Ta,Nb)2O6
O Tanteuxenite-(Y)Y(Ta,Nb,Ti)2(O,OH)6
O Tapiolite(Fe,Mn)(Ta,Nb)2O6
O TephroiteMn22+SiO4
O ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
O ThoriteTh(SiO4)
O Thorite var. Thorogummite(Th,U)(SiO4)1-x(OH)4x
O Zoisite var. Thulite{Ca2}{Al,Mn33+}(Si2O7)(SiO4)O(OH)
O TitaniteCaTi(SiO4)O
O Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
O TopazAl2(SiO4)(F,OH)2
O TorberniteCu(UO2)2(PO4)2 · 12H2O
O TourmalineAD3G6 (T6O18)(BO3)3X3Z
O Tremolite◻Ca2Mg5(Si8O22)(OH)2
O TridymiteSiO2
O TriphyliteLiFe2+PO4
O TripliteMn22+(PO4)F
O TriploiditeMn22+(PO4)(OH)
O TungstiteWO3 · H2O
O TyuyamuniteCa(UO2)2(VO4)2 · 5-8H2O
O Amphibole Supergroup var. UraliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
O UraniniteUO2
O Uranmicrolite (of Hogarth 1977)(Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
O UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
O Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
O VanadinitePb5(VO4)3Cl
O VandendriesscheitePbU7O22 · 12H2O
O Tourmaline var. VerdeliteA(D3)G6(T6O18)(BO3)3X3Z
O VivianiteFe2+Fe22+(PO4)2 · 8H2O
O VesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
O WarditeNaAl3(PO4)2(OH)4 · 2H2O
O WhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
O WillemiteZn2SiO4
O WodginiteMn2+Sn4+Ta2O8
O WulfenitePb(MoO4)
O WollastoniteCa3(Si3O9)
O Xenotime-(Y)Y(PO4)
O XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
O Yttrocolumbite-(Y)Y(U4+,Fe2+)Nb2O8
O ZirconZr(SiO4)
O Zoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
O Albite var. PeristeriteNa(AlSi3O8)
O Enstatite var. Bronzite(Mg,Fe2+)2[SiO3]2
O Gypsum var. SeleniteCaSO4 · 2H2O
O Hematite var. SpeculariteFe2O3
O Quartz var. Rock CrystalSiO2
O Quartz var. Milky QuartzSiO2
O Almandine-Pyrope Series var. RhodoliteMg3Al2(SiO4)3
O Beryl var. HeliodorBe3Al2(Si6O18)
O Zircon var. CalyptoliteZr(SiO4)
O Chabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
O Heulandite-Ca(Ca,Na)5(Si27Al9)O72 · 26H2O
O Stilbite-CaNaCa4(Si27Al9)O72 · 28H2O
O Ixiolite-(Mn2+)-Ixiolite-(Fe2+) Series var. Wolframoixiolite(Nb,W,Ta,Fe,Mn)2O4
O Andradite var. MelaniteCa3(Fe3+,Ti)2(SiO4)3
O SynchysiteCa(Ce/Nd/Y/REE)(CO3)2F
O Zircon var. CyrtoliteZr[(SiO4),(OH)4]
O Andradite var. TopazoliteCa3Fe23+(SiO4)3
O Beryl var. GosheniteBe3Al2(Si6O18)
O Quartz var. SardonyxSiO2
O Quartz var. SardSiO2
O BloodstoneSiO2
O Quartz var. Sceptre QuartzSiO2
O Albite var. CleavelanditeNa(AlSi3O8)
O Forsterite var. PeridotMg2SiO4
O Gypsum var. Satin Spar GypsumCaSO4 · 2H2O
O Muscovite var. DamouriteKAl2(AlSi3O10)(OH)2
O Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
O Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
O Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
O Elaterite(C,H,O,S)
O Pyroxene GroupADSi2O6
O Titanite var. Lederite (of Shepard)CaTi(SiO4)O
O Epidote var. Tawmawite{Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
O Garnet GroupX3Z2(SiO4)3
O Calcite var. Iron-bearing Calcite(Ca,Fe)CO3
O Amphibole Supergroup var. ByssoliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
O Tourmaline var. Watermelon TourmalineA(D3)G6(T6O18)(BO3)3X3Z
O Oxy-draviteNa(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
O Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
O Augite var. Titanium-bearing Augite(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
O Dolomite var. Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
O Serpentine SubgroupD3[Si2O5](OH)4
O Ferri-ghoseite◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
O Quartz var. Blue QuartzSiO2
O Hematite var. Iron RoseFe2O3
O Serpentine Subgroup var. PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
O Clinozoisite var. Clinothulite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
O Quartz var. Ferruginous QuartzSiO2
O Hydrokenoelsmoreite2W2O6(H2O)
O FerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
O ApatiteCa5(PO4)3(Cl/F/OH)
O Pumpellyite GroupCa2XZ2[Si2O6(OH)][SiO4](OH)2A
O Opal var. HyaliteSiO2 · nH2O
O ChalcoditeK(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
O Julgoldite SubgroupCa2XFe23+[Si2O6(OH)][SiO4](OH)2A
O Diopside var. CanaaniteCaMgSi2O6
O Allanite Group(A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
O FerroberauniteFe2+Fe53+(PO4)4(OH)5 · 6H2O
FFluorine
F AmblygoniteLiAl(PO4)F
F Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
F Bastnäsite-(Ce)Ce(CO3)F
F BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
F Fluorite var. ChlorophaneCaF2
F ChondroditeMg5(SiO4)2F2
F Davidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
F FluorapatiteCa5(PO4)3F
F Fluorapophyllite-(K)KCa4(Si8O20)(F,OH) · 8H2O
F FluoriteCaF2
F HerderiteCaBe(PO4)F
F LacroixiteNaAl(PO4)F
F Fluorapatite var. Manganese-bearing Fluorapatite(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
F Masutomilite(K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2
F MoriniteNaCa2Al2(PO4)2(OH)F4 · 2H2O
F Synchysite-(Y)CaY(CO3)2F
F TopazAl2(SiO4)(F,OH)2
F TripliteMn22+(PO4)F
F Amphibole Supergroup var. UraliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
F Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
F SynchysiteCa(Ce/Nd/Y/REE)(CO3)2F
F Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
F Amphibole Supergroup var. ByssoliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
F ApatiteCa5(PO4)3(Cl/F/OH)
NaSodium
Na AegirineNaFe3+Si2O6
Na Aegirine-augite(NaaCabFec2+Mgd)(Fee3+AlfFeg2+Mgh)Si2O6
Na AlbiteNa(AlSi3O8)
Na Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Na AnalcimeNa(AlSi2O6) · H2O
Na Albite var. Andesine(Na,Ca)[Al(Si,Al)Si2O8]
Na Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
Na Birnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Na BrazilianiteNaAl3(PO4)2(OH)4
Na Anorthite var. Bytownite(Ca,Na)[Al(Al,Si)Si2O8]
Na Dickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
Na DraviteNaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
Na ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Na FillowiteNa3CaMn112+(PO4)9
Na GobbinsiteNa5(Si11Al5)O32 · 11H2O
Na Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
Na HastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
Na Heulandite Subgroup(Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
Na KaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
Na Anorthite var. Labradorite(Ca,Na)[Al(Al,Si)Si2O8]
Na LacroixiteNaAl(PO4)F
Na MarialiteNa4Al3Si9O24Cl
Na MeioniteCa4Al6Si6O24CO3
Na MesoliteNa2Ca2Si9Al6O30 · 8H2O
Na Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Na MoriniteNaCa2Al2(PO4)2(OH)F4 · 2H2O
Na Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Na NatrophiliteNaMn2+PO4
Na NephelineNa3K(Al4Si4O16)
Na NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Na NatroliteNa2Al2Si3O10 · 2H2O
Na Albite var. Oligoclase(Na,Ca)[Al(Si,Al)Si2O8]
Na Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Na ParagoniteNaAl2(AlSi3O10)(OH)2
Na PargasiteNaCa2(Mg4Al)(Si6Al2)O22(OH)2
Na PectoliteNaCa2Si3O8(OH)
Na Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
Na SarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
Na SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Na SodaliteNa4(Si3Al3)O12Cl
Na Stilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
Na Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Na Uranmicrolite (of Hogarth 1977)(Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
Na WarditeNaAl3(PO4)2(OH)4 · 2H2O
Na Albite var. PeristeriteNa(AlSi3O8)
Na Chabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
Na Heulandite-Ca(Ca,Na)5(Si27Al9)O72 · 26H2O
Na Stilbite-CaNaCa4(Si27Al9)O72 · 28H2O
Na Albite var. CleavelanditeNa(AlSi3O8)
Na Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Na Oxy-draviteNa(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
Na Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Na Augite var. Titanium-bearing Augite(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
Na Ferri-ghoseite◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
MgMagnesium
Mg Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Mg Aegirine-augite(NaaCabFec2+Mgd)(Fee3+AlfFeg2+Mgh)Si2O6
Mg Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Mg AnkeriteCa(Fe2+,Mg)(CO3)2
Mg Anthophyllite◻{Mg2}{Mg5}(Si8O22)(OH)2
Mg AntigoriteMg3(Si2O5)(OH)4
Mg Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Mg BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Mg Magnesite var. Iron-bearing Magnesite(Mg,Fe)CO3
Mg BruciteMg(OH)2
Mg CeladoniteK(MgFe3+◻)(Si4O10)(OH)2
Mg Cerite-(CeCa)(Ce7Ca2)◻Mg(SiO4)3(SiO3OH)4(OH)3
Mg ChrysotileMg3(Si2O5)(OH)4
Mg ChondroditeMg5(SiO4)2F2
Mg ClinochloreMg5Al(AlSi3O10)(OH)8
Mg Cordierite(Mg,Fe)2Al3(AlSi5O18)
Mg Cummingtonite◻{Mg2}{Mg5}(Si8O22)(OH)2
Mg Clinochlore var. Diabantite(Mg,Fe,Al)6((Si,Al)4O10)(OH)8
Mg DiopsideCaMgSi2O6
Mg DolomiteCaMg(CO3)2
Mg DraviteNaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
Mg EnstatiteMg2Si2O6
Mg EpsomiteMgSO4 · 7H2O
Mg Fahlunite(Mg,Fe)Al2Si3O10 · 2H2O
Mg ForsteriteMg2SiO4
Mg Gedrite◻{Mg2}{Mg3Al2}(Al2Si6O22)(OH)2
Mg HexahydriteMgSO4 · 6H2O
Mg Hypersthene(Mg,Fe)SiO3
Mg KaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
Mg LazuliteMgAl2(PO4)2(OH)2
Mg LizarditeMg3(Si2O5)(OH)4
Mg MagnesiteMgCO3
Mg Magnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
Mg Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Mg Palygorskite◻Al2Mg22Si8O20(OH)2(H2O)4 · 4H2O
Mg PargasiteNaCa2(Mg4Al)(Si6Al2)O22(OH)2
Mg PhlogopiteKMg3(AlSi3O10)(OH)2
Mg PickeringiteMgAl2(SO4)4 · 22H2O
Mg Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Mg Pumpellyite-(Mg)Ca2MgAl2(Si2O7)(SiO4)(OH)2 · H2O
Mg PyropeMg3Al2(SiO4)3
Mg Clinochlore var. Ripidolite(Mg,Fe,Al)6(Si,Al)4O10(OH)8
Mg SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Mg SepioliteMg4(Si6O15)(OH)2 · 6H2O
Mg SpinelMgAl2O4
Mg Talc var. SteatiteMg3(Si4O10)(OH)2
Mg Stilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
Mg TalcMg3Si4O10(OH)2
Mg Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Mg Tremolite◻Ca2Mg5(Si8O22)(OH)2
Mg VesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
Mg Enstatite var. Bronzite(Mg,Fe2+)2[SiO3]2
Mg Almandine-Pyrope Series var. RhodoliteMg3Al2(SiO4)3
Mg Forsterite var. PeridotMg2SiO4
Mg Oxy-draviteNa(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
Mg Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Mg Augite var. Titanium-bearing Augite(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
Mg Dolomite var. Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
Mg Ferri-ghoseite◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
Mg Serpentine Subgroup var. PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Mg FerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
Mg ChalcoditeK(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
Mg Diopside var. CanaaniteCaMgSi2O6
AlAluminium
Al K Feldspar var. AdulariaKAlSi3O8
Al Aegirine-augite(NaaCabFec2+Mgd)(Fee3+AlfFeg2+Mgh)Si2O6
Al AlbiteNa(AlSi3O8)
Al Allanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
Al Allophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Al Alum GroupXAl(SO4)2 · 12H2O
Al Microcline var. AmazoniteK(AlSi3O8)
Al AmblygoniteLiAl(PO4)F
Al Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Al AnalcimeNa(AlSi2O6) · H2O
Al AndalusiteAl2(SiO4)O
Al Albite var. Andesine(Na,Ca)[Al(Si,Al)Si2O8]
Al AnniteKFe32+(AlSi3O10)(OH)2
Al AnorthiteCa(Al2Si2O8)
Al Beryl var. AquamarineBe3Al2Si6O18
Al Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
Al AugeliteAl2(PO4)(OH)3
Al AlmandineFe32+Al2(SiO4)3
Al BaveniteCa4Be2Al2Si9O26(OH)2
Al BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Al BityiteCaLiAl2(AlBeSi2O10)(OH)2
Al BrazilianiteNaAl3(PO4)2(OH)4
Al Anorthite var. Bytownite(Ca,Na)[Al(Al,Si)Si2O8]
Al BerylBe3Al2(Si6O18)
Al ChrysoberylBeAl2O4
Al ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O, x < 1
Al ClinochloreMg5Al(AlSi3O10)(OH)8
Al Clinozoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
Al Cookeite(LiAl4◻)[AlSi3O10](OH)8
Al Cordierite(Mg,Fe)2Al3(AlSi5O18)
Al CorundumAl2O3
Al CrandalliteCaAl3(PO4)(PO3OH)(OH)6
Al Clinochlore var. Diabantite(Mg,Fe,Al)6((Si,Al)4O10)(OH)8
Al DiasporeAlO(OH)
Al Dickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
Al DickiteAl2(Si2O5)(OH)4
Al DraviteNaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
Al DumortieriteAl(Al2O)(Al2O)2(SiO4)3(BO3)
Al ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Al Beryl var. EmeraldBe3Al2(Si6O18)
Al EosphoriteMn2+Al(PO4)(OH)2 · H2O
Al Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Al EpistilbiteCaAl2Si6O16 · 5H2O
Al EuclaseBeAl(SiO4)(OH)
Al EucryptiteLiAlSiO4
Al Fahlunite(Mg,Fe)Al2Si3O10 · 2H2O
Al Axinite-(Fe)Ca2Fe2+Al2BSi4O15OH
Al Ferro-hornblende◻Ca2(Fe42+Al)(Si7Al)O22(OH)2
Al Foitite◻(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3(OH)
Al Muscovite var. FuchsiteK(Al,Cr)3Si3O10(OH)2
Al GahniteZnAl2O4
Al GalaxiteMn2+Al2O4
Al Gedrite◻{Mg2}{Mg3Al2}(Al2Si6O22)(OH)2
Al GehleniteCa2Al[AlSiO7]
Al GibbsiteAl(OH)3
Al GobbinsiteNa5(Si11Al5)O32 · 11H2O
Al Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
Al GrossularCa3Al2(SiO4)3
Al HalloysiteAl2(Si2O5)(OH)4
Al HalotrichiteFeAl2(SO4)4 · 22H2O
Al HarmotomeBa2(Si12Al4)O32 · 12H2O
Al HastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
Al Grossular var. HessoniteCa3Al2(SiO4)3
Al Heulandite Subgroup(Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
Al Microcline var. Hyalophane(K,Ba)[Al(Si,Al)Si2O8]
Al Muscovite var. IlliteK0.65Al2.0[Al0.65Si3.35O10](OH)2
Al KaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
Al KaoliniteAl2(Si2O5)(OH)4
Al Spodumene var. KunziteLiAlSi2O6
Al KyaniteAl2(SiO4)O
Al Anorthite var. Labradorite(Ca,Na)[Al(Al,Si)Si2O8]
Al LacroixiteNaAl(PO4)F
Al LaumontiteCaAl2Si4O12 · 4H2O
Al LazuliteMgAl2(PO4)2(OH)2
Al Lithiophorite(Al,Li)MnO2(OH)2
Al Magnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
Al MargariteCaAl2(Al2Si2O10)(OH)2
Al MarialiteNa4Al3Si9O24Cl
Al Masutomilite(K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2
Al MeioniteCa4Al6Si6O24CO3
Al MesoliteNa2Ca2Si9Al6O30 · 8H2O
Al MicroclineK(AlSi3O8)
Al MilariteK(◻H2O)Ca2(Be2Al)[Si12O30]
Al MontebrasiteLiAl(PO4)(OH)
Al Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Al Beryl var. MorganiteBe3Al2(Si6O18)
Al MoriniteNaCa2Al2(PO4)2(OH)F4 · 2H2O
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Al NacriteAl2(Si2O5)(OH)4
Al NephelineNa3K(Al4Si4O16)
Al NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Al NatroliteNa2Al2Si3O10 · 2H2O
Al Albite var. Oligoclase(Na,Ca)[Al(Si,Al)Si2O8]
Al OrthoclaseK(AlSi3O8)
Al Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Al Palygorskite◻Al2Mg22Si8O20(OH)2(H2O)4 · 4H2O
Al ParagoniteNaAl2(AlSi3O10)(OH)2
Al PargasiteNaCa2(Mg4Al)(Si6Al2)O22(OH)2
Al PetaliteLiAl(Si4O10)
Al PhlogopiteKMg3(AlSi3O10)(OH)2
Al PickeringiteMgAl2(SO4)4 · 22H2O
Al Piemontite(CaCa)(AlAlMn3+)O[Si2O7][SiO4](OH)
Al PlaneriteAl6(PO4)2(PO3OH)2(OH)8 · 4H2O
Al PlumbogummitePbAl3(PO4)(PO3OH)(OH)6
Al Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
Al PrehniteCa2Al2Si3O10(OH)2
Al Pumpellyite SubgroupCa2XAl2[Si2O6(OH)][SiO4](OH)2A
Al Pumpellyite-(Mg)Ca2MgAl2(Si2O7)(SiO4)(OH)2 · H2O
Al PyropeMg3Al2(SiO4)3
Al PyrophylliteAl2Si4O10(OH)2
Al Clinochlore var. Ripidolite(Mg,Fe,Al)6(Si,Al)4O10(OH)8
Al SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Al Corundum var. SapphireAl2O3
Al SarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
Al Muscovite var. SchernikiteKAl2(AlSi3O10)(OH)2
Al SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Al ScoleciteCaAl2Si3O10 · 3H2O
Al ScorzaliteFe2+Al2(PO4)2(OH)2
Al SillimaniteAl2(SiO4)O
Al SodaliteNa4(Si3Al3)O12Cl
Al SpessartineMn32+Al2(SiO4)3
Al SpinelMgAl2O4
Al SpodumeneLiAlSi2O6
Al StauroliteFe22+Al9Si4O23(OH)
Al StelleriteCa4(Si28Al8)O72 · 28H2O
Al Stilbite SubgroupM6-7[Al8-9Si27-28O72] · nH2O
Al Stilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
Al Zoisite var. Thulite{Ca2}{Al,Mn33+}(Si2O7)(SiO4)O(OH)
Al Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Al TopazAl2(SiO4)(F,OH)2
Al Amphibole Supergroup var. UraliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Al VesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
Al WarditeNaAl3(PO4)2(OH)4 · 2H2O
Al Zoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
Al Albite var. PeristeriteNa(AlSi3O8)
Al Almandine-Pyrope Series var. RhodoliteMg3Al2(SiO4)3
Al Beryl var. HeliodorBe3Al2(Si6O18)
Al Chabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
Al Heulandite-Ca(Ca,Na)5(Si27Al9)O72 · 26H2O
Al Stilbite-CaNaCa4(Si27Al9)O72 · 28H2O
Al Beryl var. GosheniteBe3Al2(Si6O18)
Al Albite var. CleavelanditeNa(AlSi3O8)
Al Muscovite var. DamouriteKAl2(AlSi3O10)(OH)2
Al Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
Al Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
Al Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Al Epidote var. Tawmawite{Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
Al Amphibole Supergroup var. ByssoliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Al Oxy-draviteNa(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
Al Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Al Augite var. Titanium-bearing Augite(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
Al Serpentine Subgroup var. PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Al Clinozoisite var. Clinothulite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Al FerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
Al ChalcoditeK(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
SiSilicon
Si Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Si K Feldspar var. AdulariaKAlSi3O8
Si AegirineNaFe3+Si2O6
Si Aegirine-augite(NaaCabFec2+Mgd)(Fee3+AlfFeg2+Mgh)Si2O6
Si AlbiteNa(AlSi3O8)
Si Allanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
Si AlleghanyiteMn52+(SiO4)2(OH)2
Si Allophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Si Microcline var. AmazoniteK(AlSi3O8)
Si Quartz var. AmethystSiO2
Si Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Si AnalcimeNa(AlSi2O6) · H2O
Si AndalusiteAl2(SiO4)O
Si Albite var. Andesine(Na,Ca)[Al(Si,Al)Si2O8]
Si AndraditeCa3Fe23+(SiO4)3
Si AnniteKFe32+(AlSi3O10)(OH)2
Si AnorthiteCa(Al2Si2O8)
Si Anthophyllite◻{Mg2}{Mg5}(Si8O22)(OH)2
Si AntigoriteMg3(Si2O5)(OH)4
Si Apophyllite GroupAB4[Si8O22]X · 8H2O
Si Beryl var. AquamarineBe3Al2Si6O18
Si Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Si AlmandineFe32+Al2(SiO4)3
Si BabingtoniteCa2(Fe,Mn)FeSi5O14(OH)
Si BaveniteCa4Be2Al2Si9O26(OH)2
Si BazziteBe3Sc2(Si6O18)
Si BementiteMn7Si6O15(OH)8
Si BertranditeBe4(Si2O7)(OH)2
Si BismutoferriteFe23+Bi(SiO4)2(OH)
Si BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Si BityiteCaLiAl2(AlBeSi2O10)(OH)2
Si BustamiteCaMn2+(Si2O6)
Si Anorthite var. Bytownite(Ca,Na)[Al(Al,Si)Si2O8]
Si BerylBe3Al2(Si6O18)
Si Thorite var. Calciothorite(Th,Ca2)SiO4 · 3.5H2O
Si CaryopiliteMn32+Si2O5(OH)4
Si CeladoniteK(MgFe3+◻)(Si4O10)(OH)2
Si Cerite-(CeCa)(Ce7Ca2)◻Mg(SiO4)3(SiO3OH)4(OH)3
Si Quartz var. ChalcedonySiO2
Si ChrysotileMg3(Si2O5)(OH)4
Si ChondroditeMg5(SiO4)2F2
Si ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O, x < 1
Si Quartz var. CitrineSiO2
Si ClinochloreMg5Al(AlSi3O10)(OH)8
Si Clinozoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
Si CoffiniteU(SiO4) · nH2O
Si Cookeite(LiAl4◻)[AlSi3O10](OH)8
Si Cordierite(Mg,Fe)2Al3(AlSi5O18)
Si CronstedtiteFe22+Fe3+((Si,Fe3+)2O5)(OH)4
Si Cummingtonite◻{Mg2}{Mg5}(Si8O22)(OH)2
Si DanburiteCaB2Si2O8
Si Clinochlore var. Diabantite(Mg,Fe,Al)6((Si,Al)4O10)(OH)8
Si DickiteAl2(Si2O5)(OH)4
Si DiopsideCaMgSi2O6
Si DraviteNaMg3Al6(Si6O18)(BO3)3(OH)3(OH)
Si DumortieriteAl(Al2O)(Al2O)2(SiO4)3(BO3)
Si DatoliteCaB(SiO4)(OH)
Si ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Si Beryl var. EmeraldBe3Al2(Si6O18)
Si EnstatiteMg2Si2O6
Si Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Si EpistilbiteCaAl2Si6O16 · 5H2O
Si EuclaseBeAl(SiO4)(OH)
Si EucryptiteLiAlSiO4
Si Fahlunite(Mg,Fe)Al2Si3O10 · 2H2O
Si Axinite-(Fe)Ca2Fe2+Al2BSi4O15OH
Si Ferro-actinolite◻Ca2Fe52+(Si8O22)(OH)2
Si Ferro-hornblende◻Ca2(Fe42+Al)(Si7Al)O22(OH)2
Si Fluorapophyllite-(K)KCa4(Si8O20)(F,OH) · 8H2O
Si Foitite◻(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3(OH)
Si ForsteriteMg2SiO4
Si Muscovite var. FuchsiteK(Al,Cr)3Si3O10(OH)2
Si Gedrite◻{Mg2}{Mg3Al2}(Al2Si6O22)(OH)2
Si GehleniteCa2Al[AlSiO7]
Si GobbinsiteNa5(Si11Al5)O32 · 11H2O
Si Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
Si GrossularCa3Al2(SiO4)3
Si Grunerite◻{Fe22+}{Fe52+}(Si8O22)(OH)2
Si HalloysiteAl2(Si2O5)(OH)4
Si HarmotomeBa2(Si12Al4)O32 · 12H2O
Si HastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
Si HedenbergiteCaFe2+Si2O6
Si HelvineBe3Mn42+(SiO4)3S
Si HemimorphiteZn4Si2O7(OH)2 · H2O
Si Grossular var. HessoniteCa3Al2(SiO4)3
Si Heulandite Subgroup(Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
Si Opal var. Opal-ANSiO2 · nH2O
Si Microcline var. Hyalophane(K,Ba)[Al(Si,Al)Si2O8]
Si Hypersthene(Mg,Fe)SiO3
Si Muscovite var. IlliteK0.65Al2.0[Al0.65Si3.35O10](OH)2
Si JohannseniteCaMn2+Si2O6
Si Julgoldite-(Fe2+)Ca2Fe2+Fe23+[Si2O6OH][SiO4](OH)2(OH)
Si KaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
Si KaoliniteAl2(Si2O5)(OH)4
Si Spodumene var. KunziteLiAlSi2O6
Si KyaniteAl2(SiO4)O
Si Anorthite var. Labradorite(Ca,Na)[Al(Al,Si)Si2O8]
Si LarniteCa2SiO4
Si LaumontiteCaAl2Si4O12 · 4H2O
Si LechatelieriteSiO2
Si LizarditeMg3(Si2O5)(OH)4
Si Magnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
Si MargariteCaAl2(Al2Si2O10)(OH)2
Si MarialiteNa4Al3Si9O24Cl
Si Masutomilite(K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2
Si MeioniteCa4Al6Si6O24CO3
Si MesoliteNa2Ca2Si9Al6O30 · 8H2O
Si MicroclineK(AlSi3O8)
Si MilariteK(◻H2O)Ca2(Be2Al)[Si12O30]
Si Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Si Beryl var. MorganiteBe3Al2(Si6O18)
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Si NacriteAl2(Si2O5)(OH)4
Si NephelineNa3K(Al4Si4O16)
Si NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Si NatroliteNa2Al2Si3O10 · 2H2O
Si Albite var. Oligoclase(Na,Ca)[Al(Si,Al)Si2O8]
Si OpalSiO2 · nH2O
Si OrthoclaseK(AlSi3O8)
Si Palygorskite◻Al2Mg22Si8O20(OH)2(H2O)4 · 4H2O
Si ParagoniteNaAl2(AlSi3O10)(OH)2
Si PargasiteNaCa2(Mg4Al)(Si6Al2)O22(OH)2
Si PectoliteNaCa2Si3O8(OH)
Si PetaliteLiAl(Si4O10)
Si PhenakiteBe2SiO4
Si PhlogopiteKMg3(AlSi3O10)(OH)2
Si Piemontite(CaCa)(AlAlMn3+)O[Si2O7][SiO4](OH)
Si Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Si Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
Si PrehniteCa2Al2Si3O10(OH)2
Si Pumpellyite SubgroupCa2XAl2[Si2O6(OH)][SiO4](OH)2A
Si Pumpellyite-(Mg)Ca2MgAl2(Si2O7)(SiO4)(OH)2 · H2O
Si PyropeMg3Al2(SiO4)3
Si PyrophylliteAl2Si4O10(OH)2
Si PyroxmangiteMn2+SiO3
Si QuartzSiO2
Si RhodoniteCaMn3Mn[Si5O15]
Si Clinochlore var. Ripidolite(Mg,Fe,Al)6(Si,Al)4O10(OH)8
Si Quartz var. Rose QuartzSiO2
Si Quartz var. Rutilated QuartzSiO2
Si SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Si SarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
Si Muscovite var. SchernikiteKAl2(AlSi3O10)(OH)2
Si SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Si ScoleciteCaAl2Si3O10 · 3H2O
Si SepioliteMg4(Si6O15)(OH)2 · 6H2O
Si SillimaniteAl2(SiO4)O
Si SilléniteBi12SiO20
Si Quartz var. Smoky QuartzSiO2
Si SodaliteNa4(Si3Al3)O12Cl
Si SpessartineMn32+Al2(SiO4)3
Si SpodumeneLiAlSi2O6
Si SpurriteCa5(SiO4)2(CO3)
Si StauroliteFe22+Al9Si4O23(OH)
Si Talc var. SteatiteMg3(Si4O10)(OH)2
Si StelleriteCa4(Si28Al8)O72 · 28H2O
Si Stilbite SubgroupM6-7[Al8-9Si27-28O72] · nH2O
Si Stilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
Si TalcMg3Si4O10(OH)2
Si TephroiteMn22+SiO4
Si ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
Si ThoriteTh(SiO4)
Si Thorite var. Thorogummite(Th,U)(SiO4)1-x(OH)4x
Si Zoisite var. Thulite{Ca2}{Al,Mn33+}(Si2O7)(SiO4)O(OH)
Si TitaniteCaTi(SiO4)O
Si TopazAl2(SiO4)(F,OH)2
Si Tremolite◻Ca2Mg5(Si8O22)(OH)2
Si TridymiteSiO2
Si Amphibole Supergroup var. UraliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Si UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
Si VesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
Si WillemiteZn2SiO4
Si WollastoniteCa3(Si3O9)
Si ZirconZr(SiO4)
Si Zoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
Si Albite var. PeristeriteNa(AlSi3O8)
Si Enstatite var. Bronzite(Mg,Fe2+)2[SiO3]2
Si Quartz var. Rock CrystalSiO2
Si Quartz var. Milky QuartzSiO2
Si Almandine-Pyrope Series var. RhodoliteMg3Al2(SiO4)3
Si Beryl var. HeliodorBe3Al2(Si6O18)
Si Zircon var. CalyptoliteZr(SiO4)
Si Chabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
Si Heulandite-Ca(Ca,Na)5(Si27Al9)O72 · 26H2O
Si Stilbite-CaNaCa4(Si27Al9)O72 · 28H2O
Si Andradite var. MelaniteCa3(Fe3+,Ti)2(SiO4)3
Si Zircon var. CyrtoliteZr[(SiO4),(OH)4]
Si Andradite var. TopazoliteCa3Fe23+(SiO4)3
Si Beryl var. GosheniteBe3Al2(Si6O18)
Si Quartz var. SardonyxSiO2
Si Quartz var. SardSiO2
Si BloodstoneSiO2
Si Quartz var. Sceptre QuartzSiO2
Si Albite var. CleavelanditeNa(AlSi3O8)
Si Forsterite var. PeridotMg2SiO4
Si Muscovite var. DamouriteKAl2(AlSi3O10)(OH)2
Si Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
Si Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
Si Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Si Pyroxene GroupADSi2O6
Si Titanite var. Lederite (of Shepard)CaTi(SiO4)O
Si Epidote var. Tawmawite{Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
Si Garnet GroupX3Z2(SiO4)3
Si Amphibole Supergroup var. ByssoliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Si Oxy-draviteNa(Al2Mg)(Al5Mg)(Si6O18)(BO3)3(OH)3O
Si Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Si Augite var. Titanium-bearing Augite(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
Si Serpentine SubgroupD3[Si2O5](OH)4
Si Ferri-ghoseite◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
Si Quartz var. Blue QuartzSiO2
Si Serpentine Subgroup var. PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Si Clinozoisite var. Clinothulite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Si Quartz var. Ferruginous QuartzSiO2
Si FerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
Si Pumpellyite GroupCa2XZ2[Si2O6(OH)][SiO4](OH)2A
Si Opal var. HyaliteSiO2 · nH2O
Si ChalcoditeK(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
Si Julgoldite SubgroupCa2XFe23+[Si2O6(OH)][SiO4](OH)2A
Si Diopside var. CanaaniteCaMgSi2O6
Si Allanite Group(A12+REE3+)(M13+M23+M32+)O[Si2O7][SiO4](OH)
PPhosphorus
P Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
P AmblygoniteLiAl(PO4)F
P Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
P AutuniteCa(UO2)2(PO4)2 · 10-12H2O
P AugeliteAl2(PO4)(OH)3
P BerauniteFe63+(PO4)4O(OH)4 · 6H2O
P BrazilianiteNaAl3(PO4)2(OH)4
P Churchite-(Y)Y(PO4) · 2H2O
P CrandalliteCaAl3(PO4)(PO3OH)(OH)6
P DiadochiteFe23+(PO4)(SO4)(OH) · 6H2O
P Dickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
P EosphoriteMn2+Al(PO4)(OH)2 · H2O
P FairfielditeCa2Mn2+(PO4)2 · 2H2O
P Triphylite var. FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
P FillowiteNa3CaMn112+(PO4)9
P FluorapatiteCa5(PO4)3F
P GraftoniteFe2+Fe22+(PO4)2
P Grayite(Th,Pb,Ca)(PO4) · H2O
P HerderiteCaBe(PO4)F
P Heterosite(Fe3+,Mn3+)PO4
P HureauliteMn52+(PO3OH)2(PO4)2 · 4H2O
P HydroxylherderiteCaBe(PO4)(OH)
P HydroxylapatiteCa5(PO4)3(OH)
P LacroixiteNaAl(PO4)F
P LandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
P LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
P LazuliteMgAl2(PO4)2(OH)2
P LithiophiliteLiMn2+PO4
P LudlamiteFe32+(PO4)2 · 4H2O
P Fluorapatite var. Manganese-bearing Fluorapatite(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
P MesseliteCa2Fe2+(PO4)2 · 2H2O
P Meta-autuniteCa(UO2)2(PO4)2 · 6H2O
P MetaswitzeriteMn32+(PO4)2 · 4H2O
P MetatorberniteCu(UO2)2(PO4)2 · 8H2O
P MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
P MonaziteREE(PO4)
P Monazite-(Ce)Ce(PO4)
P MontebrasiteLiAl(PO4)(OH)
P MoraesiteBe2(PO4)(OH) · 4H2O
P MoriniteNaCa2Al2(PO4)2(OH)F4 · 2H2O
P NatrophiliteNaMn2+PO4
P Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
P ParsonsitePb2(UO2)(PO4)2
P PhosphophylliteZn2Fe(PO4)2 · 4H2O
P PhosphuranyliteKCa(H3O)3(UO2)7(PO4)4O4 · 8H2O
P PlaneriteAl6(PO4)2(PO3OH)2(OH)8 · 4H2O
P PlumbogummitePbAl3(PO4)(PO3OH)(OH)6
P PseudomalachiteCu5(PO4)2(OH)4
P PurpuriteMn3+(PO4)
P PyromorphitePb5(PO4)3Cl
P Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
P Rhabdophane-(La)La(PO4) · H2O
P Rhabdophane-(Nd)Nd(PO4) · H2O
P RockbridgeiteFe2+Fe43+(PO4)3(OH)5
P RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
P SarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
P ScorzaliteFe2+Al2(PO4)2(OH)2
P Lithiophilite var. SickleriteLi1-x(Mnx3+Mn2+1-x)PO4
P StewartiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
P StrengiteFePO4 · 2H2O
P StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
P SwitzeriteMn32+(PO4)2 · 7H2O
P TorberniteCu(UO2)2(PO4)2 · 12H2O
P TriphyliteLiFe2+PO4
P TripliteMn22+(PO4)F
P TriploiditeMn22+(PO4)(OH)
P VivianiteFe2+Fe22+(PO4)2 · 8H2O
P WarditeNaAl3(PO4)2(OH)4 · 2H2O
P WhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
P Xenotime-(Y)Y(PO4)
P XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
P ApatiteCa5(PO4)3(Cl/F/OH)
P FerroberauniteFe2+Fe53+(PO4)4(OH)5 · 6H2O
SSulfur
S AcanthiteAg2S
S Alum GroupXAl(SO4)2 · 12H2O
S AnglesitePbSO4
S AnhydriteCaSO4
S ArsenopyriteFeAsS
S BaryteBaSO4
S BismuthiniteBi2S3
S BorniteCu5FeS4
S BrochantiteCu4(SO4)(OH)6
S CelestineSrSO4
S ChalcopyriteCuFeS2
S ChalcanthiteCuSO4 · 5H2O
S ChalcociteCu2S
S CobaltiteCoAsS
S CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
S CovelliteCuS
S CuprobismutiteCu8AgBi13S24
S DevillineCaCu4(SO4)2(OH)6 · 3H2O
S DiadochiteFe23+(PO4)(SO4)(OH) · 6H2O
S DigeniteCu9S5
S DjurleiteCu31S16
S EpsomiteMgSO4 · 7H2O
S FerricopiapiteFe3+0.67Fe43+(SO4)6(OH)2 · 20H2O
S GalenaPbS
S GalenobismutitePbBi2S4
S GersdorffiteNiAsS
S GoslariteZnSO4 · 7H2O
S GreenockiteCdS
S GypsumCaSO4 · 2H2O
S HalotrichiteFeAl2(SO4)4 · 22H2O
S HelvineBe3Mn42+(SiO4)3S
S HexahydriteMgSO4 · 6H2O
S JarositeKFe33+(SO4)2(OH)6
S JohanniteCu(UO2)2(SO4)2(OH)2 · 8H2O
S LangiteCu4(SO4)(OH)6 · 2H2O
S LinaritePbCu(SO4)(OH)2
S LinnaeiteCo2+Co23+S4
S MarcasiteFeS2
S MeioniteCa4Al6Si6O24CO3
S MelanteriteFe2+(H2O)6SO4 · H2O
S MolybdeniteMoS2
S Pentlandite(NixFey)Σ9S8
S PickeringiteMgAl2(SO4)4 · 22H2O
S PyriteFeS2
S PyrrhotiteFe1-xS
S RealgarAs4S4
S RozeniteFeSO4 · 4H2O
S SphaleriteZnS
S StibniteSb2S3
S SulphurS8
S SzomolnokiteFeSO4 · H2O
S ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
S TroiliteFeS
S TungsteniteWS2
S ViolariteFe2+Ni23+S4
S Wurtzite var. Voltzite(Zn,Fe)S
S Wurtzite(Zn,Fe)S
S Gypsum var. SeleniteCaSO4 · 2H2O
S Chalcopyrite var. Blister CopperCuFeS2
S Gypsum var. Satin Spar GypsumCaSO4 · 2H2O
S Elaterite(C,H,O,S)
S Galena var. Silver-bearing GalenaPbS with Ag
S Arsenopyrite var. Danaite(Fe0.90Co0.10)AsS - (Fe0.65Co0.35)AsS
ClChlorine
Cl Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Cl AtacamiteCu2(OH)3Cl
Cl Fluorapatite var. Manganese-bearing Fluorapatite(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Cl MarialiteNa4Al3Si9O24Cl
Cl MeioniteCa4Al6Si6O24CO3
Cl MimetitePb5(AsO4)3Cl
Cl NantokiteCuCl
Cl ParatacamiteCu3(Cu,Zn)(OH)6Cl2
Cl PyromorphitePb5(PO4)3Cl
Cl SarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
Cl SodaliteNa4(Si3Al3)O12Cl
Cl Amphibole Supergroup var. UraliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Cl VanadinitePb5(VO4)3Cl
Cl Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
Cl Amphibole Supergroup var. ByssoliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Cl ApatiteCa5(PO4)3(Cl/F/OH)
KPotassium
K K Feldspar var. AdulariaKAlSi3O8
K Microcline var. AmazoniteK(AlSi3O8)
K AnniteKFe32+(AlSi3O10)(OH)2
K Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
K BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
K CarnotiteK2(UO2)2(VO4)2 · 3H2O
K CeladoniteK(MgFe3+◻)(Si4O10)(OH)2
K CryptomelaneK(Mn74+Mn3+)O16
K Dickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
K Fluorapophyllite-(K)KCa4(Si8O20)(F,OH) · 8H2O
K Muscovite var. FuchsiteK(Al,Cr)3Si3O10(OH)2
K Heulandite Subgroup(Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
K Microcline var. Hyalophane(K,Ba)[Al(Si,Al)Si2O8]
K Muscovite var. IlliteK0.65Al2.0[Al0.65Si3.35O10](OH)2
K JarositeKFe33+(SO4)2(OH)6
K Masutomilite(K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2
K MicroclineK(AlSi3O8)
K MilariteK(◻H2O)Ca2(Be2Al)[Si12O30]
K Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
K MuscoviteKAl2(AlSi3O10)(OH)2
K NephelineNa3K(Al4Si4O16)
K OrthoclaseK(AlSi3O8)
K PhosphuranyliteKCa(H3O)3(UO2)7(PO4)4O4 · 8H2O
K PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
K PhlogopiteKMg3(AlSi3O10)(OH)2
K Muscovite var. SchernikiteKAl2(AlSi3O10)(OH)2
K Stilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
K Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
K Chabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
K Muscovite var. DamouriteKAl2(AlSi3O10)(OH)2
K Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
K ChalcoditeK(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
CaCalcium
Ca Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Ca Aegirine-augite(NaaCabFec2+Mgd)(Fee3+AlfFeg2+Mgh)Si2O6
Ca Allanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
Ca Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Ca Albite var. Andesine(Na,Ca)[Al(Si,Al)Si2O8]
Ca AndraditeCa3Fe23+(SiO4)3
Ca AnhydriteCaSO4
Ca AnkeriteCa(Fe2+,Mg)(CO3)2
Ca AnorthiteCa(Al2Si2O8)
Ca AragoniteCaCO3
Ca Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
Ca Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Ca AutuniteCa(UO2)2(PO4)2 · 10-12H2O
Ca BabingtoniteCa2(Fe,Mn)FeSi5O14(OH)
Ca BaveniteCa4Be2Al2Si9O26(OH)2
Ca BecquereliteCa(UO2)6O4(OH)6 · 8H2O
Ca BeyeriteCa(BiO)2(CO3)2
Ca Birnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Ca BityiteCaLiAl2(AlBeSi2O10)(OH)2
Ca BustamiteCaMn2+(Si2O6)
Ca Anorthite var. Bytownite(Ca,Na)[Al(Al,Si)Si2O8]
Ca Thorite var. Calciothorite(Th,Ca2)SiO4 · 3.5H2O
Ca CalciteCaCO3
Ca Cerite-(CeCa)(Ce7Ca2)◻Mg(SiO4)3(SiO3OH)4(OH)3
Ca Fluorite var. ChlorophaneCaF2
Ca Clinozoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
Ca CrandalliteCaAl3(PO4)(PO3OH)(OH)6
Ca DanburiteCaB2Si2O8
Ca DevillineCaCu4(SO4)2(OH)6 · 3H2O
Ca Dickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
Ca DiopsideCaMgSi2O6
Ca DolomiteCaMg(CO3)2
Ca DatoliteCaB(SiO4)(OH)
Ca Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Ca EpistilbiteCaAl2Si6O16 · 5H2O
Ca Euxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
Ca FairfielditeCa2Mn2+(PO4)2 · 2H2O
Ca Axinite-(Fe)Ca2Fe2+Al2BSi4O15OH
Ca Ferro-actinolite◻Ca2Fe52+(Si8O22)(OH)2
Ca Ferro-hornblende◻Ca2(Fe42+Al)(Si7Al)O22(OH)2
Ca FillowiteNa3CaMn112+(PO4)9
Ca FluorapatiteCa5(PO4)3F
Ca Fluorapophyllite-(K)KCa4(Si8O20)(F,OH) · 8H2O
Ca FluoriteCaF2
Ca GehleniteCa2Al[AlSiO7]
Ca Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
Ca Grayite(Th,Pb,Ca)(PO4) · H2O
Ca GrossularCa3Al2(SiO4)3
Ca GypsumCaSO4 · 2H2O
Ca HastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
Ca HedenbergiteCaFe2+Si2O6
Ca HerderiteCaBe(PO4)F
Ca Grossular var. HessoniteCa3Al2(SiO4)3
Ca Heulandite Subgroup(Na/Ca/K)5-6[Al8-9 Si27-28 O72] · nH2O
Ca HydroxylherderiteCaBe(PO4)(OH)
Ca HydroxylapatiteCa5(PO4)3(OH)
Ca JohannseniteCaMn2+Si2O6
Ca Julgoldite-(Fe2+)Ca2Fe2+Fe23+[Si2O6OH][SiO4](OH)2(OH)
Ca KaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
Ca KutnohoriteCaMn2+(CO3)2
Ca Anorthite var. Labradorite(Ca,Na)[Al(Al,Si)Si2O8]
Ca LarniteCa2SiO4
Ca LaumontiteCaAl2Si4O12 · 4H2O
Ca Magnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
Ca Fluorapatite var. Manganese-bearing Fluorapatite(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Ca MargariteCaAl2(Al2Si2O10)(OH)2
Ca MeioniteCa4Al6Si6O24CO3
Ca MesoliteNa2Ca2Si9Al6O30 · 8H2O
Ca MesseliteCa2Fe2+(PO4)2 · 2H2O
Ca Meta-autuniteCa(UO2)2(PO4)2 · 6H2O
Ca MilariteK(◻H2O)Ca2(Be2Al)[Si12O30]
Ca MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
Ca Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
Ca MoriniteNaCa2Al2(PO4)2(OH)F4 · 2H2O
Ca Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Ca Albite var. Oligoclase(Na,Ca)[Al(Si,Al)Si2O8]
Ca Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Ca PargasiteNaCa2(Mg4Al)(Si6Al2)O22(OH)2
Ca PectoliteNaCa2Si3O8(OH)
Ca PhosphuranyliteKCa(H3O)3(UO2)7(PO4)4O4 · 8H2O
Ca Piemontite(CaCa)(AlAlMn3+)O[Si2O7][SiO4](OH)
Ca Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Ca PowelliteCa(MoO4)
Ca PrehniteCa2Al2Si3O10(OH)2
Ca Pumpellyite SubgroupCa2XAl2[Si2O6(OH)][SiO4](OH)2A
Ca Pumpellyite-(Mg)Ca2MgAl2(Si2O7)(SiO4)(OH)2 · H2O
Ca RhodoniteCaMn3Mn[Si5O15]
Ca RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Ca SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Ca SarcoliteNa4Ca12Al8Si12O46(SiO4,PO4)(OH,H2O)4(CO3,Cl)
Ca ScheeliteCa(WO4)
Ca ScoleciteCaAl2Si3O10 · 3H2O
Ca SpurriteCa5(SiO4)2(CO3)
Ca StelleriteCa4(Si28Al8)O72 · 28H2O
Ca Stilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
Ca Synchysite-(Y)CaY(CO3)2F
Ca ThaumasiteCa3(SO4)[Si(OH)6](CO3) · 12H2O
Ca Zoisite var. Thulite{Ca2}{Al,Mn33+}(Si2O7)(SiO4)O(OH)
Ca TitaniteCaTi(SiO4)O
Ca Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Ca Tremolite◻Ca2Mg5(Si8O22)(OH)2
Ca TyuyamuniteCa(UO2)2(VO4)2 · 5-8H2O
Ca Uranmicrolite (of Hogarth 1977)(Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
Ca UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
Ca Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Ca VesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
Ca WollastoniteCa3(Si3O9)
Ca XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
Ca Zoisite(CaCa)(AlAlAl)O[Si2O7][SiO4](OH)
Ca Gypsum var. SeleniteCaSO4 · 2H2O
Ca Chabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
Ca Heulandite-Ca(Ca,Na)5(Si27Al9)O72 · 26H2O
Ca Stilbite-CaNaCa4(Si27Al9)O72 · 28H2O
Ca Andradite var. MelaniteCa3(Fe3+,Ti)2(SiO4)3
Ca SynchysiteCa(Ce/Nd/Y/REE)(CO3)2F
Ca Andradite var. TopazoliteCa3Fe23+(SiO4)3
Ca Gypsum var. Satin Spar GypsumCaSO4 · 2H2O
Ca Hornblende Root Name Group◻Ca2(Z42+Z3+)(AlSi7O22)(OH,F,Cl)2
Ca Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Ca Titanite var. Lederite (of Shepard)CaTi(SiO4)O
Ca Epidote var. Tawmawite{Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
Ca Calcite var. Iron-bearing Calcite(Ca,Fe)CO3
Ca Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Ca Augite var. Titanium-bearing Augite(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
Ca Dolomite var. Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
Ca Clinozoisite var. Clinothulite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Ca FerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
Ca ApatiteCa5(PO4)3(Cl/F/OH)
Ca Pumpellyite GroupCa2XZ2[Si2O6(OH)][SiO4](OH)2A
Ca Julgoldite SubgroupCa2XFe23+[Si2O6(OH)][SiO4](OH)2A
Ca Diopside var. CanaaniteCaMgSi2O6
ScScandium
Sc BazziteBe3Sc2(Si6O18)
TiTitanium
Ti Amphibole SupergroupAB2C5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Ti AnataseTiO2
Ti BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Ti BrookiteTiO2
Ti Davidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
Ti Euxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
Ti IlmeniteFe2+TiO3
Ti KaersutiteNaCa2(Mg3AlTi4+)(Si6Al2)O22O2
Ti Ilmenite var. Iron(III)-bearing Ilmenite(Fe2+,Fe3+)TiO3
Ti PyrophaniteMn2+TiO3
Ti RutileTiO2
Ti Rutile var. Strüverite(Ti,Ta,Fe)O2
Ti Tanteuxenite-(Y)Y(Ta,Nb,Ti)2(O,OH)6
Ti TitaniteCaTi(SiO4)O
Ti Amphibole Supergroup var. UraliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Ti Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Ti Andradite var. MelaniteCa3(Fe3+,Ti)2(SiO4)3
Ti Titanite var. Lederite (of Shepard)CaTi(SiO4)O
Ti Amphibole Supergroup var. ByssoliteAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Ti Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Ti Augite var. Titanium-bearing Augite(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
VVanadium
V CarnotiteK2(UO2)2(VO4)2 · 3H2O
V Davidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
V TyuyamuniteCa(UO2)2(VO4)2 · 5-8H2O
V VanadinitePb5(VO4)3Cl
CrChromium
Cr ChromiteFe2+Cr23+O4
Cr Davidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
Cr Muscovite var. FuchsiteK(Al,Cr)3Si3O10(OH)2
Cr Epidote var. Tawmawite{Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
MnManganese
Mn AlleghanyiteMn52+(SiO4)2(OH)2
Mn Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Mn BabingtoniteCa2(Fe,Mn)FeSi5O14(OH)
Mn BementiteMn7Si6O15(OH)8
Mn Birnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Mn BustamiteCaMn2+(Si2O6)
Mn CaryopiliteMn32+Si2O5(OH)4
Mn CryptomelaneK(Mn74+Mn3+)O16
Mn Dickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn132+Al(PO4)11(PO4)(OH)2
Mn EosphoriteMn2+Al(PO4)(OH)2 · H2O
Mn FairfielditeCa2Mn2+(PO4)2 · 2H2O
Mn FillowiteNa3CaMn112+(PO4)9
Mn GalaxiteMn2+Al2O4
Mn GroutiteMn3+O(OH)
Mn HelvineBe3Mn42+(SiO4)3S
Mn Heterosite(Fe3+,Mn3+)PO4
Mn HübneriteMnWO4
Mn HureauliteMn52+(PO3OH)2(PO4)2 · 4H2O
Mn JacobsiteMn2+Fe23+O4
Mn JohannseniteCaMn2+Si2O6
Mn KutnohoriteCaMn2+(CO3)2
Mn LandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
Mn LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Mn LithiophiliteLiMn2+PO4
Mn Lithiophorite(Al,Li)MnO2(OH)2
Mn ManganiteMn3+O(OH)
Mn Columbite-(Mn)Mn2+Nb2O6
Mn Tantalite-(Mn)Mn2+Ta2O6
Mn Fluorapatite var. Manganese-bearing Fluorapatite(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Mn Masutomilite(K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2
Mn MetaswitzeriteMn32+(PO4)2 · 4H2O
Mn NatrophiliteNaMn2+PO4
Mn Piemontite(CaCa)(AlAlMn3+)O[Si2O7][SiO4](OH)
Mn PurpuriteMn3+(PO4)
Mn PyrolusiteMn4+O2
Mn PyrophaniteMn2+TiO3
Mn PyroxmangiteMn2+SiO3
Mn Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
Mn RhodochrositeMnCO3
Mn RhodoniteCaMn3Mn[Si5O15]
Mn Romanèchite(Ba,H2O)2(Mn4+,Mn3+)5O10
Mn RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Mn Lithiophilite var. SickleriteLi1-x(Mnx3+Mn2+1-x)PO4
Mn SpessartineMn32+Al2(SiO4)3
Mn StewartiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Mn StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
Mn SwitzeriteMn32+(PO4)2 · 7H2O
Mn Tantalite(Mn,Fe)(Ta,Nb)2O6
Mn Tapiolite(Fe,Mn)(Ta,Nb)2O6
Mn TephroiteMn22+SiO4
Mn Zoisite var. Thulite{Ca2}{Al,Mn33+}(Si2O7)(SiO4)O(OH)
Mn Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Mn TripliteMn22+(PO4)F
Mn TriploiditeMn22+(PO4)(OH)
Mn WodginiteMn2+Sn4+Ta2O8
Mn Ixiolite-(Mn2+)-Ixiolite-(Fe2+) Series var. Wolframoixiolite(Nb,W,Ta,Fe,Mn)2O4
Mn Ferri-ghoseite◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
Mn Serpentine Subgroup var. PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
FeIron
Fe Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22(OH)2
Fe AegirineNaFe3+Si2O6
Fe Aegirine-augite(NaaCabFec2+Mgd)(Fee3+AlfFeg2+Mgh)Si2O6
Fe Allanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
Fe Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Fe AndraditeCa3Fe23+(SiO4)3
Fe AnkeriteCa(Fe2+,Mg)(CO3)2
Fe AnniteKFe32+(AlSi3O10)(OH)2
Fe ArsenopyriteFeAsS
Fe Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe132+Al(PO4)11(PO3OH)(OH)2
Fe Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Fe AlmandineFe32+Al2(SiO4)3
Fe BabingtoniteCa2(Fe,Mn)FeSi5O14(OH)
Fe BerauniteFe63+(PO4)4O(OH)4 · 6H2O
Fe BismutoferriteFe23+Bi(SiO4)2(OH)
Fe BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2
Fe BorniteCu5FeS4
Fe Magnesite var. Iron-bearing Magnesite(Mg,Fe)CO3
Fe CeladoniteK(MgFe3+◻)(Si4O10)(OH)2
Fe ChalcopyriteCuFeS2
Fe ChromiteFe2+Cr23+O4
Fe CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
Fe Cordierite(Mg,Fe)2Al3(AlSi5O18)
Fe CronstedtiteFe22+Fe3+((Si,Fe3+)2O5)(OH)4
Fe Davidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
Fe Clinochlore var. Diabantite(Mg,Fe,Al)6((Si,Al)4O10)(OH)8
Fe DiadochiteFe23+(PO4)(SO4)(OH) · 6H2O
Fe Epidote(CaCa)(AlAlFe3+)O[Si2O7][SiO4](OH)
Fe Fahlunite(Mg,Fe)Al2Si3O10 · 2H2O
Fe Axinite-(Fe)Ca2Fe2+Al2BSi4O15OH
Fe FerberiteFeWO4
Fe FerricopiapiteFe3+0.67Fe43+(SO4)6(OH)2 · 20H2O
Fe FerrimolybditeFe2(MoO4)3 · nH2O
Fe Triphylite var. FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
Fe Ferro-actinolite◻Ca2Fe52+(Si8O22)(OH)2
Fe Columbite-(Fe)Fe2+Nb2O6
Fe Ferro-hornblende◻Ca2(Fe42+Al)(Si7Al)O22(OH)2
Fe Tantalite-(Fe)Fe2+Ta2O6
Fe Tapiolite-(Fe)Fe2+Ta2O6
Fe Foitite◻(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3(OH)
Fe Goethiteα-Fe3+O(OH)
Fe GraftoniteFe2+Fe22+(PO4)2
Fe Grunerite◻{Fe22+}{Fe52+}(Si8O22)(OH)2
Fe HalotrichiteFeAl2(SO4)4 · 22H2O
Fe HastingsiteNaCa2(Fe42+Fe3+)(Si6Al2)O22(OH)2
Fe HedenbergiteCaFe2+Si2O6
Fe HematiteFe2O3
Fe Heterosite(Fe3+,Mn3+)PO4
Fe Hypersthene(Mg,Fe)SiO3
Fe IlmeniteFe2+TiO3
Fe IronFe
Fe IshikawaiteU4+Fe2+Nb2O8
Fe JacobsiteMn2+Fe23+O4
Fe JarositeKFe33+(SO4)2(OH)6
Fe Julgoldite-(Fe2+)Ca2Fe2+Fe23+[Si2O6OH][SiO4](OH)2(OH)
Fe Iron var. Kamacite(Fe,Ni)
Fe LandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
Fe LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Fe Lepidocrociteγ-Fe3+O(OH)
Fe LöllingiteFeAs2
Fe LudlamiteFe32+(PO4)2 · 4H2O
Fe Maghemite(Fe3+0.670.33)Fe23+O4
Fe MagnetiteFe2+Fe23+O4
Fe Ilmenite var. Iron(III)-bearing Ilmenite(Fe2+,Fe3+)TiO3
Fe MarcasiteFeS2
Fe MelanteriteFe2+(H2O)6SO4 · H2O
Fe MesseliteCa2Fe2+(PO4)2 · 2H2O
Fe MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
Fe Nickelskutterudite(Ni,Co,Fe)As3
Fe NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Fe Pentlandite(NixFey)Σ9S8
Fe PetscheckiteUFe(Nb,Ta)2O8
Fe PhosphophylliteZn2Fe(PO4)2 · 4H2O
Fe PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
Fe Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Fe Pitticite(Fe, AsO4, H2O) (?)
Fe PyriteFeS2
Fe PyrrhotiteFe1-xS
Fe Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
Fe Clinochlore var. Ripidolite(Mg,Fe,Al)6(Si,Al)4O10(OH)8
Fe RockbridgeiteFe2+Fe43+(PO4)3(OH)5
Fe RozeniteFeSO4 · 4H2O
Fe Safflorite(Co,Ni,Fe)As2
Fe Samarskite-(Y)YFe3+Nb2O8
Fe SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
Fe SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Fe ScoroditeFe3+AsO4 · 2H2O
Fe ScorzaliteFe2+Al2(PO4)2(OH)2
Fe SideriteFeCO3
Fe StauroliteFe22+Al9Si4O23(OH)
Fe StewartiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Fe Stilpnomelane(K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
Fe StrengiteFePO4 · 2H2O
Fe StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
Fe Rutile var. Strüverite(Ti,Ta,Fe)O2
Fe SzomolnokiteFeSO4 · H2O
Fe Taenite(Fe,Ni)
Fe Tantalite(Mn,Fe)(Ta,Nb)2O6
Fe Tapiolite(Fe,Mn)(Ta,Nb)2O6
Fe TetrataeniteFeNi
Fe TriphyliteLiFe2+PO4
Fe TroiliteFeS
Fe ViolariteFe2+Ni23+S4
Fe VivianiteFe2+Fe22+(PO4)2 · 8H2O
Fe Wurtzite var. Voltzite(Zn,Fe)S
Fe VesuvianiteCa19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9
Fe WhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
Fe Wurtzite(Zn,Fe)S
Fe XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
Fe Yttrocolumbite-(Y)Y(U4+,Fe2+)Nb2O8
Fe Enstatite var. Bronzite(Mg,Fe2+)2[SiO3]2
Fe Hematite var. SpeculariteFe2O3
Fe Ixiolite-(Mn2+)-Ixiolite-(Fe2+) Series var. Wolframoixiolite(Nb,W,Ta,Fe,Mn)2O4
Fe Andradite var. MelaniteCa3(Fe3+,Ti)2(SiO4)3
Fe Andradite var. TopazoliteCa3Fe23+(SiO4)3
Fe Chalcopyrite var. Blister CopperCuFeS2
Fe Epidote var. Tawmawite{Ca2}{(Al,Fe3+,Cr)3}(Si2O7)(SiO4)O(OH)
Fe Calcite var. Iron-bearing Calcite(Ca,Fe)CO3
Fe Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Fe Augite var. Titanium-bearing Augite(Ca,Na)(Mg,Ti, Fe,Al,)(Si,Al)2O6
Fe Dolomite var. Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
Fe Arsenopyrite var. Danaite(Fe0.90Co0.10)AsS - (Fe0.65Co0.35)AsS
Fe Ferri-ghoseite◻[Mn2+Na][Mg4Fe3+]Si8O22(OH)2
Fe Hematite var. Iron RoseFe2O3
Fe Serpentine Subgroup var. PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Fe FerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
Fe ChalcoditeK(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27
Fe Julgoldite SubgroupCa2XFe23+[Si2O6(OH)][SiO4](OH)2A
Fe FerroberauniteFe2+Fe53+(PO4)4(OH)5 · 6H2O
CoCobalt
Co CobaltiteCoAsS
Co ErythriteCo3(AsO4)2 · 8H2O
Co LinnaeiteCo2+Co23+S4
Co Nickelskutterudite(Ni,Co,Fe)As3
Co Safflorite(Co,Ni,Fe)As2
Co SkutteruditeCoAs3
Co Arsenopyrite var. Danaite(Fe0.90Co0.10)AsS - (Fe0.65Co0.35)AsS
NiNickel
Ni AnnabergiteNi3(AsO4)2 · 8H2O
Ni BreithauptiteNiSb
Ni GersdorffiteNiAsS
Ni Iron var. Kamacite(Fe,Ni)
Ni Nickelskutterudite(Ni,Co,Fe)As3
Ni NickelineNiAs
Ni Pentlandite(NixFey)Σ9S8
Ni RammelsbergiteNiAs2
Ni Safflorite(Co,Ni,Fe)As2
Ni Taenite(Fe,Ni)
Ni TetrataeniteFeNi
Ni ViolariteFe2+Ni23+S4
Ni Serpentine Subgroup var. PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
CuCopper
Cu AtacamiteCu2(OH)3Cl
Cu Aurichalcite(Zn,Cu)5(CO3)2(OH)6
Cu AzuriteCu3(CO3)2(OH)2
Cu BorniteCu5FeS4
Cu BrochantiteCu4(SO4)(OH)6
Cu ChalcopyriteCuFeS2
Cu ChalcanthiteCuSO4 · 5H2O
Cu ChalcociteCu2S
Cu Cuprite var. ChalcotrichiteCu2O
Cu ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O, x < 1
Cu CovelliteCuS
Cu CupriteCu2O
Cu CuprobismutiteCu8AgBi13S24
Cu CopperCu
Cu DevillineCaCu4(SO4)2(OH)6 · 3H2O
Cu DigeniteCu9S5
Cu DjurleiteCu31S16
Cu JohanniteCu(UO2)2(SO4)2(OH)2 · 8H2O
Cu LangiteCu4(SO4)(OH)6 · 2H2O
Cu LinaritePbCu(SO4)(OH)2
Cu MalachiteCu2(CO3)(OH)2
Cu MetatorberniteCu(UO2)2(PO4)2 · 8H2O
Cu NantokiteCuCl
Cu ParatacamiteCu3(Cu,Zn)(OH)6Cl2
Cu PseudomalachiteCu5(PO4)2(OH)4
Cu Rosasite(Cu,Zn)2(CO3)(OH)2
Cu TorberniteCu(UO2)2(PO4)2 · 12H2O
Cu Chalcopyrite var. Blister CopperCuFeS2
ZnZinc
Zn Aurichalcite(Zn,Cu)5(CO3)2(OH)6
Zn GahniteZnAl2O4
Zn GoslariteZnSO4 · 7H2O
Zn HemimorphiteZn4Si2O7(OH)2 · H2O
Zn HydrozinciteZn5(CO3)2(OH)6
Zn ParatacamiteCu3(Cu,Zn)(OH)6Cl2
Zn PhosphophylliteZn2Fe(PO4)2 · 4H2O
Zn Rosasite(Cu,Zn)2(CO3)(OH)2
Zn SmithsoniteZnCO3
Zn SphaleriteZnS
Zn Wurtzite var. Voltzite(Zn,Fe)S
Zn WillemiteZn2SiO4
Zn Wurtzite(Zn,Fe)S
Zn Serpentine Subgroup var. PicroliteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
AsArsenic
As AnnabergiteNi3(AsO4)2 · 8H2O
As ArsenoliteAs2O3
As ArsenopyriteFeAsS
As ArsenicAs
As ClaudetiteAs2O3
As CobaltiteCoAsS
As ErythriteCo3(AsO4)2 · 8H2O
As GersdorffiteNiAsS
As LöllingiteFeAs2
As MimetitePb5(AsO4)3Cl
As Nickelskutterudite(Ni,Co,Fe)As3
As NickelineNiAs
As PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
As Pitticite(Fe, AsO4, H2O) (?)
As RammelsbergiteNiAs2
As RealgarAs4S4
As Safflorite(Co,Ni,Fe)As2
As ScoroditeFe3+AsO4 · 2H2O
As SkutteruditeCoAs3
As Arsenopyrite var. Danaite(Fe0.90Co0.10)AsS - (Fe0.65Co0.35)AsS
RbRubidium
Rb Masutomilite(K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2
SrStrontium
Sr CelestineSrSO4
Sr Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Sr Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
YYttrium
Y Churchite-(Y)Y(PO4) · 2H2O
Y Davidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
Y Euxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
Y Samarskite-(Y)YFe3+Nb2O8
Y Synchysite-(Y)CaY(CO3)2F
Y Tanteuxenite-(Y)Y(Ta,Nb,Ti)2(O,OH)6
Y Xenotime-(Y)Y(PO4)
Y Yttrocolumbite-(Y)Y(U4+,Fe2+)Nb2O8
Y SynchysiteCa(Ce/Nd/Y/REE)(CO3)2F
ZrZirconium
Zr ZirconZr(SiO4)
Zr Zircon var. CalyptoliteZr(SiO4)
Zr Zircon var. CyrtoliteZr[(SiO4),(OH)4]
NbNiobium
Nb BismutotantaliteBi(Ta,Nb)O4
Nb Euxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
Nb Columbite-(Fe)Fe2+Nb2O6
Nb IshikawaiteU4+Fe2+Nb2O8
Nb LiandratiteU(Nb,Ta)2O8
Nb Columbite-(Mn)Mn2+Nb2O6
Nb PetscheckiteUFe(Nb,Ta)2O8
Nb Pyrochlore GroupA2Nb2(O,OH)6Z
Nb Samarskite-(Y)YFe3+Nb2O8
Nb Tantalite(Mn,Fe)(Ta,Nb)2O6
Nb Tanteuxenite-(Y)Y(Ta,Nb,Ti)2(O,OH)6
Nb Tapiolite(Fe,Mn)(Ta,Nb)2O6
Nb Uranmicrolite (of Hogarth 1977)(Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
Nb Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Nb Yttrocolumbite-(Y)Y(U4+,Fe2+)Nb2O8
Nb Ixiolite-(Mn2+)-Ixiolite-(Fe2+) Series var. Wolframoixiolite(Nb,W,Ta,Fe,Mn)2O4
MoMolybdenum
Mo FerrimolybditeFe2(MoO4)3 · nH2O
Mo MolybdeniteMoS2
Mo PowelliteCa(MoO4)
Mo WulfenitePb(MoO4)
AgSilver
Ag AcanthiteAg2S
Ag CuprobismutiteCu8AgBi13S24
Ag SilverAg
Ag SylvaniteAgAuTe4
Ag Galena var. Silver-bearing GalenaPbS with Ag
CdCadmium
Cd GreenockiteCdS
SnTin
Sn CassiteriteSnO2
Sn WodginiteMn2+Sn4+Ta2O8
SbAntimony
Sb AntimonySb
Sb BreithauptiteNiSb
Sb StibniteSb2S3
TeTellurium
Te SylvaniteAgAuTe4
Te TelluriumTe
CsCaesium
Cs Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
BaBarium
Ba BaryteBaSO4
Ba HarmotomeBa2(Si12Al4)O32 · 12H2O
Ba Microcline var. Hyalophane(K,Ba)[Al(Si,Al)Si2O8]
Ba Romanèchite(Ba,H2O)2(Mn4+,Mn3+)5O10
Ba Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
LaLanthanum
La Davidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
La Rhabdophane-(La)La(PO4) · H2O
CeCerium
Ce Allanite-(Ce)(CaCe)(AlAlFe2+)O[Si2O7][SiO4](OH)
Ce Bastnäsite-(Ce)Ce(CO3)F
Ce Cerite-(CeCa)(Ce7Ca2)◻Mg(SiO4)3(SiO3OH)4(OH)3
Ce Euxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
Ce Monazite-(Ce)Ce(PO4)
Ce Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Ce SynchysiteCa(Ce/Nd/Y/REE)(CO3)2F
NdNeodymium
Nd Rhabdophane-(Nd)Nd(PO4) · H2O
Nd SynchysiteCa(Ce/Nd/Y/REE)(CO3)2F
TaTantalum
Ta BismutotantaliteBi(Ta,Nb)O4
Ta Euxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
Ta Tantalite-(Fe)Fe2+Ta2O6
Ta Tapiolite-(Fe)Fe2+Ta2O6
Ta LiandratiteU(Nb,Ta)2O8
Ta Tantalite-(Mn)Mn2+Ta2O6
Ta Microlite GroupA2-mTa2X6-wZ-n
Ta PetscheckiteUFe(Nb,Ta)2O8
Ta Rutile var. Strüverite(Ti,Ta,Fe)O2
Ta Tantalite(Mn,Fe)(Ta,Nb)2O6
Ta Tanteuxenite-(Y)Y(Ta,Nb,Ti)2(O,OH)6
Ta Tapiolite(Fe,Mn)(Ta,Nb)2O6
Ta Uranmicrolite (of Hogarth 1977)(Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
Ta Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
Ta WodginiteMn2+Sn4+Ta2O8
Ta Ixiolite-(Mn2+)-Ixiolite-(Fe2+) Series var. Wolframoixiolite(Nb,W,Ta,Fe,Mn)2O4
WTungsten
W FerberiteFeWO4
W HübneriteMnWO4
W HydrotungstiteWO3 · 2H2O
W ScheeliteCa(WO4)
W TungsteniteWS2
W TungstiteWO3 · H2O
W Ixiolite-(Mn2+)-Ixiolite-(Fe2+) Series var. Wolframoixiolite(Nb,W,Ta,Fe,Mn)2O4
W Hydrokenoelsmoreite2W2O6(H2O)
AuGold
Au GoldAu
Au SylvaniteAgAuTe4
PbLead
Pb AnglesitePbSO4
Pb CerussitePbCO3
Pb FourmarieritePb(UO2)4O3(OH)4 · 4H2O
Pb GalenaPbS
Pb GalenobismutitePbBi2S4
Pb Grayite(Th,Pb,Ca)(PO4) · H2O
Pb LinaritePbCu(SO4)(OH)2
Pb LithargePbO
Pb MassicotPbO
Pb MimetitePb5(AsO4)3Cl
Pb MiniumPb3O4
Pb ParsonsitePb2(UO2)(PO4)2
Pb PlattneritePbO2
Pb PlumbogummitePbAl3(PO4)(PO3OH)(OH)6
Pb PyromorphitePb5(PO4)3Cl
Pb VanadinitePb5(VO4)3Cl
Pb VandendriesscheitePbU7O22 · 12H2O
Pb WulfenitePb(MoO4)
Pb Galena var. Silver-bearing GalenaPbS with Ag
BiBismuth
Bi BeyeriteCa(BiO)2(CO3)2
Bi BismutotantaliteBi(Ta,Nb)O4
Bi BismutoferriteFe23+Bi(SiO4)2(OH)
Bi BismiteBi2O3
Bi BismuthBi
Bi BismuthiniteBi2S3
Bi Bismutite(BiO)2CO3
Bi CuprobismutiteCu8AgBi13S24
Bi GalenobismutitePbBi2S4
Bi SilléniteBi12SiO20
ThThorium
Th Thorite var. Calciothorite(Th,Ca2)SiO4 · 3.5H2O
Th Euxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
Th Grayite(Th,Pb,Ca)(PO4) · H2O
Th ThoriteTh(SiO4)
Th Thorite var. Thorogummite(Th,U)(SiO4)1-x(OH)4x
UUranium
U AutuniteCa(UO2)2(PO4)2 · 10-12H2O
U BecquereliteCa(UO2)6O4(OH)6 · 8H2O
U CarnotiteK2(UO2)2(VO4)2 · 3H2O
U CoffiniteU(SiO4) · nH2O
U Davidite-(La)La(Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH,F)38
U Euxenite-(Y)(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6
U FourmarieritePb(UO2)4O3(OH)4 · 4H2O
U IshikawaiteU4+Fe2+Nb2O8
U JohanniteCu(UO2)2(SO4)2(OH)2 · 8H2O
U LiandratiteU(Nb,Ta)2O8
U Meta-autuniteCa(UO2)2(PO4)2 · 6H2O
U MetatorberniteCu(UO2)2(PO4)2 · 8H2O
U ParsonsitePb2(UO2)(PO4)2
U PetscheckiteUFe(Nb,Ta)2O8
U PhosphuranyliteKCa(H3O)3(UO2)7(PO4)4O4 · 8H2O
U Rutherfordine(UO2)CO3
U Thorite var. Thorogummite(Th,U)(SiO4)1-x(OH)4x
U TorberniteCu(UO2)2(PO4)2 · 12H2O
U TyuyamuniteCa(UO2)2(VO4)2 · 5-8H2O
U UraniniteUO2
U Uranmicrolite (of Hogarth 1977)(Ca,U,Na)2-x(Ta,Nb)2(O,OH)7
U UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
U Pyrochlore Group var. Uranpyrochlore (of Hogarth 1977)(Ca,U,Ce)2(Nb,Ti,Ta)2O6(OH,F)
U VandendriesscheitePbU7O22 · 12H2O
U Yttrocolumbite-(Y)Y(U4+,Fe2+)Nb2O8

Fossils

There are 26 fossil localities from the PaleoBioDB database within this region.

BETA TEST - These data are provided on an experimental basis and are taken from external databases. Mindat.org has no control currently over the accuracy of these data.

Occurrences180
Youngest Fossil Listed0.01 Ma (Pleistocene)
Oldest Fossil Listed228 Ma (Late/Upper Triassic)
Stratigraphic UnitsClick here to view 7 stratigraphic units.
Fossils from RegionClick here to show the list.
Accepted NameHierarchy Age
Reptilia
class
Animalia : Chordata : Reptilia201.3 - 190.8 Ma
Early Jurassic
Erpetosuchus
genus
Animalia : Chordata : Reptilia : Eosuchia : Erpetosuchidae : Erpetosuchus228 - 208.5 Ma
Late/Upper Triassic
Phytosauria
unranked clade
Animalia : Chordata : Reptilia : Eosuchia : Phytosauria228 - 208.5 Ma
Late/Upper Triassic
Theropoda
unranked clade
Animalia : Chordata : Saurischia : Theropoda201.3 - 190.8 Ma
Early Jurassic
Coelophysis
genus
Animalia : Chordata : Saurischia : Coelophysidae : Coelophysis201.3 - 199.3 Ma
Early Jurassic
Prosauropoda
unranked clade
Animalia : Chordata : Saurischia : Prosauropoda201.3 - 190.8 Ma
Early Jurassic
Dinosauria
order
Animalia : Chordata : Reptilia : Dinosauria228 - 190.8 Ma
Mesozoic
Anchisaurus polyzelus
species
Animalia : Chordata : Saurischia : Anchisaurus : Anchisaurus polyzelus201.3 - 190.8 Ma
Early Jurassic
Plantae
kingdom
Plantae201.3 - 174.1 Ma
Jurassic
Brachyphyllum
genus
Plantae : Tracheophyta : Pinopsida : Pinales : Araucariaceae : Brachyphyllum201.3 - 196.5 Ma
Early Jurassic
Orthoptera
order
Animalia : Arthropoda : Insecta : Orthoptera201.3 - 190.8 Ma
Early Jurassic
Eubrontes cursorius
species
Animalia : Chordata : Saurischia : Eubrontidae : Grallator (Eubrontes) : Eubrontes cursorius201.3 - 174.1 Ma
Jurassic
Grallator (Anchisauripus) hitchcocki
species
Animalia : Chordata : Saurischia : Eubrontidae : Grallator (Eubrontes) : Grallator (Anchisauripus) hitchcocki201.3 - 174.1 Ma
Jurassic
Gigandipus caudatus
species
Animalia : Chordata : Saurischia : Eubrontidae : Grallator (Eubrontes) : Gigandipus caudatus201.3 - 174.1 Ma
Jurassic
Grallator (Eubrontes)
subgenus
Animalia : Chordata : Saurischia : Eubrontidae : Grallator (Eubrontes)201.3 - 190.8 Ma
Early Jurassic
Grallator formosus
species
Animalia : Chordata : Saurischia : Eubrontidae : Grallator (Eubrontes) : Grallator formosus201.3 - 174.1 Ma
Jurassic
Triaenopus lulli
species
Animalia : Chordata : Reptilia : Triaenopus : Triaenopus lulli201.3 - 174.1 Ma
Jurassic
Grallator tenuis
species
Animalia : Chordata : Saurischia : Eubrontidae : Grallator (Eubrontes) : Grallator tenuis201.3 - 190.8 Ma
Early Jurassic
Grallator cuneatus
species
Animalia : Chordata : Saurischia : Eubrontidae : Grallator (Eubrontes) : Grallator cuneatus201.3 - 190.8 Ma
Early Jurassic
Plesiornis
genus
Animalia : Chordata : Saurischia : Plesiornis201.3 - 190.8 Ma
Early Jurassic
Argoides minimus
species
Animalia : Chordata : Saurischia : Argoides : Argoides minimus201.3 - 190.8 Ma
Early Jurassic
Grallator (Anchisauripus) minusculus
species
Animalia : Chordata : Saurischia : Eubrontidae : Grallator (Eubrontes) : Grallator (Anchisauripus) minusculus201.3 - 190.8 Ma
Early Jurassic
Ornithoidichnites
genus
Ichnolites : Dipodichnites : Ornithoidichnites201.3 - 190.8 Ma
Early Jurassic
Eubrontes sillimani
species
Animalia : Chordata : Saurischia : Eubrontidae : Grallator (Eubrontes) : Eubrontes sillimani201.3 - 174.1 Ma
Jurassic
Anchisauripus tuberosus
species
Animalia : Chordata : Saurischia : Eubrontidae : Grallator (Eubrontes) : Anchisauripus tuberosus201.3 - 174.1 Ma
Jurassic
Anchisauripus exsertus
species
Animalia : Chordata : Saurischia : Eubrontidae : Grallator (Eubrontes) : Anchisauripus exsertus201.3 - 174.1 Ma
Jurassic
Grallator magnificus
species
Animalia : Chordata : Saurischia : Eubrontidae : Grallator (Eubrontes) : Grallator magnificus201.3 - 199.3 Ma
Early Jurassic
Eubrontes giganteus
species
Animalia : Chordata : Saurischia : Eubrontidae : Grallator (Eubrontes) : Eubrontes giganteus201.3 - 174.1 Ma
Jurassic
Eubrontes (Brontozoum) approximatus
species
Animalia : Chordata : Saurischia : Eubrontidae : Grallator (Eubrontes) : Eubrontes (Brontozoum) approximatus201.3 - 174.1 Ma
Jurassic
Grallator (Eubrontes) divaricatus
species
Animalia : Chordata : Saurischia : Eubrontidae : Grallator (Eubrontes) : Grallator (Eubrontes) divaricatus201.3 - 190.8 Ma
Early Jurassic
Otozoum moodii
species
Animalia : Chordata : Saurischia : Otozoidae : Otozoum : Otozoum moodii201.3 - 190.8 Ma
Early Jurassic
Anomoepus scambus
species
Animalia : Chordata : Ornithischia : Moyenisauropodidae : Anomoepus : Anomoepus scambus201.3 - 190.8 Ma
Early Jurassic
Batrachopus
genus
Animalia : Chordata : Reptilia : Crocodylia : Batrachopodidae : Batrachopus201.3 - 190.8 Ma
Early Jurassic
Batrachopus deweyi
species
Animalia : Chordata : Reptilia : Eosuchia : Batrachopodidae : Batrachopus : Batrachopus deweyi201.3 - 174.1 Ma
Jurassic
Batrachopus gracilis
species
Animalia : Chordata : Reptilia : Crocodylia : Batrachopodidae : Batrachopus : Batrachopus gracilis201.3 - 174.1 Ma
Jurassic
Corvipes lacertoideus
species
Animalia : Chordata : Reptilia : Dinosauria : Anomoepodidae : Corvipes : Corvipes lacertoideus201.3 - 190.8 Ma
Early Jurassic
Blattaria
order
Animalia : Arthropoda : Insecta : Blattaria201.3 - 190.8 Ma
Early Jurassic
Sillimanius tetradactylus
species
Animalia : Chordata : Reptilia : Eosuchia : Sillimanius : Sillimanius tetradactylus201.3 - 190.8 Ma
Early Jurassic
Steropoides diversus
species
Animalia : Chordata : Reptilia : Eosuchia : Steropoides : Steropoides diversus201.3 - 190.8 Ma
Early Jurassic
Cochlichnus
genus
Cochlichnus201.3 - 190.8 Ma
Early Jurassic
Botryopera
genus
Chromista : Radiozoa : Polycystina : Nassellaria : Lophophaenidae : Botryopera201.3 - 190.8 Ma
Early Jurassic
Steropoides elegans
species
Animalia : Chordata : Reptilia : Eosuchia : Steropoides : Steropoides elegans201.3 - 190.8 Ma
Early Jurassic
Harpedactylus tenuissimus
species
Animalia : Chordata : Reptilia : Eosuchia : Harpedactylus : Harpedactylus tenuissimus201.3 - 190.8 Ma
Early Jurassic
Plectropterna minitans
species
Animalia : Chordata : Osteichthyes : Plectropterna : Plectropterna minitans201.3 - 190.8 Ma
Early Jurassic
Littoraria irrorata
species
Animalia : Mollusca : Gastropoda : Littorinidae : Littoraria : Littoraria irrorata0.0117 - 0 Ma
Quaternary
Hypsognathus fenneri
species
Animalia : Chordata : Reptilia : Procolophonidae : Hypsognathus : Hypsognathus fenneri208.5 - 201.3 Ma
Mesozoic
Argoides macrodactylus
species
Animalia : Chordata : Saurischia : Argoides : Argoides macrodactylus201.3 - 190.8 Ma
Early Jurassic
Harpedactylus
genus
Animalia : Chordata : Reptilia : Dinosauria : Harpedactylus201.3 - 190.8 Ma
Early Jurassic
Platypterna deanii
species
Animalia : Chordata : Saurischia : Platypterna : Platypterna deanii201.3 - 190.8 Ma
Early Jurassic
Platypterna delicatula
species
Animalia : Chordata : Saurischia : Platypterna : Platypterna delicatula201.3 - 190.8 Ma
Early Jurassic
Platypterna tenuis
species
Animalia : Chordata : Saurischia : Platypterna : Platypterna tenuis201.3 - 190.8 Ma
Early Jurassic
Trihamus elegans
species
Animalia : Chordata : Trihamus : Trihamus elegans201.3 - 190.8 Ma
Early Jurassic
Plectropterna
genus
Animalia : Chordata : Osteichthyes : Plectropterna201.3 - 190.8 Ma
Early Jurassic
Tarsoplectrus elegans
species
Animalia : Chordata : Reptilia : Eosuchia : Tarsoplectrus : Tarsoplectrus elegans201.3 - 190.8 Ma
Early Jurassic
Steropoides infelix
species
Animalia : Chordata : Reptilia : Dinosauria : Steropoides : Steropoides infelix201.3 - 190.8 Ma
Early Jurassic
Steropoides loripes
species
Animalia : Chordata : Reptilia : Eosuchia : Steropoides : Steropoides loripes201.3 - 190.8 Ma
Early Jurassic
Ancyropus heteroclitus
species
Animalia : Chordata : Reptilia : Testudinata : Ancyropus : Ancyropus heteroclitus201.3 - 190.8 Ma
Early Jurassic
Palamopus divaricans
species
Animalia : Chordata : Reptilia : Eosuchia : Batrachopodidae : Batrachopus : Palamopus divaricans201.3 - 190.8 Ma
Early Jurassic
Isocampe strata
species
Animalia : Chordata : Reptilia : Isocampe : Isocampe strata201.3 - 190.8 Ma
Early Jurassic
Triaenopus baileyanus
species
Animalia : Chordata : Reptilia : Triaenopus : Triaenopus baileyanus201.3 - 190.8 Ma
Early Jurassic
Hoplichnus equus
species
Animalia : Chordata : Hoplichnus : Hoplichnus equus201.3 - 190.8 Ma
Early Jurassic
Trihamus magnus
species
Animalia : Chordata : Trihamus : Trihamus magnus201.3 - 190.8 Ma
Early Jurassic
Typopus gracilis
species
Animalia : Chordata : Osteichthyes : Typopus : Typopus gracilis201.3 - 190.8 Ma
Early Jurassic
Brontozoum expansum
species
Animalia : Chordata : Saurischia : Eubrontidae : Grallator (Eubrontes) : Brontozoum expansum201.3 - 190.8 Ma
Early Jurassic
Sillimanius gracilior
species
Animalia : Chordata : Reptilia : Eosuchia : Sillimanius : Sillimanius gracilior201.3 - 190.8 Ma
Early Jurassic
Ornithoidichnites divaricatus
species
Ichnolites : Dipodichnites : Ornithoidichnites : Ornithoidichnites divaricatus201.3 - 190.8 Ma
Early Jurassic
Plectropterna gracilis
species
Animalia : Chordata : Osteichthyes : Plectropterna : Plectropterna gracilis201.3 - 190.8 Ma
Early Jurassic
Plectropterna lineans
species
Animalia : Chordata : Osteichthyes : Plectropterna : Plectropterna lineans201.3 - 190.8 Ma
Early Jurassic
Stegomus arcuatus
species
Animalia : Chordata : Reptilia : Aetosaurus : Stegomus arcuatus215.56 - 212 Ma
Late/Upper Triassic
Batrachopus dispar
species
Animalia : Chordata : Reptilia : Crocodylia : Batrachopodidae : Batrachopus : Batrachopus dispar201.3 - 199.3 Ma
Early Jurassic
Acanthichnus
genus
Acanthichnus201.3 - 190.8 Ma
Early Jurassic
Herpystezoum
genus
Herpystezoum201.3 - 190.8 Ma
Early Jurassic
Cunicularius
genus
Cunicularius201.3 - 190.8 Ma
Early Jurassic
Bisulcus
genus
Animalia : Mollusca : Bisulcus201.3 - 190.8 Ma
Early Jurassic
Holcoptera schlotheimi
species
Animalia : Arthropoda : Insecta : Coleoptera : Coptoclavidae : Holcoptera : Holcoptera schlotheimi201.3 - 190.8 Ma
Early Jurassic
Holcoptera giebeli
species
Animalia : Arthropoda : Insecta : Coleoptera : Coptoclavidae : Holcoptera : Holcoptera giebeli201.3 - 190.8 Ma
Early Jurassic
Conopsoides
genus
Conopsoides201.3 - 190.8 Ma
Early Jurassic
Mormolucoides articulatus
species
Animalia : Arthropoda : Insecta : Coleoptera : Mormolucoides : Mormolucoides articulatus201.3 - 199.3 Ma
Early Jurassic
Plectropus longipes
species
Animalia : Chordata : Saurischia : Plectropus : Plectropus longipes201.3 - 190.8 Ma
Early Jurassic
Loperia
genus
Plantae : Loperia201.3 - 174.1 Ma
Jurassic
Redfieldius gracilis
species
Animalia : Chordata : Actinopteri : Palaeonisciformes : Redfieldiidae : Redfieldius : Redfieldius gracilis201.3 - 174.1 Ma
Jurassic
Baiera
genus
Plantae : Tracheophyta : Ginkgoopsida : Ginkgoales : Karkeniaceae : Baiera201.3 - 174.1 Ma
Jurassic
Colobops noviportensis
species
Animalia : Chordata : Reptilia : Eosuchia : Colobops : Colobops noviportensis228 - 208.5 Ma
Late/Upper Triassic
Ornithoidichnites parvulus
species
Ichnolites : Dipodichnites : Ornithoidichnites : Ornithoidichnites parvulus201.3 - 190.8 Ma
Early Jurassic
Palaeoniscus agassizii
species
Animalia : Chordata : Actinopteri : Semionotiformes : Semionotidae : Semionotus : Palaeoniscus agassizii201.3 - 174.1 Ma
Jurassic
Semionotus tenuiceps
species
Animalia : Chordata : Actinopteri : Semionotiformes : Semionotidae : Semionotus : Semionotus tenuiceps201.3 - 174.1 Ma
Jurassic
Fossil LocalitiesClick to show 26 fossil localities

Localities in this Region

Other Regions, Features and Areas that Intersect


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.

References

 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: April 25, 2024 14:15:46 Page updated: April 24, 2024 11:22:14
Go to top of page