Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Murray meteorite, Calloway Co., Kentucky, USAi
Regional Level Types
Murray meteoriteMeteorite Fall Location
Calloway Co.County
KentuckyState
USACountry

This page is currently not sponsored. Click here to sponsor this page.
PhotosMapsSearch
Latitude & Longitude (WGS84):
36° 36' North , 88° 6' West
Latitude & Longitude (decimal):
Meteorite Class:
Meteoritical Society Class:
KΓΆppen climate type:
Nearest Settlements:
PlacePopulationDistance
Murray18,954 (2017)19.2km
Hazel406 (2017)22.9km
Dexter277 (2011)23.6km
Hardin599 (2017)25.3km
Dover1,457 (2017)26.5km


Classification: CM2 Carbonaceous Chondrite

On September 20, 1950, after a brilliant fireball was seen in the neighboring state of Illinois, the Murray meteoroid exploded at a high altitude and after a number of sonic booms were heard, several pieces of the meteorite were recovered some 15 kilometers east of Murray, Kentucky. The largest recovered fragment (3.4 kg) created a small 15 cm deep crater. Murray is the second largest of the 15 recovered CM (Mighei-like) Carbonaceous Chondrite falls (Total Mass - 12.6 kg). Over 400 CM stones have been recovered, but most of them are quite small. The five largest CM meteorites are all witnessed falls. A half-century ago amino acids and other complex organic compounds were found in several extant CM2 meteorites. In the past two decades, interest in CM2 meteorites has quickened as tiny diamonds, corundum and other minerals appear to contain trapped gases which predate the beginnings of the solar nebula.

Murray and other carbonaceous chondrites share similar oxygen isotope ratios and have nearly solar Mg/Si ratios. In addition, the members of the CM chemical group are distinguished by small chondrules and inclusions, abundant fine-grained matrix (~70 vol%), and abundant hydrated minerals. The CM2 type meteorites are further characterized by their Ni-bearing sulfides.

Continuing concerns with Murray and other CM2 meteorites include: (1) Can we determine positively whether the hydrated minerals are preterrestrial? (2) Do exotic inclusions sample other bodies besides a putative CM parent body. (3) Do the minute particles/crystals of graphite, diamond, corundum, silicon carbide etc. tell us about the red giants, novae, and/or supernovae which supplied the heavier elements of the solar nebula.

The Meteoritical Society’s β€œMeteoritical Society Database” can lead interested parties to more information, references, and photographs.

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Mineral List


28 valid minerals.

Meteorite/Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

β“˜ Aragonite
Formula: CaCO3
Reference: Martin R. Lee & Rachael Ellen (2008). Aragonite in the Murray (CM2) carbonaceous chondrite: Implications for parent body compaction and aqueous alteration. Meteoritics & Planetary Science 43, #7, 1219-1231. (Oct 2008).
β“˜ Augite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Reference: Martin R. Lee & RichardΒ C. GreenwoodΒ (1994). Alteration of calcium-and aluminium-rich inclusions in the Murray (CM2) carbonaceous chondrite. Meteoritics (ISSN 0026-1114), #29, no. 6, p. 780-790. (Dec 1994).
β“˜ Augite var. Fassaite
Formula: (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Reference: Martin R. Lee & RichardΒ C. GreenwoodΒ (1994). Alteration of calcium-and aluminium-rich inclusions in the Murray (CM2) carbonaceous chondrite. Meteoritics (ISSN 0026-1114), #29, no. 6, p. 780-790. (Dec 1994).
β“˜ Barringerite
Formula: (Fe,Ni)2P
Reference: M. A. Nazarov, G. Kurat, F. Brandstaetter, T. Ntaflos, M. Chaussidon, and P. Hoppe (2009). Phosphorus-Bearing Sulfides and Their Associations in CM Chondrites. Petrology vol. 17, #2, 101-123.
β“˜ Calcite
Formula: CaCO3
Reference: Martin R. Lee & Rachael Ellen (2008). Aragonite in the Murray (CM2) carbonaceous chondrite: Implications for parent body compaction and aqueous alteration. Meteoritics & Planetary Science 43, #7, 1219-1231. (Oct 2008).
β“˜ 'Chlorite Group'
Reference: Brearley, A. J. & Jones, R. H. (1998): Chondritic Meteorites. In: Planetary Materials (Papike, J. J., Editor): Chapter 3, 398 pages. Mineralogical Society of America: Washington, DC, USA. (1998)
β“˜ Chromite
Formula: Fe2+Cr3+2O4
Reference: Paul Ramdohr (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages. ; Palmer, E.E. & Lauretta, D.S. (Oct 2011) Aqueous alteration of kamacite in CM chondrites: Meteoritics & Planetary Science: 46 (10): 1587-1607 (Oct 2011)
β“˜ 'Clinopyroxene Subgroup'
Reference: Palmer, E.E. & Lauretta, D.S. (Oct 2011) Aqueous alteration of kamacite in CM chondrites: Meteoritics & Planetary Science: 46 (10): 1587-1607 (Oct 2011)
β“˜ Corundum
Formula: Al2O3
Reference: Ernst Zinner, Sachiko Amari, Robert Guinness, Ann Nguyen, FrankΒ J. Stadermann, Robert M. Walker & Roy S. Lewis (2003). Presolar spinel grains from the Murray and Murchison carbonaceous chondrites.
β“˜ Cronstedtite
Formula: Fe2+2Fe3+((Si,Fe3+)2O5)(OH)4
Reference: Theodore E Bunch & S. Chang (1980) Carbonaceous chondrites--II. Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions. Geochim. Cosmochim. Acta 44, 1543-1578. ; Palmer, E.E. & Lauretta, D.S. (Oct 2011) Aqueous alteration of kamacite in CM chondrites: Meteoritics & Planetary Science: 46 (10): 1587-1607 (Oct 2011)
β“˜ DaubrΓ©elite
Formula: Fe2+Cr3+2S4
Reference: Paul Ramdohr (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
β“˜ Diamond
Formula: C
Description: Includes very occasional pre-solar diamonds
Reference: Huss, G. R., Meshik, A. P., Smith, J. B. & Hohenberg, C. M. (2003) Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula . Geochimica et Cosmochimica Acta 67 (24): 4823-4848. (Dec 2003)
β“˜ Diopside
Formula: CaMgSi2O6
Reference: American Mineralogist, Volume 94, pages 1483–1486, 2009; Martin R. Lee & RichardΒ C. GreenwoodΒ (1994). Alteration of calcium-and aluminium-rich inclusions in the Murray (CM2) carbonaceous chondrite. Meteoritics (ISSN 0026-1114), #29, no. 6, p. 780-790. (Dec 1994).
β“˜ Enstatite
Formula: Mg2Si2O6
Reference: Palmer, E.E. & Lauretta, D.S. (Oct 2011) Aqueous alteration of kamacite in CM chondrites: Meteoritics & Planetary Science: 46 (10): 1587-1607 (Oct 2011)
β“˜ Eskolaite
Formula: Cr2O3
Reference: Palmer, E.E. & Lauretta, D.S. (Oct 2011) Aqueous alteration of kamacite in CM chondrites: Meteoritics & Planetary Science: 46 (10): 1587-1607 (Oct 2011)
β“˜ 'Fayalite-Forsterite Series'
Reference: J. Douglas MacDougall & B. K. Kothari (1976). Formation chronology for C2 meteorites. Earth and Planetary Science Letters, vol. 33, p. 36-44. (Nov. 1976)
β“˜ Forsterite
Formula: Mg2SiO4
Reference: Martin R. Lee & Richard C. Greenwood (1994). Alteration of calcium- and aluminum-rich inclusions in the Murray (CM2) carbonaceous chondrite. Meteoritics 29, #6, 780-790.; Palmer, E.E. & Lauretta, D.S. (Oct 2011) Aqueous alteration of kamacite in CM chondrites: Meteoritics & Planetary Science: 46 (10): 1587-1607 (Oct 2011)
β“˜ Graphite
Formula: C
Reference: Huss, G. R., Meshik, A. P., Smith, J. B. & Hohenberg, C. M. (2003) Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula . Geochimica et Cosmochimica Acta 67 (24): 4823-4848. (Dec 2003)
β“˜ Hibonite
Formula: CaAl12O19
Reference: American Mineralogist, Volume 94, pages 1483–1486, 2009; Phinney, D., MacDougall, J. D., & Whitehead, B. (1979). Magnesium Isotopes in Hibonite-Bearing Inclusions from CM Meteorites (Abstract). LUNAR AND PLANETARY SCIENCE X, P. 975-977.
β“˜ Iron
Formula: Fe
Reference: Paul Ramdohr (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages. ; Palmer, E.E. & Lauretta, D.S. (Oct 2011) Aqueous alteration of kamacite in CM chondrites: Meteoritics & Planetary Science: 46 (10): 1587-1607 (Oct 2011)
β“˜ Iron var. Kamacite
Formula: (Fe,Ni)
Reference: Paul Ramdohr (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages. ; Palmer, E.E. & Lauretta, D.S. (Oct 2011) Aqueous alteration of kamacite in CM chondrites: Meteoritics & Planetary Science: 46 (10): 1587-1607 (Oct 2011)
β“˜ Mackinawite
Formula: (Fe,Ni)9S8
Reference: Paul Ramdohr (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
β“˜ Magnetite
Formula: Fe2+Fe3+2O4
Reference: Paul Ramdohr (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages. ; Martin R. Lee & Rachael Ellen (2008). Aragonite in the Murray (CM2) carbonaceous chondrite: Implications for parent body compaction and aqueous alteration. Meteoritics & Planetary Science 43, #7, 1219-1231. (Oct 2008).; Palmer, E.E. & Lauretta, D.S. (Oct 2011) Aqueous alteration of kamacite in CM chondrites: Meteoritics & Planetary Science: 46 (10): 1587-1607 (Oct 2011)
β“˜ Paragonite
Formula: NaAl2(AlSi3O10)(OH)2
Reference: Martin R. Lee & RichardΒ C. GreenwoodΒ (1994). Alteration of calcium-and aluminium-rich inclusions in the Murray (CM2) carbonaceous chondrite. Meteoritics (ISSN 0026-1114), #29, no. 6, p. 780-790. (Dec 1994).
β“˜ Pentlandite
Formula: (NixFey)Ξ£9S8
Reference: Paul Ramdohr (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages. ; Palmer, E.E. & Lauretta, D.S. (Oct 2011) Aqueous alteration of kamacite in CM chondrites: Meteoritics & Planetary Science: 46 (10): 1587-1607 (Oct 2011)
β“˜ Perovskite
Formula: CaTiO3
Reference: Martin R. Lee & RichardΒ C. GreenwoodΒ (1994). Alteration of calcium-and aluminium-rich inclusions in the Murray (CM2) carbonaceous chondrite. Meteoritics (ISSN 0026-1114), #29, no. 6, p. 780-790. (Dec 1994).
β“˜ 'Pyroxene Group'
Formula: ADSi2O6
Description: Found in spinel-pyroxene inclusions
Reference: Brearley, A. J. & Jones, R. H. (1998): Chondritic Meteorites. In: Planetary Materials (Papike, J. J., Editor): Chapter 3, 398 pages. Mineralogical Society of America: Washington, DC, USA. (1998)
β“˜ Pyrrhotite
Formula: Fe1-xS
Reference: Emma S. Bullock, Kevin D. McKeegan, Matthieu Gounelle, Monica M. Grady & Sara S. Russell (2010 ). Sulfur isotopic composition of Fe-Ni sulfide grains in CI and CM carbonaceous chondrites. Meteoritics & Planetary Science 45, #5, 885–898. (May 2010).
β“˜ Schreibersite
Formula: (Fe,Ni)3P
Reference: M. A. Nazarov, G. Kurat, F. Brandstaetter, T. Ntaflos, M. Chaussidon, and P. Hoppe (2009). Phosphorus-Bearing Sulfides and Their Associations in CM Chondrites. Petrology vol. 17, #2, 101-123.; Palmer, E.E. & Lauretta, D.S. (Oct 2011) Aqueous alteration of kamacite in CM chondrites: Meteoritics & Planetary Science: 46 (10): 1587-1607 (Oct 2011)
β“˜ 'Serpentine Subgroup'
Formula: D3[Si2O5](OH)4
Reference: Brian Harold Mason (1962). Meteorites. John Wiley and Sons, Inc.: New York and London. 274 pages.; Palmer, E.E. & Lauretta, D.S. (Oct 2011) Aqueous alteration of kamacite in CM chondrites: Meteoritics & Planetary Science: 46 (10): 1587-1607 (Oct 2011)
β“˜ 'Smectite Group'
Formula: A0.3D2-3[T4O10]Z2 · nH2O
Reference: Zolensky, M. E., Barrett, R. A., Kloeck, W., & Gooding, J. L. (1990). Abstracts of the Lunar and Planetary Science Conference, vol. 21, pp. 1383-1384. (1990)
β“˜ Spinel
Formula: MgAl2O4
Description: Including a few pre-solar grains
Reference: Phinney, D., MacDougall, J. D., & Whitehead, B. (1979). Magnesium Isotopes in Hibonite-Bearing Inclusions from CM Meteorites (Abstract). LUNAR AND PLANETARY SCIENCE X, P. 975-977. ; Martin R. Lee & RichardΒ C. GreenwoodΒ (1994). Alteration of calcium-and aluminium-rich inclusions in the Murray (CM2) carbonaceous chondrite. Meteoritics (ISSN 0026-1114), #29, no. 6, p. 780-790. (Dec 1994).;Zinner, E. et al. (2003). Presolar spinel grains from the Murray and Murchison carbonaceous chondrites. Geochimica et Cosmochimica Acta: 67(24): 5083-5095. (December, 2003).
β“˜ Taenite
Formula: (Fe,Ni)
Reference: Paul Ramdohr (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
β“˜ Tochilinite
Formula: Fe2+5-6(Mg,Fe2+)5S6(OH)10
Reference: Zolensky, M. E., Barrett, R. A., Kloeck, W., & Gooding, J. L. (1990). Abstracts of the Lunar and Planetary Science Conference, vol. 21, pp. 1383-1384. (1990) ; Palmer, E.E. & Lauretta, D.S. (Oct 2011) Aqueous alteration of kamacite in CM chondrites: Meteoritics & Planetary Science: 46 (10): 1587-1607 (Oct 2011)
β“˜ Troilite
Formula: FeS
Reference: Paul Ramdohr (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages. ; Palmer, E.E. & Lauretta, D.S. (Oct 2011) Aqueous alteration of kamacite in CM chondrites: Meteoritics & Planetary Science: 46 (10): 1587-1607 (Oct 2011)
β“˜ Tschermakite
Formula: ◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
Reference: American Mineralogist, Volume 94, pages 1483–1486, 2009

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
β“˜Barringerite1.BD.10(Fe,Ni)2P
β“˜Diamond1.CB.10aC
β“˜Graphite1.CB.05aC
β“˜Iron1.AE.05Fe
β“˜var. Kamacite1.AE.05(Fe,Ni)
β“˜Schreibersite1.BD.05(Fe,Ni)3P
β“˜Taenite1.AE.10(Fe,Ni)
Group 2 - Sulphides and Sulfosalts
β“˜DaubrΓ©elite2.DA.05Fe2+Cr3+2S4
β“˜Mackinawite2.CC.25(Fe,Ni)9S8
β“˜Pentlandite2.BB.15(NixFey)Ξ£9S8
β“˜Pyrrhotite2.CC.10Fe1-xS
β“˜Tochilinite2.FD.35Fe2+5-6(Mg,Fe2+)5S6(OH)10
β“˜Troilite2.CC.10FeS
Group 4 - Oxides and Hydroxides
β“˜Chromite4.BB.05Fe2+Cr3+2O4
β“˜Corundum4.CB.05Al2O3
β“˜Eskolaite4.CB.05Cr2O3
β“˜Hibonite4.CC.45CaAl12O19
β“˜Magnetite4.BB.05Fe2+Fe3+2O4
β“˜Perovskite4.CC.30CaTiO3
β“˜Spinel4.BB.05MgAl2O4
Group 5 - Nitrates and Carbonates
β“˜Aragonite5.AB.15CaCO3
β“˜Calcite5.AB.05CaCO3
Group 9 - Silicates
β“˜Augite9.DA.15(CaxMgyFez)(Mgy1Fez1)Si2O6
β“˜var. Fassaite9.DA.15(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
β“˜Cronstedtite9.ED.15Fe2+2Fe3+((Si,Fe3+)2O5)(OH)4
β“˜Diopside9.DA.15CaMgSi2O6
β“˜Enstatite9.DA.05Mg2Si2O6
β“˜Forsterite9.AC.05Mg2SiO4
β“˜Paragonite9.EC.15NaAl2(AlSi3O10)(OH)2
β“˜Tschermakite9.DE.10β—»(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
Unclassified Minerals, Rocks, etc.
β“˜'Chlorite Group'-
β“˜'Clinopyroxene Subgroup'-
β“˜'Fayalite-Forsterite Series'-
β“˜'Pyroxene Group'-ADSi2O6
β“˜'Serpentine Subgroup'-D3[Si2O5](OH)4
β“˜'Smectite Group'-A0.3D2-3[T4O10]Z2 Β· nH2O

List of minerals for each chemical element

HHydrogen
Hβ“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
Hβ“˜ Serpentine SubgroupD3[Si2O5](OH)4
Hβ“˜ ParagoniteNaAl2(AlSi3O10)(OH)2
Hβ“˜ TochiliniteFe2+5-6(Mg,Fe2+)5S6(OH)10
Hβ“˜ Smectite GroupA0.3D2-3[T4O10]Z2 · nH2O
Hβ“˜ CronstedtiteFe22+Fe3+((Si,Fe3+)2O5)(OH)4
CCarbon
Cβ“˜ AragoniteCaCO3
Cβ“˜ CalciteCaCO3
Cβ“˜ DiamondC
Cβ“˜ GraphiteC
OOxygen
Oβ“˜ HiboniteCaAl12O19
Oβ“˜ DiopsideCaMgSi2O6
Oβ“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
Oβ“˜ Serpentine SubgroupD3[Si2O5](OH)4
Oβ“˜ ChromiteFe2+Cr23+O4
Oβ“˜ MagnetiteFe2+Fe23+O4
Oβ“˜ SpinelMgAl2O4
Oβ“˜ CorundumAl2O3
Oβ“˜ AragoniteCaCO3
Oβ“˜ CalciteCaCO3
Oβ“˜ PerovskiteCaTiO3
Oβ“˜ Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Oβ“˜ ParagoniteNaAl2(AlSi3O10)(OH)2
Oβ“˜ TochiliniteFe2+5-6(Mg,Fe2+)5S6(OH)10
Oβ“˜ Smectite GroupA0.3D2-3[T4O10]Z2 · nH2O
Oβ“˜ CronstedtiteFe22+Fe3+((Si,Fe3+)2O5)(OH)4
Oβ“˜ ForsteriteMg2SiO4
Oβ“˜ Pyroxene GroupADSi2O6
Oβ“˜ EskolaiteCr2O3
Oβ“˜ EnstatiteMg2Si2O6
Oβ“˜ Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
NaSodium
Naβ“˜ Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Naβ“˜ ParagoniteNaAl2(AlSi3O10)(OH)2
MgMagnesium
Mgβ“˜ DiopsideCaMgSi2O6
Mgβ“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
Mgβ“˜ SpinelMgAl2O4
Mgβ“˜ Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Mgβ“˜ TochiliniteFe2+5-6(Mg,Fe2+)5S6(OH)10
Mgβ“˜ ForsteriteMg2SiO4
Mgβ“˜ EnstatiteMg2Si2O6
Mgβ“˜ Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
AlAluminium
Alβ“˜ HiboniteCaAl12O19
Alβ“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
Alβ“˜ SpinelMgAl2O4
Alβ“˜ CorundumAl2O3
Alβ“˜ Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Alβ“˜ ParagoniteNaAl2(AlSi3O10)(OH)2
SiSilicon
Siβ“˜ DiopsideCaMgSi2O6
Siβ“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
Siβ“˜ Serpentine SubgroupD3[Si2O5](OH)4
Siβ“˜ Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Siβ“˜ ParagoniteNaAl2(AlSi3O10)(OH)2
Siβ“˜ CronstedtiteFe22+Fe3+((Si,Fe3+)2O5)(OH)4
Siβ“˜ ForsteriteMg2SiO4
Siβ“˜ Pyroxene GroupADSi2O6
Siβ“˜ EnstatiteMg2Si2O6
Siβ“˜ Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
PPhosphorus
Pβ“˜ Barringerite(Fe,Ni)2P
Pβ“˜ Schreibersite(Fe,Ni)3P
SSulfur
Sβ“˜ DaubrΓ©eliteFe2+Cr23+S4
Sβ“˜ Mackinawite(Fe,Ni)9S8
Sβ“˜ Pentlandite(NixFey)Ξ£9S8
Sβ“˜ TroiliteFeS
Sβ“˜ TochiliniteFe2+5-6(Mg,Fe2+)5S6(OH)10
Sβ“˜ PyrrhotiteFe1-xS
CaCalcium
Caβ“˜ HiboniteCaAl12O19
Caβ“˜ DiopsideCaMgSi2O6
Caβ“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
Caβ“˜ AragoniteCaCO3
Caβ“˜ CalciteCaCO3
Caβ“˜ PerovskiteCaTiO3
Caβ“˜ Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Caβ“˜ Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
TiTitanium
Tiβ“˜ PerovskiteCaTiO3
Tiβ“˜ Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
CrChromium
Crβ“˜ ChromiteFe2+Cr23+O4
Crβ“˜ DaubrΓ©eliteFe2+Cr23+S4
Crβ“˜ EskolaiteCr2O3
FeIron
Feβ“˜ ChromiteFe2+Cr23+O4
Feβ“˜ DaubrΓ©eliteFe2+Cr23+S4
Feβ“˜ Iron var. Kamacite(Fe,Ni)
Feβ“˜ Mackinawite(Fe,Ni)9S8
Feβ“˜ MagnetiteFe2+Fe23+O4
Feβ“˜ Pentlandite(NixFey)Ξ£9S8
Feβ“˜ Taenite(Fe,Ni)
Feβ“˜ TroiliteFeS
Feβ“˜ Augite var. Fassaite(Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Feβ“˜ TochiliniteFe2+5-6(Mg,Fe2+)5S6(OH)10
Feβ“˜ PyrrhotiteFe1-xS
Feβ“˜ Barringerite(Fe,Ni)2P
Feβ“˜ Schreibersite(Fe,Ni)3P
Feβ“˜ CronstedtiteFe22+Fe3+((Si,Fe3+)2O5)(OH)4
Feβ“˜ IronFe
Feβ“˜ Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
NiNickel
Niβ“˜ Iron var. Kamacite(Fe,Ni)
Niβ“˜ Mackinawite(Fe,Ni)9S8
Niβ“˜ Pentlandite(NixFey)Ξ£9S8
Niβ“˜ Taenite(Fe,Ni)
Niβ“˜ Barringerite(Fe,Ni)2P
Niβ“˜ Schreibersite(Fe,Ni)3P

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Horan, J.R. (May 1953) The Murray, Calloway County, Kentucky, Aerolite. Meteoritics: 1(1): 114-121.
Ramdohr, P. (1973) The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
MacDougall, J.D. and Kothari, B.K. (November 1976) Formation chronology for C2 meteorites. Earth and Planetary Science Letters: 33: 36-44.
Phinney, D., MacDougall, J.D., and Whitehead, B. (1979) Magnesium Isotopes in Hibonite-Bearing Inclusions from CM Meteorites (Abstract). Lunar and Planetary Science X: 975-977.
Bernatowicz, T., Fraundorf, G., Tang, M., Anders, E., Wopenka, B., Zinner, E., and Fraundorf, P. (1987) Evidence for interstellar SiC in the Murray carbonaceous meteorite. Nature: 330: 728–730.
Zinner, E., Tang, M., and Anders, E. (1989) Interstellar SiC in the Murchison and Murray meteorites: Isotopic composition of Ne, Xe, Si, C and N. Geochimica et Cosmochimica Acta: 53: 3273–3290.
Grady, M.M. (2000) Catalogue of Meteorites (5/e). Cambridge University Press: Cambridge, New York, Oakleigh, Madrid, Cape Town. 690 pages.
Huss, G.R., Meshik, A.P., Smith, J.B., and Hohenberg, C.M. (December 2003) Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula. Geochimica et Cosmochimica Acta 67 (24): 4823-4848.
Zinner, E., Amari, S., Guinness, R., Nguyen, A., Stadermann, F.J., Walker, R.M., and Lewis, R.S. (December 2003) Presolar spinel grains from the Murray and Murchison carbonaceous chondrites. Geochimica et Cosmochimica Acta: 67(24) [special issue]: 5083-5095.
Lee, M.R. & Ellen, R. (October 2008) Aragonite in the Murray (CM2) carbonaceous chondrite: Implications for parent body compaction and aqueous alteration. Meteoritics & Planetary Science: 43(7): 1219-1231.
American Mineralogist (2009) 94: 1483–1486.
Palmer, E.E. and Lauretta, D.S. (October 2011) Aqueous alteration of kamacite in CM chondrites: Meteoritics & Planetary Science: 46 (10): 1587-1607.

External Links


Other Regions, Features and Areas containing this locality


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: March 29, 2024 15:44:58 Page updated: January 14, 2023 22:08:31
Go to top of page