Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Mineralogical ClassificationIMA 2012-057 = nabimusaite

27th Nov 2015 09:47 UTCMarco E. Ciriotti Manager

Reference:

▪ Galuskin, E.V., Gfeller, F., Armbruster, T., Galuskina, I.O., Vapnik, Y., Murashko, M., Włodyka, R., Dzierżanowski, P. (2015): New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part I. Nabimusaite, KCa12(SiO4)4(SO4)2O2F, from larnite rocks of Jabel Harmun, Palestinian Autonomy, Israel. Mineralogical Magazine, 79, 1061-1072.


Abstract:

The new mineral nabimusaite, KCa12(SiO4)4(SO4)2O2F (R3m, a = 7.1905(4), c = 41.251(3) Å, V = 1847.1(2) Å3, Z = 3), has been discovered in larnite-ye'elimite nodules of pyrometamorphic rocks of the Hatrurim Complex. Nabimusaite is colourless, transparent with a white streak, has a vitreous lustre and does not show luminescence. It is brittle, but shows pronounced parting and imperfect cleavage along (001). Nabimusaite is uniaxial (–), ω = 1.644(2), ε = 1.640(2) (589 nm), nonpleochroic, Mohs' hardness is ∼5 and the calculated density is 3.119 g cm–3. The crystal structure has been solved and refined to R1 = 0.0416. Its artificial analogue is known. The nabimusaite structure may be derived from that of hatrurite, also known as the clinker phase 'alite' (C3S = Ca3SiO5), and is built up by an intercalation of three positively charged hatrurite-like modules of composition [Ca12(SiO4)4O2F]3+ with inserted modules of [K(SO4)2]3–. The hatrurite-like modules in nabimusaite are characterized by octahedrally coordinated anion sites and tetrahedrally coordinated cation sites. The structure is representative of the intercalated antiperovskite type. In contrast to its synthetic analogue, nabimusaite is P-bearing. The shortened bond T–O lengths for one tetrahedral site indicates P preference at the Si2 site, located at the border of the hatrurite-like modules. Significant variations of isomorphous substitutions in nabimusaite suggest the possibility of other isostructural minerals occurring in Nature. It also seems likely that nabimusaite could serve as a prototype for new advanced synthetic materials, given the discovery of two other new minerals in the Hatrurim Complex with related modular structures, placed in the nabimusaite group. These are zadovite and aradite, as described in a companion paper (Galuskin et al., 2015 a).

The mineral assemblage and paragenesis of nabimusaite suggests that nabimusaite formed as a result of the reaction of potassium-enriched, sulfate-bearing melt with larnite and ellestadite. This contradicts the isochemical model that pyrometamorphic rocks of the Hatrurim Complex formed relatively fast in a practically dry system.

27th Nov 2015 19:38 UTCKnut Edvard Larsen 🌟 Manager

Mineral and locality pages updated.
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: April 25, 2024 13:06:26
Go to top of page