Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Mineralogical ClassificationAnother step toward the solution of the real structure of zinkenite

13th Apr 2018 12:45 UTCMarco E. Ciriotti Manager

Reference:

▪ Biagioni, C., Bindi, L., Moëlo, Y. (2018): Another step toward the solution of the real structure of zinkenite. Zeitschrift für Kristallographie - Crystalline Materials, 233, 269-277.


Abstract:

The crystal structure of Cu-bearing zinkenite from Saint-Pons (Alpes Maritimes department, France), having idealized chemical composition Cu0.7Pb9.7Sb21.3S42, has been studied. It has a pronounced hexagonal sub-cell, with unit-cell parameters a=22.1219(11), c=4.3207(3) Å, V=1831.2(2) Å3, space group P63, Z=1. The sub-cell crystal structure was refined to R1=0.072 on the basis of 3905 reflections with Fo>4σ(Fo) and 133 refined parameters. It can be described as formed by one kind of rod, with walls of columns of (Pb/Sb)-centered polyhedra flanking both the rods and the sites located along the 63 screw axis. Minor Cu is hosted in the tetrahedral voids between the rods and the walls of polyhedra. Alternatively, the crystal structure of zinkenite can be described as formed by trigonal rods, delimited by lone electron-pair micelles, and tunnels hosting (Pb/Sb) atoms. The occurrence of weak superstructure reflections points to a triclinic unit cell with parameters a=38.271(2), b=22.1219(13), c=8.6475(5) Å, α=89.931(3), β=90.030(3), γ=89.957(3)°, V=7323.6(7) Å3, space group P1, Z=4. The twin laws making the twin lattice hexagonal have been taken into account and the crystal structure has been solved and refined. Notwithstanding the very low R1 value (R1=0.038 on the basis of 22563 reflections with Fo>4σ(Fo) and 1194 refined parameters), several shortcomings, mainly due to the low diffraction quality of the available crystals, allow only the description of the main structural features of the superstructure of zinkenite, indicating the correctness of the triclinic model hypothesized by previous authors.
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: April 20, 2024 01:44:52
Go to top of page