Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Mineralogical ClassificationIdentification of hydrogen species in alunite-type minerals by multi-nuclear solid-state NMR spectroscopy

2nd Jan 2019 15:03 UTCUwe Kolitsch Manager

Grube, E., Lipton, A.S., Nielsen, U.G.: Identification of hydrogen species in alunite-type minerals by multi-nuclear solid-state NMR spectroscopy. Physics and Chemistry of Minerals (online)

https://rd.springer.com/article/10.1007%2Fs00269-018-1004-8


The various hydrogen species present in a series of synthetic hydroniumjarosite ((H3O)Fe3(SO4)2(OH)6), and ammonioalunite ((NH4)Al3(SO4)2(OH)6) as well synthetic potassium (Cr3+ and V3+) and hydronium (V3+, Cr3+, and Ga3+) analogues were identified and quantified by 1H and 2H MAS NMR spectroscopy. The results confirm the defect mechanism proposed for alunite Nielsen et al. (Am Miner 92: 587–597, 2007), and allow for identification and quantification of even a few percent structural defects. For the paramagnetic samples, the isotropic shift for G2-OH group (V3+, Cr3+, and Fe3+) span more than 1100 ppm, which is related to different d-electron configuration (d2, d3, and d5). Analysis of the 1H and 27Al MAS NMR spectra shows that the synthetic ammonioalunite contains small amounts (5–10%) of hydronium. Furthermore, the close structural relationship between of hydronium and gallium alunite is reflected by the 27Al and 71Ga quadrupole coupling parameters. Thus, the current work demonstrates the applicability of solid state NMR spectroscopy for identification and quantification of hydrogen species in both dia- and paramagnetic minerals.
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: April 24, 2024 09:29:57
Go to top of page