SUPPORT US. If is important to you, click here to donate to our Fall 2019 fundraiser!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography


This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About CoesiteHide

7½ - 8
Specific Gravity:
2.92 (Calculated)
Crystal System:
For Loring Coes Jr. (1915-1978), American chemist who first synthesized it.
A high-pressure modification of SiO2.

Classification of CoesiteHide

Approved, 'Grandfathered' (first described prior to 1959)

4 : OXIDES (Hydroxides, V[5,6] vanadates, arsenites, antimonites, bismuthites, sulfites, selenites, tellurites, iodates)
D : Metal: Oxygen = 1:2 and similar
A : With small cations: Silica family

75 : TECTOSILICATES Si Tetrahedral Frameworks
1 : Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si

7 : Oxides and Hydroxides
8 : Oxides of Si

Physical Properties of CoesiteHide

7½ - 8 on Mohs scale
Suspected on {010}{012}
2.92 g/cm3 (Calculated)

Optical Data of CoesiteHide

Biaxial (+)
RI values:
nα = 1.593 - 1.599 nγ = 1.597 - 1.604
Measured: 54° to 64°
Max Birefringence:
δ = 0.004 - 0.005
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
r < v weak
On synthetic material

Chemical Properties of CoesiteHide

Common Impurities:

Crystallography of CoesiteHide

Crystal System:
Class (H-M):
2/m - Prismatic
Space Group:
Cell Parameters:
a = 7.143(2) Å, b = 12.383(3) Å, c = 7.143(2) Å
β = 120°
a:b:c = 0.577 : 1 : 0.577
Unit Cell V:
547.16 ų (Calculated from Unit Cell)
Irregular to rectangular grains.

Type Occurrence of CoesiteHide

Other Language Names for CoesiteHide

Simplified Chinese:柯石英
Traditional Chinese:柯石英

Common AssociatesHide

Associated Minerals Based on Photo Data:
3 photos of Coesite associated with StishoviteSiO2
3 photos of Coesite associated with MagadiiteNa2Si14O29 · 11H2O
3 photos of Coesite associated with KenyaiteNa2Si22O41(OH)8 · 6H2O
2 photos of Coesite associated with QuartzSiO2
2 photos of Coesite associated with Garnet GroupX3Z2(SiO4)3
1 photo of Coesite associated with Omphacite(NaaCabFe2+cMgd)(AleFe3+fFe2+gMgh)Si2O6
1 photo of Coesite associated with KyaniteAl2(SiO4)O
1 photo of Coesite associated with ZoisiteCa2Al3[Si2O7][SiO4]O(OH)
1 photo of Coesite associated with EllenbergeriteMg6(Mg,Ti,Zr,◻)2(Al,Mg)6Si8O28(OH)10
1 photo of Coesite associated with PyropeMg3Al2(SiO4)3

Related Minerals - Nickel-Strunz GroupingHide

4.DA.Carbon Dioxide IceCO2
4.DA.05QuartzSiO2Trig. 3 2 : P31 2 1
4.DA.10OpalSiO2 · nH2O
4.DA.10TridymiteSiO2Tric. 1
4.DA.15CristobaliteSiO2Tet. 4 2 2 : P41 21 2
4.DA.25Melanophlogite46SiO2 · 6(N2,CO2) · 2(CH4,N2)Tet.
4.DA.40StishoviteSiO2Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
4.DA.50SeifertiteSiO2Orth. mmm (2/m 2/m 2/m) : Pbcn

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

7.8.1QuartzSiO2Trig. 3 2 : P31 2 1
7.8.3TridymiteSiO2Tric. 1
7.8.4StishoviteSiO2Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
7.8.5CristobaliteSiO2Tet. 4 2 2 : P41 21 2
7.8.7Silhydrite3SiO2 · H2OOrth.
7.8.8OpalSiO2 · nH2O

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for CoesiteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Chao, E.C.T., Shoemaker, E.M., Madsen, M.M. (1960) First natural occurrence of coesite. Science: 132: 220-222.
Fleischer, M. (1960) New mineral names - coesite. American Mineralogist: 45: 1313.
Sclar, C.B., Carrison, L.C., Schwartz, C.M. (1962) Optical crystallography of coesite. American Mineralogist: 47: 1292-1302.
Fahey, J.J. (1964) Recovery of coesite and stishovite from Coconino Sandstone of Meteor Crater, AZ. American Mineralogist: 49: 1643-1647.
Bohn, E., Stöber, W. (1966) Coesit und Stishovit als isolierte natürliche Mineralien. Neues Jahrbuch der Mineralogie: 89-96.
Holm, J.L., Kleppa, O.J., Westrum, E.F. (1967) Thermodynamics of polymorphic transformations in silica. Thermal properties from 5 to 1070°K and pressure-temperature stability fields for coesite and stishovite. Geochimica et Cosmochimica Acta: 31: 2289-2307.
Zeitschrift für Kristallographie: 145: 108-123.
Bohlen, S.R., Boettcher, A.L. (1982) The quartz-coesite transformation: a precise determination and the effects of other components. Journal of Geophysical Research: 87(B8): 7073-7078.
Zhang, J., Li, B., Utsumi, W., Liebermann, R.C. (1996) In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Physics and Chemistry of Minerals: 23: 1-10.
Mosenfelder, J.L., Bohlen, S.R. (1997) Kinetics of the coesite to quartz transformation. Earth and Planetary Science Letters: 153: 133-147.
Gibbs, G.V., Boisen, M.B.,Jr., Rosso, M., Teter, D.M., Bukowinski, M.T. (2000) Model structures and electron density distribution for the silica polymorph coesite at pressure: An assessment of OO bonded interactions. Journal of Physical Chemistry: B: 104: 10534-10542.
Mosenfelder, J.L. (2000) Pressure dependence of hydroxyl solubility in coesite. Physics and Chemistry of Minerals: 27(9): 610-617.
Pabst, W., Gregorová, E. (2013) Elastic properties of silica polymorphs - a review. Ceramics - Silikáty: 57: 167-184.

Internet Links for CoesiteHide

Localities for CoesiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
  • Eastern Antarctica
    • Queen Maud Land
      • Sør Rondane Mts
Ohtani, E., Ozawa, S., Miyahara, M., Ito, Y., Mikouchi, T., Kimura, M., ... & Hiraga, K. (2011). Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface. Proceedings of the National Academy of Sciences, 108(2), 463-466.
Atlantic Ocean
  • Upper continental slope of New Jersey
B.P. Glass, S. Liu & P.B. Leavens (2002) Amer. Mineral. 87, 562-565
B.P. Glass, S. Liu & P.B. Leavens (2002) Amer. Mineral. 87, 562-565
  • Western Australia
    • Wyndham-East Kimberley Shire
      • Lake Argyle area
Kubel, S. Argyle Diamond Mine–Geology and Mining of the AK1 Pipe, Kimberley region, Northwest Australia.
  • Mato Grosso
    • Juína kimberlite field
      • Juína
        • Sorriso river
Kaminsky, F. V., Ryabchikov, I. D., & Wirth, R. (2015). A primary natrocarbonatitic association in the Deep Earth. Mineralogy and Petrology, 1-12.
  • Minas Gerais
Chris D. Parkinson et al. , " Ultrahigh-pressure pyrope-kyanite granulites and associated eclogites in Neoproterozoic nappes of southeast Brazil", 2001, Universidade do Estado do Rio de Janeiro,
Chris D. Parkinson et al. , " Ultrahigh-pressure pyrope-kyanite granulites and associated eclogites in Neoproterozoic nappes of southeast Brazil", 2001, Universidade do Estado do Rio de Janeiro,
  • Smolyan Province
    • Chepelare Obshtina
      • Chepelare
Petrík, I., Janák, M., Froitzheim, N., Georgiev, N., Yoshida, K., Sasinková, V., Konečný, P. & Milovská, S. (2016): Triassic to Early Jurassic (c. 200 Ma) UHP metamorphism in the Central Rhodopes: evidence from U-Pb-Th dating of monazite in diamond-bearing gneiss from Chepelare (Bulgaria). Journal of Metamorphic Geology, 34, 265-291.
  • Northwest Territories
    • Lac de Gras
      • Diavik Mine
Donnelly, C. L. et al. (2007): Lithos 98, 160-176.
  • Anhui
    • Anqing
      • Qianshan City
Jixi Xiang, Lingen Xu, Fan Xiang, Qianhua Shi, Siben Wu, Xinyuan Zhang, and Yiyong Zhang (2008): Geology in China 35(6), 869-878
American Mineralogist, Volume 87, pages 875-881, 2002, KAI YE et al. "Ultrahigh-pressure (UHP) low-Al titanites from carbonate-bearing rocks in Dabieshan-Sulu UHP terrane, eastern China".
      • Taihu County
Yonghong Shi and Qingchen Wang (2004): Chinese Journal of Geology 39(3), 375-387
Wu, Xiuling, Dawei Meng, and Yujing Han (2005), α-PbO2-type nanophase of TiO2 from coesite-bearing eclogite in the Dabie Mountains, China: American Mineralogist: 90: 1458-1461.
      • Yuexi County
Yilin Xiao, Hoefs, J., van den Kerkhof, A.M., Fiebig, J., and Yongfei Zheng (2000): Contributions to Mineralogy and Petrology 139, 1-16.
        • Wumiao
A.I. Okay et al. , Eur. J. Mineral. , 1989, 1, pp. 595-598.
          • Marble quarry
Aral, I. (1993). Petrology of a diamond and coesite-bearing metamorphic terrain: Dabie Shan. China. Eur. J. Mineral, 5, 659-675.
  • Henan
    • Sanmenxia
      • Lushi County
        • Guanpo
Nenggao Hu, Donglin Zhao, Baiqing Xu, and Tao Wang (1995): Journal of Mineralogy and Petrology 16(4)
    • Xinyang
      • Xin Co.
Ruyuan Zhang and Liou, J.G. (1994): European Journal of Mineralogy 6(2), 217-233.
  • Hubei
    • Huanggang
      • Hong'an Co.
Yuanbao Wu, Shan Gao, Hongfei Zhang, Saihong Yang, Wenfang Jiao, Yongsheng Liu, and Honglin Yuan (2008): Contributions to Mineralogy and Petrology 155, 123-133.
      • Yingshan Co.
Chen, J., Lee, J., and Jun, W. (2000) Native titanium inclusions in the coesite eclogites from Dabieshan, China. Earth Planet. Sci. Lett.: 177: 237–240.; Jambor, J.L. and Roberts, A.C. (2001) New mineral names. American Mineralogist: 86: 197-200.; Lü, G., Chen, J., Ding, T., Li, X., Wang, F., and Li, R. (2001) Depth of coesite-bearing eclogite formation, Dabie UHPM zone, China, based on structure stress correction. Journal of Geosciences of China: 3(1): 1-12.
  • Jiangsu
    • Lianyungang
      • Donghai Co.
        • Maobei
Yilin Xiao, Zheming Zhang, Hoefs, J., and van den Kerkhof, A. (2006): Contributions to Mineralogy and Petrology 152, 443-458.
Zhang, R.Y., Liou, J.G., and Shu, J.F. (2002): American Mineralogist 87, 445-453; Yang, T.N. (2004): Journal of Metamorphic Geology 22(7), 653–669; Rong Yan and Jianjun Yang (2013): Acta Petrologica Sinica 29(5), 1621-1633
  • Liaoning
    • Anshan
      • Xiuyan Co.
        • Pianling
Chen, M., Yin, F., Li, X., Xie, X., Xiao, W., & Tan, D. (2013). Natural occurrence of reidite in the Xiuyan crater of China. Meteoritics & Planetary Science.; Chen, M., Shu, J., Xie, X., & Tan, D. (2018). Maohokite, a post‐spinel polymorph of MgFe2O4 in shocked gneiss from the Xiuyan crater in China. Meteoritics & Planetary Science.
  • Qinghai
    • Haixi Mongol and Tibetan Autonomous Prefecture
      • Dulan County
Mattinson, C.G., Wooden, J.L., Liou, J.G., Bird, D.K., and Wu, C.L. (2006): American Journal of Science 306, 683-711.
  • Shandong
    • Linyi
      • Mengyin County
        • Mengyin Kimberlite field
          • Changma Kimberlite belt
            • Wangcun deposit
Wuyi Wang (1998): Earth and Planetary Science Letters 160(3/4), 831-843.
    • Qingdao
      • Xihai'an
        • Jiaonan City
Hongrui Fan, Jinghui Guo, Fangfang Hu, Xuelei Chu, and Chengwei Jin (2005): Acta Petrologica Sinica 21(4), 1125-1132.
    • Rizhao
      • Lanshan District
American Mineralogist, Volume 87, pages 875-881, 2002, KAI YE et al. "Ultrahigh-pressure (UHP) low-Al titanites from carbonate-bearing rocks in Dabieshan-Sulu UHP terrane, eastern China".
    • Weihai
      • Rongcheng Co.
Science, Vol. 278, 24 Oct. 1997, pp. 701-707.
  • Tibet
    • Shannan Prefecture (Lhokha Prefecture; Lhoka Prefecture)
      • Qusum Co. (Qusong Co.)
Robinson, P.T., Jingsui Yang, Wenji Bai, and Qingsong Fang (2006): 3rd Annual Meeting of the Asia Oceania Geosciences Society (AOGS), July 10-14, 2006, Abstract 59-SE-A0857.
          • Luobusha Mine ("Luobusa" Mine)
Dobrzhinetskaya, L.F., Wirth, R., Yang, J., Green, H.W., Hutcheon, I.D., Weber, P.K. and Grew, E.S. (2014): Qingsongite, natural cubic boron nitride: The first boron mineral from the Earth’s mantle. American Mineralogist. 99, 764-772
  • Xinjiang
    • Bayin'gholin Autonomous Prefecture (Bayingolin Autonomous Prefecture; Bayinguoleng Autonomous Prefecture)
      • Ruoqiang Co. (Qakilik Co.; Chaqiliq Co.)
        • Yinggelisayi area
Zhang Anda, Liu Liang, Sun Yong, Chen Danling, Wang Yan, and Luo Jinhai (2004): Chinese Science Bulletin 49(23), 2527-2532.
Czech Republic
  • Pardubice Region
    • Chrudim District
      • Třemošnice
        • Běstvina
Maria Perraki & Shah Wali Faryad (2014): First finding of microdiamond, coesite and other UHP phases in felsic granulites in the Moldanubian Zone: Implications for deep subduction and a revised geodynamic model for Variscan Orogeny in the Bohemian Massif. Lithos 202-203, 157-166.
  • Ústí nad Labem Region
Kotková, J., O’Brien, P. J., & Ziemann, M. A. (2011). Diamonds in the Bohemian Massif—evidence for ultrahigh-pressure metamorphism. Geologické výzkumy na Morave a ve Slezsku 18, 1, 35-38.
  • Matruh
    • East Uweinat Desert
Gian Paolo Sighinolfi, Chiara Elmi, Romano Serra, and Gabriele Contini (2014): High density silica phases as evidence of small-scale hypervelocity impacts: the Gebel Kamil Crater (Egypt). Periodico di Mineralogia 83, 299-312.
  • South Ostrobothnia
    • Lappajärvi
Lehtinen, Martti 1976. Lake lappajärvi, a meteorite impact site in western Finland. Geological Survey of Finland Bulletin 282.
  • Baden-Württemberg
    • Ostalbkreis District
      • Unterschneidheim
        • Zipplingen
Stähle, V., Altherr, R., Koch, M., and Nasdala, L. (2008): Contributions to Mineralogy and Petrology 155, 457-472.
  • Bavaria
    • Swabia
      • Nördlingen
Stähle, V., Altherr, R., Koch, M., and Nasdala, L. (2008): Contributions to Mineralogy and Petrology 155, 457-472.
  • Western Region
Boamah, D., & Koeberl, C. (2006). Petrographic studies of “fallout” suevite from outside the Bosumtwi impact structure, Ghana. Meteoritics & Planetary Science, 41(11), 1761-1774.
  • Aosta Valley
    • Valtournenche
Piccoli, G.C., Maletto, G., Bosio, P., Lombardo, B. (2007). Minerali del Piemonte e della Valle d'Aosta. Associazione Amici del Museo "F. Eusebio" Alba, Ed., Alba (Cuneo) 607 pp.; Compagnoni Roberto , Frezzotti Maria Luce, Selverstone Jane , Sharp Zachary (2011) 9th International Eclogite Conference 2011, Mariánské Lázně, Czech Republic
  • Piedmont
    • Cuneo Province
      • Brossasco
        • Gilba Valley
Piccoli, G.C., Maletto, G., Bosio, P., Lombardo, B. (2007). Minerali del Piemonte e della Valle d'Aosta. Associazione Amici del Museo "F. Eusebio" Alba, Ed., Alba (Cuneo) 607 pp.
[MinRec 27:303]
T. Hirajima and R. Compagnoni : "Petrology of a jadeite-quartz-almandine-phengite fels with retrograde ferro-nyböite from the Dora-Maira Massif, Western Alps", Eur. Journ. Mineral., 1993, 5, pp 943-955.
      • Martiniana Po
Daniele Castelli
  • Nagasaki
    • Saikai City
Tadao Nishiyama, Hiroaki Ohfuji, Ukyo Nishi, Kazuki Harada, Kousuke Fukuba (2018) Origin of lowest temperature microdiamond in a metapelite from Nishisonogi, western Japan. in abstracts of the 22nd IMA Meeting Melbourne p 147
  • Akmola Region
    • Zerendy
9th International Eclogite Conference 2011, Mariánské Lázně, Czech Republic ; Mikhno, A. O., & Korsakov, A. V. (2015). Carbonate, silicate, and sulfide melts: heterogeneity of the UHP mineral-forming media in calc-silicate rocks from the Kokchetav massif. Russian Geology and Geophysics, 56(1), 81-99.; Mikhno A, Korsakov A (2014) Immiscible sulfide and silicate melts in UHP gneisses from the Kokchetav Massif (Northern Kazakhstan). 21 st meeting of the International Mineralogical Association. p 246
Ogasawara, Y., Fukasawa, K., & Maruyama, S. (2002). Coesite exsolution from supersilicic titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan. American Mineralogist, 87(4), 454-461.; Dubinchuk, V. T., Simakov, S. K., & Pechnikov, V. A. (2010, January). Lonsdaleite in diamond-bearing metamorphic rocks of the Kokchetav Massif. In Doklady Earth Sciences (Vol. 430, No. 1, pp. 40-42). MAIK Nauka/Interperiodica.
      • Prirechnoye
        • Lake Kumdikol (Lake Kumdykol'; Ozero Kumdykol')
Nitsenko, P., and Ussoltsev, I.I. (2004): Earth Science Frontiers 11(2), 333-338
  • Aktobe Region
    • Yrgyz
Florenskii, P. V., & Dabizha, A. I. (1980). The Zhamanshin meteorite crater. Moscow Izdatel Nauka.
Pang, R. L., Zhang, A. C., Wang, S. Z., Wang, R. C., & Yurimoto, H. (2016). High-pressure minerals in eucrite suggest a small source crater on Vesta. Scientific reports, 6, 26063.
  • Yobe
    • Bogga Dingare
Weisberg, M.K. & Kimura, M. (2010). Petrology and Raman spectroscopy of high pressure phases in the Gujba CB chondrite and the shock history of the CB parent body. Meteoritics & Planetary Science Volume 45, Issue 5, pages 873–884. (May 2010); Weisberg, M. K.; Kimura, M.; Suzuki, A.; Ohtani, E.; Sugiura, N. (2006). 37th Annual Lunar and Planetary Science Conference, March 13-17, 2006, League City, Texas, abstract no.1788. (March 2006).
Northwest Africa Meteorites
Shohei Kaneko, Eiji Ohtani, Masaaki Miyahara, Takeshi Sakai, Masahiro Kayama, Hirotsugu Nishido, Yasuo Oishi, Naohisa Hirao (2011) Dynamic event recorded in a lunar meteorite NWA 4734. Japan Geooscience Union Meeting Makuhari, Chiba Japan.; Wang, Y., & Hsu, W. (2016). Shock-Induced Metamorphism in the Lunar Meteorite Northwest Africa 4734. LPI Contributions, 1921.
  • Møre og Romsdal
    • Haram
Root, D.B. Hacker, B.R. Gans, P.B. Ducea, M.N. Eide, E.A. & Mosenfelder, J.L. ( 2005): Discrete ultrahigh-pressure domains in the Western Gneiss Region, Norway: implication for the formation and exhumation. Journal of Metamorphic Geology. 23, 45-61.
    • Herøy
Carswell et al.(2003): The timing of stabilisation and the exhumation rate for ultra-high pressure rocks in the Western Gneiss Region of Norway. Journal of Metamorphic Geology. 21, 601-612
    • Ulstein
      • Hareidlandet
Carswell et al.(2003): The timing of stabilisation and the exhumation rate for ultra-high pressure rocks in the Western Gneiss Region of Norway. Journal of Metamorphic Geology. 21, 601-612
  • Sogn og Fjordane
    • Selje
      • Flatraket
Carswell, D. A., Brueckner,H. K.,Cuthbert, S. J.,Mehta, K. & O'Brien,P. J. (2003): The timing of stabilisation and the exhumation rate for ultra-high pressure rocks in the Western Gneiss Region of Norway. Journal of Metamorphic Geology. 21, 601-612.
Smith, D.C. (1984): Coesite in clinopyroxene in the Caledonides and its implication for geodynamics. Nature, 310, 641-644.
      • Nordpollen
Carswell, D. A., Brueckner,H. K.,Cuthbert, S. J.,Mehta, K. & O'Brien,P. J. (2003): The timing of stabilisation and the exhumation rate for ultra-high pressure rocks in the Western Gneiss Region of Norway. Journal of Metamorphic Geology. 21, 601-612.
    • Vågsøy
Smith, D.C. & Lappin, M.A. (1989): Coesite in the Straumen kyanite-eclogite pod, Norway. Terra Nova, I, 47-56
  • Kamchatka Krai
    • Koryak Upland (Koriak; Koriakskhiye)
      • Iomrautvaam Massif
        • Chetkinvaiam tectonic melange
          • Khatyrka river
            • Listvenitovyi stream
Scientific Report 5:9111
  • Sakha Republic (Yakutia)
    • Mirninsky District
      • Daldyn
Gubanov, N.; Zedgenizov, D.; Sharygin, I.; Ragozin, A. (2019) Origin and Evolution of High-Mg Carbonatitic and Low-Mg Carbonatitic to Silicic High-Density Fluids in Coated Diamonds from Udachnaya Kimberlite Pipe. Minerals 9, 734.
      • Mirny
Argunov, K. P., 1990, Inclusions of potassic phases, coesite and omphacite in a coated diamond crystal from the Mir pipe: Dokl. Akad. Nauk SSSR, v. 310, p. 129-140.
Saudi Arabia
  • Mintaqah Ash Sharqiyah
Gnos, E., Hofmann, B. A., Halawani, M. A., Tarabulsi, Y., Hakeem, M., Al Shanti, M., ... & Ramseyer, K. (2013). The Wabar impact craters, Saudi Arabia, revisited. Meteoritics & planetary science, 48(10), 2000-2014.
  • Banská Bystrica Region
    • Rimavská Sobota Co.
Koděra et all.,1990: Topografická mineralógia Slovenska, I-III, 1590p
South Africa
  • Free State
    • Fezile Dabi District
Minerals of South Africa Cairncross, B. and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa.
    • Lejweleputswa District
      • Boshof
Am Min 62:828-830
  • Gauteng
    • Pretoria District (Tshwane District)
Minerals of South Africa
  • Limpopo
    • Waterberg District
      • Mogalakwena
        • Mokopane (Potgietersrus)
Westerlund, K. J., & Gurney, J. J. (2004). Silicate and oxide inclusion characteristics and infra-red absorption analysis of diamonds from the Klipspringer kimberlites, South Africa. South African Journal of Geology, 107(1-2), 131-146.
Ruiz-Cruz, M. D., & De Galdeano, C. S. (2012). Diamond and coesite in ultrahigh-pressure–ultrahigh-temperature granulites from Ceuta, Northern Rif, northwest Africa. Mineralogical Magazine, 76(3), 683-705.
  • Jämtland County
    • Åre
      • Åreskutan
Klonowska, I., Janák, M., Majka, J., Petrik, I., Froitzheim, N., Gee, D. G., & Sasinková, V. (2017). Microdiamond on Åreskutan confirms regional UHP metamorphism in the Seve Nappe Complex of the Scandinavian Caledonides. Journal of Metamorphic Geology, 35(5), 541-564.
  • Arizona
    • Coconino County
      • Meteor Crater area
Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 180; Chao, E.C.T., et al (1960), First natural occurrence of coesite, Science: 132: 220-222.
  • Colorado
    • Larimer Co.
Minerals of Colorado (1997) Eckel, E. B.
  • Indiana
    • Newton Co.
      • Kentland (Kent)
        • Kentland impact crater (Kentland crater)
Science. 1961 Nov 17;134(3490):1624-1625
  • Oklahoma
    • Major Co.
  • Bolívar
Canadian Mineralogist 38:1347-1370
Mineral and/or Locality is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: December 13, 2019 10:29:42 Page generated: November 29, 2019 19:17:19
Go to top of page