Help|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Serpentine Subgroup

This page is currently not sponsored. Click here to sponsor this page.
D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Serpentine was named in 1564 by Georgius Agricola (Georg Bauer) from the Latin "serpens" = snake in allusion to the mottled green appearance of the mineral suggesting the resemblance to some snakes.
Serpentine is a subgroup of the Kaolinite-Serpentine Group, usually with divalent cations dominating in octahedrally coordinated sites.
The most common species are all Mg-dominant: lizardite, chrysotile and antigorite.

Chemical Properties of Serpentine Subgroup

D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn

Synonyms of Serpentine Subgroup

Other Language Names for Serpentine Subgroup

Varieties of Serpentine Subgroup


Name for pseudomorphs of serpentine group minerals after enstatite


Light-green serpentine with bands of white chrysotile.


Light green pearly serpentine which may show a somewhat laminated fracture pattern.


A name for artificial Serpentine Group minerals with Ni replacing Mg. - Essentially Ni rich antigorite or amesite.

Nickeliferous Serpentine

A nickel-bearing variety of serpentine.


Columnar or coarsely fibrous (non-asbestiform) variety of serpentine, commonly referred to as a variety of antigorite but may be other species.


A name for serpentine occurring in spherical aggregates of radiating fibers.


Honey yellow to light green, massive, sometimes gem-quality, serpentine.


A variety of serpentine interbanded with talc.


Asbestiform varieties of "serpentine", i.e., members of the serpentine group (usually chrysotile).

Serpentine Jade

A dense cryptocristalline mixture of serpentine group minerals, mainly antigorite, chrysotile and lizardite, which is used for carving. It also contains a variety of minor impurities such as chlorite, ilmenite, magnetite and talc. Technically, this materi...

Relationship of Serpentine Subgroup to other Species

Other Members of this group:
Group Members:
Amesite Mg2Al(AlSiO5)(OH)4
Antigorite Mg3(Si2O5)(OH)4
Baumite (Mg,Al,Mn,Zn,Fe)3(Si,Al)2O5(OH)4
Berthierine (Fe2+,Fe3+,Al)3(Si,Al)2O5(OH)4
Brindleyite (Ni,Al)3(Si,Al)2O5(OH)4
Caryopilite Mn2+3Si2O5(OH)4
Chrysotile Mg3(Si2O5)(OH)4
Cronstedtite Fe2+2Fe3+((Si,Fe3+)2O5)(OH)4
Fraipontite (Zn,Al)3((Si,Al)2O5)(OH)4
Kellyite Mn2+2Al(AlSiO5)(OH)4
Lizardite Mg3(Si2O5)(OH)4
Népouite (Ni,Mg)3(Si2O5)(OH)4
Pecoraite Ni3(Si2O5)(OH)4

Other Information

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Serpentine Subgroup in petrology

Common component of (items highlighted in red)

References for Serpentine Subgroup

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Zussman, J., Brindley, G.W., Comer, J.J. (1957) Electron diffraction studies of serpentine minerals. American Mineralogist: 42: 133-153.
Page, N.J., Coleman, R.G. (1967) Serpentine mineral analyses and physical properties. USGS Professional Paper 575-B: 103-107.
Page, N.J. (1968) Chemical differences among the serpentine “polymorphs.” American Mineralogist: 53: 201-215.
Luce, R.W. (1971) Identification of serpentine varieties by infrared absorption: USGS Professional Paper 750-B: 199-201.
Whittaker, E.J.W., Zussman, J. (1971) The serpentine minerals. In: The Electron-Optical Investigation of Clays. (J.A. Gard, ed.) Mineral. Soc. Monograph 3: 159-191.
Sunagawa, I., Koshino, Y. (1975) Growth Spiral on Kaolin Group Minerals. American Mineralogist: 60: 407-412.
Wicks, F.J., Whittaker, E.J.W. (1975) A reappraisal of the structures of the serpentine minerals. The Canadian Mineralogist: 13: 227-243.
Wicks, F.J., O'Hanley, F.C. (1988) Serpentine minerals: Structures and petrology. In S.W. Bailey, Ed., Hydrous Phyllosilicates (exclusive of micas), 19, 91-159. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia.
Wu, X.J. Li, F.H., Hashimoto, H. (1989) High-resolution transmission electron microscopy study of the superstructure of Xiuyan Jade and Matterhorn serpentine. Acta Crystallographica: B45: 129-136.
Ulmer, P., Trommsdorff, V. (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science: 268: 858-861.
Irifune, T., Kuroda, K., Funamori, N., Uchida, T., Takehito, Y., Inoue, T., Miyajima, N. (1996) Amorphization of serpentine at high pressure and high temperature. Science: 272: 1468-1470.
Auzende, A.L., Devouard, B., Guillot, S., Daniel, I., Baronnet, A., Lardeaux, J.M. (2002) Serpentinites from Central Cuba: petrology and HRTEM study. European Journal of Mineralogy: 14: 905-914.
Auzende, A.L., Daniel, I., Reynard, B., Lemaire, C., Guyot, F. (2004) High-pressure behaviour of serpentine minerals: a Raman spectroscopic study. Physics and Chemistry of Minerals: 31: 269-277.
Baronnet, A., Devouard, B. (2005) Microstructures of common polygonal serpentines from axial HRTEM imaging, electron diffraction and simulation data. The Canadian Mineralogist: 43: 513-542.
Balan, E., Calas, G., Bish, D.L. (2014) Kaolin-group minerals: From hydrogen-bonded layers to environmental recorders. Elements: 10: 183-188.

Internet Links for Serpentine Subgroup URL:
Please feel free to link to this page.
The following Serpentine Subgroup specimens are currently listed for sale on

Localities for Serpentine Subgroup

Mineral and/or Locality is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © and the Hudson Institute of Mineralogy 1993-2017, except where stated. relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: July 28, 2017 16:06:03 Page generated: July 25, 2017 21:51:26
Go to top of page