Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography


This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About CorrensiteHide

Carl W. Correns
(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Dark green, Yellow green,Blackish green, Brown, Light golden brown, gray white
Waxy, Dull, Earthy
1 - 2
Crystal System:
Named by Friedrich Lippmann in 1954 in honor of Carl Wilhelm Correns (19 May 1893, Tübingen, Germany - 29 August 1980, Göttingen, Germany), professor of mineralogy and petrography in the University of Göttingen, Germany and Director of the Sedimentary Petrology Institute. He received the Roebling Medal in 1976.
A 1:1 regular interstratification of a trioctahedral chlorite with either a trioctahedral vermiculite (low layer charge corrensite, LLC) or a trioctahedral smectite (high layer charge corrensite, HLC).

Classification of CorrensiteHide

Approved, 'Grandfathered' (first described prior to 1959)
First Published:

9 : SILICATES (Germanates)
E : Phyllosilicates
C : Phyllosilicates with mica sheets, composed of tetrahedral and octahedral nets

71 : PHYLLOSILICATES Sheets of Six-Membered Rings
4 : Sheets of 6-membered rings interlayered 1:1, 2:1, and octahedra

16 : Silicates Containing Aluminum and other Metals
19 : Aluminosilicates of Fe and Mg

Physical Properties of CorrensiteHide

Waxy, Dull, Earthy
Low luster due to fine-grained particles
Dark green, Yellow green,Blackish green, Brown, Light golden brown, gray white
White to light gray
1 - 2 on Mohs scale
{001} perfect, but rarely visible on casual inspection due to small particle size.

Optical Data of CorrensiteHide

Biaxial (-)
RI values:
nα = 1.560 - 1.585 nβ = 1.582 - 1.612 nγ = 1.582 - 1.612
May be 0.01-0.03, but 0.00 reported
Max Birefringence:
δ = 0.022 - 0.027
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
r < v strong

Chemical Properties of CorrensiteHide

(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
IMA Formula:
(Ca,Na,K)1-x(Mg,Fe,Al)9(Si,Al)8O20(OH)10 · nH2O
Common Impurities:

Crystallography of CorrensiteHide

Crystal System:
Cell Parameters:
a = 5.337 Å, b = 9.215 Å, c = 29.0 Å
a:b:c = 0.579 : 1 : 3.147
Unit Cell V:
1,426.23 ų (Calculated from Unit Cell)
Fine-grained, occasionally as barely visible flakes.
Various unit cells have been proposed including hexagonal, also monoclinic

X-Ray Powder DiffractionHide

Powder Diffraction Data:
29.0 Å(30)
7.83 Å(30)
7.08 Å(60)
4.72 Å(30)
4.62 Å(30)
3.53 Å(60)
2.57 Å(30)
LLC d-values (31-794). Basal d-values vary with type of corrensite. LLC usually is 28-29 Angstroms, but HLC ranges up to 32 Angstroms. LLC and HLC corrensite may be present in mixtures, but samples may contain only one type. LLC corrensite is uncommon compared to HLC corrensite. Intercalation with glycerol or ethylene glycol increases HLC basal spacing to 32 Angstroms, while LLC corrensite does not expand.

Type Occurrence of CorrensiteHide

General Appearance of Type Material:
Dense fine-grained mixtures, also thin dustings on late minerals in cavities
Geological Setting of Type Material:
Found in pelitic sediments, also in evaporites, marbles, also late stage hydrothermal coatings in basalts, etc. Corrensite may persist through chlorite grade metamorphism.
Associated Minerals at Type Locality:

Synonyms of CorrensiteHide

Other Language Names for CorrensiteHide


Common AssociatesHide

Associated Minerals Based on Photo Data:
2 photos of Corrensite associated with NatroliteNa2Al2Si3O10 · 2H2O
1 photo of Corrensite associated with Stilbite-CaNaCa4[Al9Si27O72] · nH2O
1 photo of Corrensite associated with Mordenite(Na2,Ca,K2)4(Al8Si40)O96 · 28H2O
1 photo of Corrensite associated with ChalcedonySiO2
1 photo of Corrensite associated with QuartzSiO2
1 photo of Corrensite associated with CalciteCaCO3
1 photo of Corrensite associated with Chlorite Group

Related Minerals - Nickel-Strunz GroupingHide

9.EC.05MinnesotaiteFe2+3Si4O10(OH)2Tric. 1 : P1
9.EC.05TalcMg3Si4O10(OH)2Tric. 1 : P1
9.EC.9.EC.VoloshiniteRb(LiAl1.51.5)(Al0.5Si3.5)O10F2Mon. 2/m : B2/b
9.EC.10PyrophylliteAl2Si4O10(OH)2Tric. 1
9.EC.15CeladoniteK(Mg,Fe2+)Fe3+(Si4O10)(OH)2Mon. 2/m : B2/m
9.EC.15Montdorite(K,Na)2(Fe2+,Mn2+,Mg)5(Si4O10)2(OH,F)4Mon. 2/m : B2/m
9.EC.15MuscoviteKAl2(AlSi3O10)(OH)2Mon. 2/m : B2/b
9.EC.15RoscoeliteK(V3+,Al)2(AlSi3O10)(OH)2Mon. 2/m : B2/b
9.EC.15ChromphylliteK(Cr,Al)2(AlSi3O10)(OH,F)2Mon. 2/m : B2/b
9.EC.15FerroaluminoceladoniteK(Fe2+,Mg)(Al,Fe3+)(Si4O10)(OH)2Mon. 2/m : B2/m
9.EC.15FerroceladoniteK(Fe2+,Mg)(Fe3+,Al)(Si4O10)(OH)2Mon. 2/m : B2/m
9.EC.20AnniteKFe2+3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20HendricksiteKZn3(Si3Al)O10(OH)2Mon. 2/m : B2/m
9.EC.20NorrishiteKLiMn3+2(Si4O10)O2Mon. 2/m : B2/m
9.EC.20PhlogopiteKMg3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20PolylithioniteKLi2Al(Si4O10)(F,OH)2Mon. 2/m : B2/b
9.EC.20FluorotetraferriphlogopiteKMg3(Fe3+Si3O10)F2Mon. 2/m : B2/m
9.EC.20Wonesite(Na,K)(Mg,Fe,Al)6((Al,Si)4O10)2(OH,F)4Mon. 2/m : B2/m
9.EC.20TrilithioniteK(Li1.5Al1.5)(AlSi3O10)(F,OH)2Mon. 2/m : B2/b
9.EC.20ShirokshiniteKNaMg2(Si4O10)F2Mon. 2/m : B2/m
9.EC.20ShirozuliteKMn2+3(Si3Al)O10(OH)2Mon. 2/m : B2/m
9.EC.20AspidoliteNaMg3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20FluorophlogopiteKMg3(AlSi3O10)(F,OH)2Mon. 2/m : B2/m
9.EC.20Suhailite(NH4)Fe2+3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20YangzhumingiteKMg2.5(Si4O10)F2Mon. 2/m : B2/m
9.EC.20OrloviteKLi2Ti(Si4O10)OFMon. 2 : B2
9.EC.20OxyphlogopiteK(Mg,Ti,Fe)3[(Si,Al)4O10](O,F)2Mon. 2/m : B2/m
9.EC.35Anandite(Ba,K)(Fe2+,Mg)3((Si,Al,Fe)4O10)(S,OH)2Mon. 2/m : B2/b
9.EC.35BityiteLiCaAl2(AlBeSi2O10)(OH)2Mon. 2/m : B2/b
9.EC.35ClintoniteCa(Mg,Al)3(Al3SiO10)(OH)2Mon. 2/m : B2/m
9.EC.35Oxykinoshitalite(Ba,K)(Mg,Ti,Fe3+,Fe2+)3((Si,Al)4O10)(O,OH,F)2Mon. 2/m : B2/m
9.EC.35FluorokinoshitaliteBaMg3(Al2Si2O10)F2Mon. 2/m : B2/m
9.EC.40Beidellite(Na,Ca0.5)0.3Al2((Si,Al)4O10)(OH)2 · nH2OMon.
9.EC.40Kurumsakite(Zn,Ni,Cu)8Al8V5+2Si5O35 · 27H2O (?)Orth.
9.EC.40Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2OMon. 2/m : B2/m
9.EC.40NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2OMon.
9.EC.40VolkonskoiteCa0.3(Cr,Mg,Fe)2((Si,Al)4O10)(OH)2 · 4H2OMon.
9.EC.40Yakhontovite(Ca,Na)0.5(Cu,Fe,Mg)2(Si4O10)(OH)2 · 3H2OMon.
9.EC.45SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2OMon.
9.EC.45SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2OMon.
9.EC.45SpadaiteMgSiO2(OH)2 · H2O (?)
9.EC.45SwineforditeLi(Al,Li,Mg)4((Si,Al)4O10)2(OH,F)4 · nH2OMon.
9.EC.45ZincsiliteZn3(Si4O10)(OH)2 · 4H2OMon.
9.EC.45FerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2OMon.
9.EC.50VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2OMon. 2/m
9.EC.55Baileychlore(Zn,Fe2+,Al,Mg)6(Si,Al)4O10(OH)8Tric. 1
9.EC.55ClinochloreMg5Al(AlSi3O10)(OH)8Mon. 2/m : B2/m
9.EC.55Cookeite(Al2Li)Al2(AlSi3O10)(OH)8Mon. 2/m
9.EC.55FranklinfurnaceiteCa2Fe3+Mn2+3Mn3+(Zn2Si2O10)(OH)8Mon. 2 : B2
9.EC.55DonbassiteAl4.33(AlSi3O10)(OH)8Mon. 2 : B2
9.EC.55GlagoleviteNa(Mg,Al)6(AlSi3O10)(OH,O)8Tric. 1 : P1
9.EC.60AliettiteCa0.2Mg6((Si,Al)8O20)(OH)4 · 4H2OMon.
9.EC.60HydrobiotiteK(Mg,Fe2+)6((Si,Al)8O20)(OH)4 · nH2OMon.
9.EC.60Karpinskite(Ni,Mg)2Si2O5(OH)2 (?)Mon.
9.EC.60Rectorite(Na,Ca)Al4((Si,Al)8O20)(OH)4 · 2H2OMon.
9.EC.60TosuditeNa0.5(Al,Mg)6((Si,Al)8O18)(OH)12 · 5H2OMon. 2 : B2
9.EC.60BrinrobertsiteNa0.3Al4(Si4O10)2(OH)4 · 3.5 H2OMon.
9.EC.70BurckhardtitePb2(Fe3+Te6+)[AlSi3O8]O6Trig. 3m (3 2/m) : P3 1m
9.EC.75Ferrisurite(Pb,Ca)2.4Fe3+2(Si4O10)(CO3)1.7(OH)3 · nH2OMon.
9.EC.75Niksergievite(Ba,Ca)2Al3(AlSi3O10)(CO3)(OH)6 · nH2OMon.

Related Minerals - Dana Grouping (8th Ed.)Hide,O)10Mon.,Na)Al3(AlSi3O10)(OH)5Mon.,Mg)6((Si,Al)8O18)(OH)12 · 5H2OMon. 2 : B2,Ca)Al4((Si,Al)8O20)(OH)4 · 2H2OMon.,Al)8O20)(OH)4 · 4H2OMon.

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

16.19.1IndialiteMg2Al3(AlSi5O18)Hex. 6/mmm (6/m 2/m 2/m) : P6/mcc
16.19.2Cordierite(Mg,Fe)2Al3(AlSi5O18)Orth. mmm (2/m 2/m 2/m) : Cccm
16.19.5StauroliteFe2+2Al9Si4O23(OH)Mon. 2/m : B2/m
16.19.6Chloritoid(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2Mon. 2/m : B2/b
16.19.7AmesiteMg2Al(AlSiO5)(OH)4Tric. 1 : P1
16.19.9YoderiteMg(Al,Fe3+)3(SiO4)2O(OH)Mon. 2/m : P21/m
16.19.11Ferrocarpholite(Fe2+,Mg)Al2(Si2O6)(OH)4Orth. mmm (2/m 2/m 2/m) : Ccca
16.19.15Berthierine(Fe2+,Fe3+,Al)3(Si,Al)2O5(OH)4Mon. m : Bm
16.19.16Odinite(Fe,Mg,Al,Fe,Ti,Mn)2.4((Si,Al)2O5)(OH)4Mon. m : Bm
16.19.17ClinochloreMg5Al(AlSi3O10)(OH)8Mon. 2/m : B2/m
16.19.22VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2OMon. 2/m

Other InformationHide

IR Spectrum:
Clays and Clay Minerals 33:458 (1985).
Thermal Behaviour:
HLC corrensite basal spacings collapse to 24 Angstroms at 500 degrees C.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for CorrensiteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Lippmann, F. (1954) Über einen Keuperton von Zaisersweiher bei Maulbronn. Contributions to Mineralogy and Petrology: 4: 130-134. (in German)
Fleischer, M. (1961) New mineral names. American Mineralogist: 46: 765-770.
Bailey, S.W. (1981) A system of nomenclature for regular interstratifications. Canadian Mineralogist: 19: 651-655.
Bailey, S.W. (1982) Nomenclature for regular interstratifications. American Mineralogist: 67: 394-398.
De Kimpe, C.R., Miles, N.M. (1988) Geographic distribution of corrensite and associated minerals in southeastern Ontario. Canadian Mineralogist: 26: 957-964.
Shau, Y.-H., Peacor, D.R., Essene, E.J. (1990) Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies. Contributions to Mineralogy and Petrology: 105: 123-142.
Beaufort, D., Baronnet, A., Lanson, B., Meunier, A. (1997) Corrensite: A single phase or a mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case study of Sancerre-Couy deep drill hole (France). American Mineralogist: 82: 109-124.
Li, G., Peacor, D.R., Essene, E.J. (1998) The formation of sulfides during alteration of biotite to chlorite-corrensite. Clays and Clay Minerals: 46: 649-657.
Kogure, T., Drits, V.A., Inoue, S. (2013) Structure of mixed-layer corrensite-chlorite revealed by high-resolution transmission electron microcopy (HRTEM). American Mineralogist: 98: 1253-1260.

Internet Links for CorrensiteHide

Localities for CorrensiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
  • Western Australia
    • Kalgoorlie-Boulder Shire
      • Mount Monger Goldfield
        • Mount Monger
Abeysinghe, P.B. (1996) Talc, Pyrophyllite and Magnesite in Western Australia: Western Australia Geological Survey, Mineral Resources Bulletin 16, 129p.
  • Ontario
    • Frontenac County
      • Oso Township
C. R. de Kimpe, N. Miles, H. Kodama, and J. Dejou Alteration of phlogopite to corrensite at Sharbot Lake Ontario Clays and Clay Minerals, April 1987, v. 35, p. 150-158
  • Antofagasta
    • El Loa Province
      • Calama
Reich, M.; Román, N.; Barra, F.; Morata, D. (2020) Silver-Rich Chalcopyrite from the Active Cerro Pabellón Geothermal System, Northern Chile. Minerals 10, 113.
      • Escondida
WARREN, I. (2005) Geology, geochemistry, and genesis of the El Pe˜nón epithermal Au-Ag deposit, northern Chile: Characteristics of a bonanza-grade deposit and techniques for exploration. Unpublished Ph.D. thesis, New Zealand, University of Auckland, Auckland, New Zealand, 428 pp.
  • Red Sea
    • Eastern Desert
      • Hafafit
Harraz, H. Z.; Hamdy, M. M. 2010. Interstratified vermiculite-mica in the gneiss-metapelite-serpentinite rocks at Hafafit area, Southern Eastern Desert, Egypt: From metasomatism to weathering. Journal of African Earth Sciences, Volume 58, Issue 2, p. 305-320.
  • Hiiumaa county
    • Hiiumaa Island
Meteoritics & Planetary Science Volume 40, Issue 1, pages 3–19, January 2005; Versh, E., KIRSIMÄE, K., Joeleht, A., & PLADO, J. (2005). Cooling of the Kärdla impact crater: I. The mineral paragenetic sequence observation. Meteoritics & Planetary Science, 40(1), 3-19.
  • Kainuu
    • Hyrynsalmi
Lindquist, K. & Harle, S. 1991. Corrensite of hydrothermal origin from Veitsivaara, eastern Finland. Clays and Clay minerals, 39 (2), 219-223.
  • Auvergne-Rhône-Alpes
    • Allier
      • Le Mayet-de-Montagne
J.C. Parneix, A Meunier : "Les paragenèses de remplacement des biotites utilisées comme marqueurs des conditions de température et de composition des fluides dans les altérations hydrothermales et supergène du granite de Mayet-la-Montagne (Allier, France), Bull. Minéral. , 1982, 105, 662-672.
    • Haute-Loire
      • Lavoûte-Chilhac
        • Villeneuve d'Allier
F.H. Forestier : "Les Péridotites Serpentinisées en France, Groupe I, Fascicule IV, Bassin du Haut Allier", BRGM, 1964
      • Paulhaguet
        • Mazerat-Aurouze
          • Aurouze
P.G. Pélisson : "Etude Minéralogique et Métallogénique du District Filonien Polytype de Paulhaguet (Haute-Loire, Massif Central Français)", Doctorate Thesis, Orléans, France, 1989
        • Salzuit
      • Pinols
        • Desges
P.G. Pelisson : "Etude Mineralogique et Metallogenique du district filonien polytype de Paulhaguet, Haute-Loire, Massif Central Français. Doctorate Thesis, 1989
  • Guadeloupe
    • Basse-Terre
Mas, A., Guisseau, D., Mas, P. P., Beaufort, D., Genter, A., Sanjuan, B., & Girard, J. P. (2006). Clay minerals related to the hydrothermal activity of the Bouillante geothermal field (Guadeloupe). Journal of Volcanology and Geothermal Research, 158(3), 380-400.
  • Nouvelle-Aquitaine
    • Creuse
      • Soumans
        • Montebras
Patureau, J., Chiappero, P-J. & Lebocey, J. (2011): Mines et minéraux de Montebras, Soumans, Creuse. Le Règne Minéral. 99, 5-33
Germany (TL)
  • Baden-Württemberg
    • Karlsruhe
      • Enzkreis
        • Maulbronn
Lippmann, F. (1954): Contributions to Mineralogy and Petrology 4(1), 130-134; Clays Clay Min. 21 (1973), 207; Am. Min. (1982) 67, 394-398
  • Hesse
    • Kassel Region
      • Werra-Meißner
        • Witzenhausen
          • Hundelshausen
Dreizler, I. (1962): Contributions to Mineralogy and Petrology 8, 323-338.
  • Cuyuni-Mazaruni Region
    • Omai
Voicu, G., & Bardoux, M. (2002). Geochemical behavior under tropical weathering of the Barama–Mazaruni greenstone belt at Omai gold mine, Guiana Shield. Applied geochemistry, 17(3), 321-336.
  • Baranya County
    • Hetvehely
Mineral Species of Hungary, 2005
    • Pécs
Szakáll & Gatter, 1993
  • Komárom-Esztergom County
    • Lábatlan
Szakáll-Gatter-Szendrei: Mineral Species of Hungary, 2006
  • Aomori Prefecture
    • Kamikita District
INOUE, A., & UTADA, M. (1991). Hydrothermal Alteration in the Kamikita Kuroko Mineralization Area. Mining Geology, 41(228), 203-218.
New Zealand
  • New Zealand Outlying Islands
    • Kermadec Islands
de Ronde, C.E.J.; Hannington, M.D.; Stoffers, P.; Wright, I.C.; Ditchburn, R.G.; Reyes, A.G.; Baker, E.T.; Massoth, G.J.; Lupton, J.E.; Walker, S.L.; Greene, R.R.; Soong, C.W.R.; Ishibashi, J.; Lebon, G.T.; Bray, C.J.; Resing, J.A. 2005 Evolution of a submarine magmatic-hydrothermal system : Brothers volcano, southern Kermadec arc, New Zealand. Economic geology, 100(6): 1097-1133
  • Southland Region
    • Southland District
Gejing Li et al. : "Solid solution in the celadonite family: The new minerals ferroceladonite and and ferroaluminoceladonite", American Mineralogist, Volume 82, pages 503–511, 1997
  • Waikato Region
    • Hauraki District
      • Waihi
Singh, R.S. (2015) Identifying Mineralogical and Geochemical Vectors towards the Epithermal Au-Ag Correnso Mine, Waihi. (unpublished thesis, MSc), Univerity of Waikato.
Simpson, M.P., Mauk, J.L. (2007) The Favona epithermal gold-silver deposit, Waihi, New Zealand. Economic Geology 102, 817-839.
Simpson, M. P., & Mauk, J. L. (2011). Hydrothermal alteration and veins at the epithermal Au-Ag deposits and prospects of the Waitekauri area, Hauraki goldfield, New Zealand. Economic Geology, 106(6), 945-973.
      • Waitekauri
Simpson, M.P., Mauk, J.L., Simmons, S.F. (2001) Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, New Zealand. Economic Geology 96:4, 773-796.
Simpson, M. P., & Mauk, J. L. (2011). Hydrothermal alteration and veins at the epithermal Au-Ag deposits and prospects of the Waitekauri area, Hauraki goldfield, New Zealand. Economic Geology, 106(6), 945-973.
  • Agadez
    • Aïr Mountains
      • Tim Mersoi Basin
Pagel, M., Cavellec, S., Forbes, P., Gerbaud, O., Vergely, P., Wagani, I., & Mathieu, R. (2005). Uranium deposits in the Arlit area (Niger). In Mineral Deposit Research: Meeting the Global Challenge (pp. 303-305). Springer, Berlin, Heidelberg.
Pagel, M., Cavellec, S., Forbes, P., Gerbaud, O., Vergely, P., Wagani, I., & Mathieu, R. (2005). Uranium deposits in the Arlit area (Niger). In Mineral Deposit Research: Meeting the Global Challenge (pp. 303-305). Springer, Berlin, Heidelberg.
Pacific Ocean
  • Kermadec-Tonga trench
A. G. Reyes, C.E.J. DE Ronde, and C. W. R. Soong (2004) a Submarine Magmatic-hydrothermal System at Brothers Volcano, Kermadecs. Proceedings 26th NZ Geothermal Workshop pp 46-52
Clays & Clay Minerals 43:630-636
  • Krasnoyarsk Krai
    • Taymyrskiy Autonomous Okrug
      • Taimyr Peninsula
        • Putoran Plateau
Spiridonov, E.M., Gritsenko, Y.D., and Ponomarenko, A.I. (2008): Geology of Ore Deposits 50(8), 755-762.
  • Banská Bystrica Region
    • Detva District
      • Detva
Koděra P., Lexa J., Biroň A., Bakos F. (2008): Mineralogy and alteration pattern of the Biely Vrch Au-porphyry deposit, Slovakia. Mineralogia - Special Papers, 32, 94-95.
  • Extremadura
    • Badajoz
      • Monesterio
Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
  • Värmland County
    • Filipstad
      • Nordmark District
Natural History Museum, Stockholm collection inventory nr. g25729
  • Västra Götaland County
    • Karlsborg
      • Undenäs
Ljunggren, P. (1958): Origin of the manganese ore deposit of Bölet, southern Sweden. Kungliga Fysiografiska Sällskapets i Lund Förhandlingar, 28, nr 10. ( cited in: Sandström, F. (2002): Mangangruvor och -skärpningar i Karlsborgs kommun, Västergötland. Litiofilen. 14 (1), 22-38)
  • Bursa Province
    • Mustafa Kemalpafla
Koc, S., Kavrazli, O., and Kocak, I. (2008): Proceedings of the 33rd International Geological Congress, Oslo (Norway), Aug 6-14, 2008.
  • Uşak Province
    • Uşak
Bozkaya, G., HanilçI, N., Baksheev, I. A., Prokofiev, V. Yu. and Banks, D. A. (2014), Tourmaline Composition of the Kışladaĝ Au Deposit, Uşak, Turkey. Acta Geologica Sinica, 88: 520–521
  • England
    • Worcestershire
Stephen, I., and McEwan, D.M.C. (1951): Clay Minerals Bull. 1(5), 157-162; Lippmann, F. (1954): Contributions to Mineralogy and Petrology 4(1), 130-134.
  • Wales
    • Powys
      • Builth Wells
NNational Museum of Wales database; Garvie, L. A. J., & Metcalfe, R. (1997). A vein occurrence of co-existing talc, saponite, and corrensite, Builth Wells, Wales. Clay Minerals, 32(2), 223-240.
  • Arizona
    • Coconino County
Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 189; McKee, E.D. (1982), The Supai Group of the Grand Canyon, USGS PP 1173.
  • California
    • Santa Clara Co.
      • Black Wonder Mining District
        • Mount Hamilton
  • Colorado
    • Boulder Co.
Minerals of Colorado (1997) Eckel, E. B.
    • Custer Co.
      • Rosita Mining District
Minerals of Colorado (1997) Eckel, E. B.
    • El Paso Co.
      • Crystal Park
C.R. Carnein collection; Richard Fretterd and Jean Cowman (2016) Exploring a topaz-bearing Pikes Peak pegmatite. in Second Eugene E. Foord Pegmatite Symposium July 15-19, 2016 Colorado School of Mines campus, Golden, Colorado
C.R. Carnein collection
    • Moffat Co.
      • Juniper Canyon
Minerals of Colorado (1997) Eckel, E. B.
  • Kansas
    • Reno Co.
      • Hutchinson
American Mineralogist, Volume 59, pages 623424, 1974
    • Rice Co.
Am Min 59:623, 1974
  • Michigan
    • Keweenaw Co.
Mineralogy of Michigan (2004) Heinrich & Robinson
  • North Carolina
    • Cherokee Co.
A.M Blount,Douglas Williams,Janice Jenkins,and Ben Warner,1983,Expandable layer silicates associated with hydrothermal talc deposits of Murphy,North Carolina,Economic Geology;May 1983;Vol.78;No.3;pg.486-497
    • Durham Co.
      • Durham
Willian J.Furbish,1975,Corrensite of Deuteric Orgin,The American Mineralogist,Vol.60.pg 928-930,1975
  • Pennsylvania
    • Montgomery Co.
      • Marlborough Township
        • Perkiomenville
Collection of NHM, Vienna
  • Tennessee
    • White Co.
Peterson,M.N.A.,(1961) Expandable Chloritic Clay Minerals From Upper Mississippian Carbonate Rocks Of The Cumberland Plateau In Tennessee :The American Mineralogist,Vol. 46, Nov- Dec, 1961
  • Wisconsin
    • Iron Co.
Cordua, W. (2011) Geology of new exposures of the 1100 MA (Keweenawan) Kallander Creek Volcanics in Iron County, Wisconsin: Geological Society of America 2011 Annual Meeting Abstracts with Program: p. 93.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2020, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: February 21, 2020 22:38:41 Page generated: February 16, 2020 08:04:26
Go to top of page