Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Cuspidine

This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About CuspidineHide

Formula:
Ca4(Si2O7)(F,OH)2
Colour:
Colorless, tan, light brown, pale red.
Lustre:
Vitreous, Sub-Vitreous, Waxy
Hardness:
5 - 6
Specific Gravity:
2.97-2.99
Crystal System:
Monoclinic
Name:
Named by Arcangelo Scacchi in 1876 from the Greek "cuspis," for a spear, the characteristic shape of the twinned crystals.
Isostructural with:
Colorless to tan masses, occasionally pale red. Crystals have a steep termination.

The F analogue of 'Chlorocuspidine'.

May be associated with pyrometamorphism due to coal fires (e.g., Kruszewski, 2006). As such, it may bear some germanium.


Classification of CuspidineHide

Approved, 'Grandfathered' (first described prior to 1959)
9.BE.17

9 : SILICATES (Germanates)
B : Sorosilicates
E : Si2O7 groups, with additional anions; cations in octahedral [6] and greater coordination
56.2.4.3

56 : SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
2 : Si2O7 Groups and O, OH, F, and H2O with cations in [4] and/or >[4] coordination
17.1.15

17 : Silicates Containing other Anions
1 : Silicates with fluoride (not containing Al)

Physical Properties of CuspidineHide

Vitreous, Sub-Vitreous, Waxy
Transparency:
Translucent
Colour:
Colorless, tan, light brown, pale red.
Streak:
White
Hardness:
5 - 6 on Mohs scale
Tenacity:
Brittle
Cleavage:
Distinct/Good
{100}, also {-122} poor
Fracture:
Irregular/Uneven
Density:
2.97-2.99 g/cm3 (Measured)    2.98 g/cm3 (Calculated)

Optical Data of CuspidineHide

Type:
Biaxial (+)
RI values:
nα = 1.586 - 1.594 nβ = 1.589 - 1.596 nγ = 1.598 - 1.606
2V:
Measured: 59° to 71°, Calculated: 58° to 66°
Birefringence:
0.012-0.017
Max Birefringence:
δ = 0.012
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
Moderate
Dispersion:
r > v distinct
Pleochroism:
Non-pleochroic

Chemical Properties of CuspidineHide

Formula:
Ca4(Si2O7)(F,OH)2
IMA Formula:
Ca8(Si2O7)2F4
Common Impurities:
Mn,Na,K,Cl

Crystallography of CuspidineHide

Crystal System:
Monoclinic
Class (H-M):
2/m - Prismatic
Space Group:
P21/b
Cell Parameters:
a = 10.93 Å, b = 10.57 Å, c = 7.57 Å
β = 110.11°
Ratio:
a:b:c = 1.034 : 1 : 0.716
Unit Cell V:
821.24 ų (Calculated from Unit Cell)
Z:
2

X-Ray Powder DiffractionHide

Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
Powder Diffraction Data:
d-spacingIntensity
3.26 (20)
3.06 (100)
2.95 (20)
2.93 (20)
2.90 (30)
2.87 (50)
2.02 (10)
1.88 (20)
Comments:
41-1474

Type Occurrence of CuspidineHide

Synonyms of CuspidineHide

Other Language Names for CuspidineHide

German:Cuspidin
Simplified Chinese:枪晶石
Traditional Chinese:槍晶石

Varieties of CuspidineHide

Germaniferous CuspidineMean Ge content observed is 895 ppm.

Relationship of Cuspidine to other SpeciesHide

Other Members of this group:
BaghdaditeCa3(Zr,Ti)(Si2O7)O2Mon.
BurpaliteNa2CaZr(Si2O7)F2Mon.
Hiortdahlite(Na,Ca)2Ca4Zr(Mn,Ti,Fe)(Si2O7)2(F,O)4 Tric.
Janhaugite(Na,Ca)3(Mn2+,Fe2+)3(Ti,Zr,Nb)2(Si2O7)2O2(OH,F)2Mon. 2/m : P21/m
Låvenite(Na,Ca)2(Mn2+,Fe2+)(Zr,Ti)(Si2O7)(O,OH,F)2Mon. 2/m : P21/b
MarianoiteNa2Ca4(Nb,Zr)2(Si2O7)2(O,F)4Mon. 2 : P21
Niocalite(Ca,Nb)4(Si2O7)(O,OH,F)2Mon.
NormanditeNaCa(Mn,Fe)(Ti,Nb,Zr)(Si2O7)OFMon. 2/m : P21/b
WöhleriteNaCa2(Zr,Nb)(Si2O7)(O,OH,F)2Mon. 2 : P21

Common AssociatesHide

Associated Minerals Based on Photo Data:
Calcite9 photos of Cuspidine associated with Calcite on mindat.org.
Willemite9 photos of Cuspidine associated with Willemite on mindat.org.
Franklinite9 photos of Cuspidine associated with Franklinite on mindat.org.
Phlogopite3 photos of Cuspidine associated with Phlogopite on mindat.org.
Oldhamite3 photos of Cuspidine associated with Oldhamite on mindat.org.
Fluorite3 photos of Cuspidine associated with Fluorite on mindat.org.
Periclase3 photos of Cuspidine associated with Periclase on mindat.org.
Thaumasite3 photos of Cuspidine associated with Thaumasite on mindat.org.
Portlandite3 photos of Cuspidine associated with Portlandite on mindat.org.
Spurrite3 photos of Cuspidine associated with Spurrite on mindat.org.

Related Minerals - Nickel-Strunz GroupingHide

9.BE.02Wadsleyite(Mg,Fe2+)2(SiO4)Orth.
9.BE.05HennomartiniteSrMn3+2(Si2O7)(OH)2 · H2OOrth.
9.BE.05LawsoniteCaAl2(Si2O7)(OH)2 · H2OOrth. mmm (2/m 2/m 2/m) : Cmcm
9.BE.05NoelbensoniteBaMn3+2(Si2O7)(OH)2 · H2OOrth.
9.BE.05ItoigawaiteSrAl2(Si2O7)(OH)2 · H2OOrth.
9.BE.07IlvaiteCaFe3+Fe2+2(Si2O7)O(OH)Orth. mmm (2/m 2/m 2/m)
9.BE.07ManganilvaiteCaFe2+Fe3+Mn2+(Si2O7)O(OH)Mon. 2/m : P21/b
9.BE.10SuoluniteCa2(H2Si2O7) · H2OOrth.
9.BE.12JaffeiteCa6(Si2O7)(OH)6Trig. 3 : P3
9.BE.15FresnoiteBa2Ti(Si2O7)OTet. 4mm : P4bm
9.BE.17BaghdaditeCa3(Zr,Ti)(Si2O7)O2Mon.
9.BE.17BurpaliteNa2CaZr(Si2O7)F2Mon.
9.BE.17Hiortdahlite(Na,Ca)2Ca4Zr(Mn,Ti,Fe)(Si2O7)2(F,O)4 Tric.
9.BE.17Janhaugite(Na,Ca)3(Mn2+,Fe2+)3(Ti,Zr,Nb)2(Si2O7)2O2(OH,F)2Mon. 2/m : P21/m
9.BE.17Låvenite(Na,Ca)2(Mn2+,Fe2+)(Zr,Ti)(Si2O7)(O,OH,F)2Mon. 2/m : P21/b
9.BE.17Niocalite(Ca,Nb)4(Si2O7)(O,OH,F)2Mon.
9.BE.17NormanditeNaCa(Mn,Fe)(Ti,Nb,Zr)(Si2O7)OFMon. 2/m : P21/b
9.BE.17WöhleriteNaCa2(Zr,Nb)(Si2O7)(O,OH,F)2Mon. 2 : P21
9.BE.17Hiortdahlite INa4Ca8Zr2(Nb,Mn,Ti,Fe,Mg,Al)2(Si2O7)4O3F5
9.BE.17MarianoiteNa2Ca4(Nb,Zr)2(Si2O7)2(O,F)4Mon. 2 : P21
9.BE.20Mosandrite-(Ce)(Ca3REE)[(H2O)2Ca0.50.5]Ti(Si2O7)2(OH)2(H2O)2Mon. 2/m : P21/b
9.BE.20Nacareniobsite-(Ce)NbNa3Ca3(Ce,REE )(Si2O7)2OF3Mon.
9.BE.22GötzeniteNaCa6Ti(Si2O7)2OF3Tric. 1 : P1
9.BE.22Hainite-(Y)Na2Ca4(Y,REE)Ti(Si2O7)2OF3Tric. 1 : P1
9.BE.22RosenbuschiteNa6Ca6Zr3Ti(Si2O7)4O2F6Tric. 1 : P1
9.BE.22KochiteNa3Ca2MnZrTi(Si2O7)2OF3Tric. 1 : P1
9.BE.23DovyreniteCa6Zr(Si2O7)2(OH)4Orth. mmm (2/m 2/m 2/m) : Pnnm
9.BE.25Barytolamprophyllite(Ba,Na)2(Na,Ti,Fe3+)4Ti2(Si2O7)2O(OH,F)Mon.
9.BE.25EricssoniteBaMn2+2Fe3+(Si2O7)O(OH)Mon. 2/m : B2/m
9.BE.25Lamprophyllite(Na,Mn2+)3(Sr,Na)2(Ti,Fe3+)3(Si2O7)2O2(OH,O,F)2Mon.
9.BE.25Ericssonite-2OBaMn2+2Fe3+(Si2O7)O(OH)Orth.
9.BE.25SeidozeriteNa4MnZr2Ti(Si2O7)2O2F2Mon.
9.BE.25NabalamprophylliteNa3(Ba,Na)2Ti3(Si2O7)2O2(OH,F)2Mon. 2/m
9.BE.25GrenmariteNa4MnZr3(Si2O7)2O2F2Mon. 2/m : P2/b
9.BE.25SchülleriteBa2Na(Mn,Ca)(Fe3+,Mg,Fe2+)2Ti2(Si2O7)2(O,F)4Tric. 1 : P1
9.BE.25LileyiteBa2(Na,Fe,Ca)3MgTi2(Si2O7)2O2F2Mon. 2/m : B2/m
9.BE.25EmmerichiteBa2Na(Na,Fe2+)2(Fe3+,Mg)Ti2(Si2O7)2O2F2Mon. 2/m : B2/m
9.BE.25Fluorbarytolamprophyllite(Ba,Sr)2[(Na,Fe2+)3(Ti,Mg)F2][Ti2(Si2O7)2O2]Mon. 2/m : B2/m
9.BE.27MurmaniteNa2Ti2(Si2O7)O2 · 2H2OTric.
9.BE.30EpistoliteNa2(Nb,Ti)2(Si2O7)O2 · nH2OTric.
9.BE.32LomonosoviteNa5Ti2(Si2O7)(PO4)O2Tric.
9.BE.35VuonnemiteNa11Ti4+Nb2(Si2O7)2(PO4)2O3(F,OH)Tric.
9.BE.37SoboleviteNa13Ca2Mn2Ti3(Si2O7)2(PO4)4O3F3Mon. m : Pb
9.BE.40InneliteNa2CaBa4Ti3(Si2O7)2(SO4)2O4Tric. 1 : P1
9.BE.40PhosphoinneliteNa3Ba4Ti3(Si2O7)2(PO4,SO4)2O2FTric.
9.BE.42YoshimuraiteBa2Mn2Ti(Si2O7)(PO4)O(OH)Tric. 1 : P1
9.BE.45QuadruphiteNa14Ca2Ti4(Si2O7)2(PO4)2O2FTric.
9.BE.47PolyphiteNa5(Na4Ca2)Ti2(Si2O7)(PO4)3O2F2Tric. 1 : P1
9.BE.50BornemaniteNa6BaTi2Nb(Si2O7)2(PO4)O2(OH)F Tric. 1 : P1
9.BE.50ShkatulkaliteNa5(Nb1−xTix)2(Ti1−yMn2+y)[Si2O7]2O2(OH)2·nH2O (x + y = 0.5; n ≤ 10)Mon. 2/m : P2/m
9.BE.55BafertisiteBa2Fe2+4Ti2(Si2O7)2O2(OH)2F2Tric.
9.BE.55HejtmaniteBa2(Mn2+,Fe2+)4Ti2(Si2O7)2O2(OH)2F2Tric. 1
9.BE.55Bykovaite(Ba,Na,K)2(Na,Ti,Mn)4(Ti,Nb)2(Si2O7)2O2(H2O,F,OH)2 · 3.5H2OMon. 2/m
9.BE.55Nechelyustovite(Ba,Sr,K)2(Na,Ti,Mn)4(Ti,Nb)2(Si2O7)2O2(O,H2O,F)2 · 4.5H2OMon. 2/m : B2/m
9.BE.60Delindeite(Na,K)2(Ba,Ca)2(Ti,Fe,Al)3(Si2O7)2O2(OH)2 · 2H2OMon.
9.BE.65BusseniteNa2Ba2Fe2+Ti(Si2O7)(CO3)(OH)3FTric. 1 : P1
9.BE.67JinshajiangiteBaNaFe2+4Ti2(Si2O7)2O2(OH)2FTric. 1 : P1
9.BE.67PerraultiteBaNaMn2+4Ti2(Si2O7)2O2(OH)2FMon. 2/m : B2/m
9.BE.67SurkhobiteNaCaBa2Mn8Ti4(Si2O7)4O5F5
9.BE.70Karnasurtite-(Ce)(Ce,La,Th)(Ti,Nb)(Al,Fe)(Si2O7)(OH)4 · 3H2O
9.BE.70Perrierite-(Ce)Ce4MgFe3+2Ti2(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70Strontiochevkinite(Sr,La,Ce,Ca)4Fe2+(Ti,Zr)2Ti2(Si2O7)2O8Mon.
9.BE.70Chevkinite-(Ce)(Ce,La,Ca,Th)4(Fe2+,Mg)(Fe2+,Ti,Fe3+)2(Ti,Fe3+)2(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70Polyakovite-(Ce)(Ce,Ca)4(Mg,Fe2+)(Cr3+,Fe3+)2(Ti,Nb)2(Si2O7)2O8Mon. 2/m : B2/m
9.BE.70RengeiteSr4ZrTi4(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70MatsubaraiteSr4Ti5(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70Dingdaohengite-(Ce)(Ce,La)4Fe2+(Ti,Fe2+,Mg,Fe2+)2Ti2(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70Maoniupingite-(Ce)(Ce,Ca)4(Fe3+,Ti,Fe2+,◻)(Ti,Fe3+,Fe2+,Nb)4(Si2O7)2O8Mon. 2/m : B2/m
9.BE.70Perrierite-(La)(La,Ce,Ca)4(Fe,Mn2+,Mg)Fe3+2(Ti,Fe3+)2(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70UKI-2008-(SiO:SrTiZr)Sr4ZrTi4(Si2O7)2O8Orth. mmm (2/m 2/m 2/m) : Pbca
9.BE.70Hezuolinite(Sr,REE)4Zr(Ti,Fe3+)4(Si2O7)2O8Mon. 2/m : B2/m
9.BE.72FersmaniteCa4(Na,Ca)4(Ti,Nb)4(Si2O7)2O8F3Tric.
9.BE.75BelkoviteBa3(Nb,Ti)6(Si2O7)2O12Hex.
9.BE.77NasonitePb6Ca4(Si2O7)3Cl2Hex.
9.BE.80KentrolitePb2Mn3+2(Si2O7)O2Orth. mmm (2/m 2/m 2/m) : Pbcm
9.BE.80MelanotekitePb2Fe3+2(Si2O7)O2Orth. 2 2 2 : C2 2 21
9.BE.82TilleyiteCa5(Si2O7)(CO3)2Mon.
9.BE.85KillalaiteCa6.4(H0.6Si2O7)2(OH)2Mon.
9.BE.87Stavelotite-(La)(La,Nd,Ca)3Mn2+3Cu(Mn3+,Fe3+,Mn4+)26(Si2O7)6O30Trig. 3 : P31
9.BE.90Biraite-(Ce)Ce2Fe2+(Si2O7)(CO3)Mon. 2/m : P21/b
9.BE.92Cervandonite-(Ce)(Ce,Nd,La)(Fe3+,Fe2+,Ti,Al)3O2(Si2O7)(As3+O3)(OH)Trig. 3m : R3m
9.BE.95BatisiviteBaV3+8Ti6(Si2O7)O22Tric. 1 : P1

Related Minerals - Dana Grouping (8th Ed.)Hide

56.2.4.1BaghdaditeCa3(Zr,Ti)(Si2O7)O2Mon.
56.2.4.2BurpaliteNa2CaZr(Si2O7)F2Mon.
56.2.4.4Låvenite(Na,Ca)2(Mn2+,Fe2+)(Zr,Ti)(Si2O7)(O,OH,F)2Mon. 2/m : P21/b
56.2.4.5WöhleriteNaCa2(Zr,Nb)(Si2O7)(O,OH,F)2Mon. 2 : P21
56.2.4.6Niocalite(Ca,Nb)4(Si2O7)(O,OH,F)2Mon.
56.2.4.7Hiortdahlite(Na,Ca)2Ca4Zr(Mn,Ti,Fe)(Si2O7)2(F,O)4 Tric.
56.2.4.8RosenbuschiteNa6Ca6Zr3Ti(Si2O7)4O2F6Tric. 1 : P1
56.2.4.9Hainite-(Y)Na2Ca4(Y,REE)Ti(Si2O7)2OF3Tric. 1 : P1
56.2.4.10Janhaugite(Na,Ca)3(Mn2+,Fe2+)3(Ti,Zr,Nb)2(Si2O7)2O2(OH,F)2Mon. 2/m : P21/m
56.2.4.11JenniteCa9(Si3O9)2(OH)8 · 8H2OTric.
56.2.4.12Komarovite(Ca,Mn)(Nb,Ti)2[Si2O7](O,F)3 · 3.5H2OOrth.
56.2.4.13Natrokomarovite(Na,Ca,H)2Nb2Si2O10(OH,F)2 · H2OOrth.
56.2.4.14SuoluniteCa2(H2Si2O7) · H2OOrth.
56.2.4.15MongoliteCa4Nb6Si5O24(OH)10 · nH2OTet.

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

17.1.1HectoriteNa0.3(Mg,Li)3(Si4O10)(F,OH)2Mon.
17.1.3AgrelliteNaCa2Si4O10FTric.
17.1.4Fluorapophyllite-(Na)NaCa4(Si8O20)F · 8H2OOrth.
17.1.5Fluorapophyllite-(K)KCa4(Si8O20)(F,OH) · 8H2OTet. 4/mmm (4/m 2/m 2/m) : P4/mnc
17.1.6Hydroxyapophyllite-(K)KCa4(Si8O20)(OH,F) · 8H2OTet.
17.1.7HsianghualiteCa3Li2(Be3Si3O12)F2Iso. 4 3 2 : I41 3 2
17.1.8LeucophaniteNaCaBeSi2O6FOrth. 2 2 2 : P21 21 21
17.1.9NorbergiteMg3(SiO4)(F,OH)2Orth. mmm (2/m 2/m 2/m)
17.1.10Chondrodite(Mg,Fe2+)5(SiO4)2(F,OH)2Mon. 2/m : P21/b
17.1.11Humite(Mg,Fe2+)7(SiO4)3(F,OH)2Orth. mmm (2/m 2/m 2/m) : Pnma
17.1.12ClinohumiteMg9(SiO4)4F2Mon. 2/m : P21/b
17.1.13CanasiteK3Na3Ca5Si12O30(OH)4Mon.
17.1.14Charoite(K,Sr)15-16(Ca,Na)32[Si6O11(O,OH)6]2[Si12O18(O,OH)12]2[Si17O25(O,OH)18]2(OH,F)4 · ~3H2OMon. 2/m : P21/m
17.1.16BultfonteiniteCa2(HSiO4)F · H2OTric.
17.1.17ZeophylliteCa13Si10O28(OH)2F8 · 6H2OTrig. 3 : R3
17.1.18Rowlandite-(Y)(Y,Ce)4Fe2+(Si2O7)2F2 (?)Tric.
17.1.19YuksporiteK4(Ca,Na)14(Sr,Ba)2(◻,Mn,Fe)(Ti,Nb)4(O,OH)4(Si6O17)2(Si2O7)3(H2O,OH)3Orth.
17.1.20Yftisite-(Y)(Y,Dy,Er)4(Ti,Sn)(SiO4)2O(F,OH)6
17.1.21Mosandrite-(Ce)(Ca3REE)[(H2O)2Ca0.50.5]Ti(Si2O7)2(OH)2(H2O)2Mon. 2/m : P21/b
17.1.22Hiortdahlite(Na,Ca)2Ca4Zr(Mn,Ti,Fe)(Si2O7)2(F,O)4 Tric.
17.1.23BurpaliteNa2CaZr(Si2O7)F2Mon.
17.1.24SeidozeriteNa4MnZr2Ti(Si2O7)2O2F2Mon.
17.1.25Thorosteenstrupine(Ca,Th,Mn)3Si4O11F · 6H2O
17.1.26ZircophylliteK2NaFe2+7Zr2(Si4O12)2O2(OH)4FTric.
17.1.27JinshajiangiteBaNaFe2+4Ti2(Si2O7)2O2(OH)2FTric. 1 : P1
17.1.28RosenbuschiteNa6Ca6Zr3Ti(Si2O7)4O2F6Tric. 1 : P1
17.1.29NarsarsukiteNa4(Ti,Fe)2[Si8O20](O,OH,F)2Tet.
17.1.30SonoliteMn2+9(SiO4)4(OH)2Mon.

Fluorescence of CuspidineHide

Franklin: SW = medium yellow to pale violet LW = strong yellow to pale violet

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for CuspidineHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Dana, E.S. (1892) Dana's system of mineralogy, (6th edition), 533.
Tilley, C.E. (1947) Cuspidine from dolomite contact skarns, Broadford, Skye. Mineralogical Magazine 28, 90-95.
Van Valkenburg, A., Rynders, G.F. (1958) Synthetic cuspidine. American Mineralogist 43, 1195-1202.
Saburi, S., Kawahara, A., Henmi, C., Kusachi, I., Kihara, K. (1977): The refinement of the crystal structure of cuspidine. Mineralogical Journal (Japan): 8: 286-298.
Merlino S., Perchiazzi N. (1988): Modular mineralogy in the cuspidine group of minerals. The Canadian Mineralogist: 26: 933-943.
Kruszewski, Ł. (2006): Oldhamite-periclase-portlandite-fluorite assemblage and coexisting minerals of burnt dump in Siemianowice Śląskie - Dąbrówka Wielka area (Upper Silesia, Poland) - preliminary report. Mineralogia Polonica Special Papers: 28: 118-120.

Internet Links for CuspidineHide

Localities for CuspidineHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Australia
 
  • Victoria
    • Rural City of Benalla
Aust.Jour. Earth Sci. 46:251 (1999)
Brazil
 
  • Mato Grosso
    • Juína kimberlite field
      • Juína
        • Sorriso river
Kaminsky, F. V., Ryabchikov, I. D., & Wirth, R. (2015). A primary natrocarbonatitic association in the Deep Earth. Mineralogy and Petrology, 1-12.
Canada
 
  • Newfoundland and Labrador
    • Labrador
OWENS, B.E. & KREMSER, P.T. (2010) Åkermanite breakdown to cuspidine-bearing sympectite in a calc-silicate xenolith, Kiglapait intrusion, Labrador, Canada. Canadian Mineralogist 48, 809-819.
China
 
  • Inner Mongolia
    • Ulanhad League (Chifeng Prefecture)
      • Linxi Co.
        • Linxi
Ottens, B. & Bin, J. (2014): Seltene Boratmineralien aus der Inneren Mongolei, China. Lapis, 39 (7/8), 66-68.
  • Yunnan
    • Honghe
      • Gejiu Co.
        • Gejiu Sn-polymetallic ore field
Chengdian Pen (1986): Mineral Deposits 5(3), 37-48
Czech Republic
 
  • South Moravian Region
    • Brno-Country District
      • Oslavany
Hršelová, P., Cempírek, J., Houzar, S., Sejkora, J. (2013): S,F,Cl-rich mineral assemblages from burned spoil heaps in the Rosice-Oslavany coalfield, Czech Republic. Can. Mineral.: 51(1): 171-188
DR Congo
 
  • North Kivu
    • Goma
Andersen, T., Elburg, M. A., & Erambert, M. (2014). Extreme peralkalinity in delhayelite-and andremeyerite-bearing nephelinite from Nyiragongo volcano, East African Rift. Lithos, 206, 164-178.
France
 
  • Occitanie
    • Aveyron
Kruszewski, Ł., Gatel, P., Thiéry, V., Moszumańska, I., and Kusy, D. (2018) Crystallochemical Behavior of Slag Minerals and the Occurrence of Potentially New Mineral Species from Lapanouse-de-Sévérac, France. In: Stracher, G.B. (Ed.) Coal and Peat Fires: A Global Perspective, Vol. 5: Case Studies - Advances in Field and Laboratory Research, xx-xx (in press; publication date: November 2018).
Germany
 
  • Rhineland-Palatinate
    • Mayen-Koblenz
      • Mayen
        • Ettringen
          • Bellerberg volcano
[Hentschel, G., Seltene Minerale in Calcium-reichen Auswürflingen vom Bellerberg bei Mayen/Eifel, Aufschluß 29, 77-83, 1978] [Lapis, 15 (5), 9-36]
in the collection of Christof Schäfer
Galuskin, E.V., Krüger, B., Krüger, H., Blass, G., Widmer, R., Galuskina, I.O. (2016): Wernerkrauseite, CaFe3+2Mn4+O6 - the first non-stoichiometric post-spinel mineral, from Bellerberg volcano, Eifel, Germany. European Journal of Mineralogy, 28, 485-493
    • Vulkaneifel
      • Daun
        • Üdersdorf
Blaß, G. and Kruijen, F. (2014) Die Neuigkeiten aus der Vulkaneifel (2/14). Mineralien-Welt 25 (5), 62-75 (in German).; Blaß, G. and Kruijen, F. (2015) Neuigkeiten aus der Vulkaneifel (II/2015). Mineralien-Welt, 26(5), 80-90.
  • Thuringia
    • Gera
      • Ronneburg U deposit
T. Witzke & F. Rüger: Lapis 1998(7/8), 26-64
Greece
 
  • Attica
    • East Attica
      • Lavreotiki
        • Lavrion District slag localities
          • Puntazeza area (Punta Zeza area)
Kolitsch, U., Rieck, B., Brandstätter, F., Schreiber, F., Fabritz, K. H., Blaß, G. & Gröbner, J. (2014): Neufunde aus dem altem Bergbau und den Schlacken von Lavrion (II). Mineralien-Welt 25 (2), 82-95 (in German).
Iraq
 
  • Iraqi Kurdistan
    • Sulaymaniyah
      • Qala-Diz (Qala-Dizeh; Qala-Diza)
        • Hero
Al-Hermezi, H. M., McKie, D., & Hall, A. J. (1986). Baghdadite, a new calcium zirconium silicate mineral from Iraq. Mineralogical Magazine, 50, 119-123.
Ireland
 
  • Co. Louth
    • Carlingford
S. R. Nockolds and H. G. C. Vincent (1947) On Tilleyite and Its Associated Minerals from Carlingford, Ireland. Mineralogical Magazine 28:151-158.
  • Co. Sligo
    • Killala Bay
Bull. Soc. Franç. Minéralo. Cristallo. , 1974, 97, p. 506.
Israel
 
  • Negev
Gross, S. (1977): The Mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel, Bulletin no. 70, 80 pp.
Galuskina, I.O., Galuskin, E.V., Vapnik, Y., Prusik, K., Stasiak, M., Dzierżanowski, P., Murashko, M. (2017): Gurimite, Ba3(VO4)2, and hexacelsian, BaAl2Si2O8 – two new minerals from schorlomite-rich paralava of the Hatrurim Complex, Negev Desert, Israel. Mineralogical Magazine, 81, 1009-1019.; Arkadiusz Krzątała, Evgeny V. Galuskin, Irina O. Galuskina, Yevgeny Vapnik (2018) “Uranian cuspidine” – a potentially new mineral from paralava of Eastern Gurim, Hatrurim Complex, Israel. in abstracts of the 22nd IMA Meeting Melbourne p 358
Italy (TL)
 
  • Campania
    • Naples
      • Somma-Vesuvius Complex
[Am Min 43 (1958), 1195; Lapis 1994:5 p.13-23,58]
          • Ercolano
            • San Vito
M. Carati: Guida alla mineralogia vesuviana. Bologna, Ed. Calderini (1982)
  • Lazio
    • Metropolitan City of Rome Capital
Federico, M., Peccerillo, A., (2002): Mineral chemistry and petrogenesis of granular ejecta from the Alban Hills volcano, Mineralogy and Petrology, Vol 74, 223-252
De Michele, V. (1974). Guida mineralogica d'Italia. Istituto Geografico De Agostini, Novara, 2 vol
in the collection of Christof Schäfer
      • Bracciano Lake
        • Castel Giuliano
Dario Di Domenico collection
      • Campagnano di Roma
• Stoppani, F.S. & Curti, E. (1982): I minerali del Lazio. Editoriale Olimpia, Firenze, 291 pp.
    • Viterbo Province
      • Làtera volcano
        • Gradoli
- Signoretti, E. & Bosco, P. (2001): Le cave di Gradoli e Onano. Il Cercapietre, 1/2-2001, 10-25
        • Onano
M.E. Ciriotti (2005) Probed
Lapis 28(12), 19-28 (2003)
  • Tuscany
    • Grosseto Province
      • Pitigliano
Liotti L., 1991. I minerali dei vulcani laziali a Pitigliano (Grosseto). Riv. Mineral. Ital., 15 (3): 121-139.
  • Umbria
    • Perugia Province
      • Spoleto
Stoppa, F., & Schiazza, M. (2014). Extreme chemical conditions of crystallisation of Umbrian Melilitolites and wealth of rare, late stage/hydrothermal minerals. Central European Journal of Geosciences, 6(4), 549-564.
    • Terni Province
      • San Venanzo
Stoppa, F., Sharygin, V.V., and Cundari, A. (1997): Mineralogy and Petrology 61, 27-45; Bellezza, M., Merlino, S. and Perchiazzi, N. (2004): Chemical and structural study of the Zr,Ti-disilicates in the venanzite from Pian di Celle, Umbria, Italy. Eur. J. Mineral. 16, 957-969.; Stoppa, F., & Schiazza, M. (2014). Extreme chemical conditions of crystallisation of Umbrian Melilitolites and wealth of rare, late stage/hydrothermal minerals. Central European Journal of Geosciences, 6(4), 549-564.
Japan
 
  • Hiroshima
    • Shoubara City
      • Kushiro
Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
  • Okayama
    • Takahashi City
      • Bicchu-cho (Bitchu-cho)
        • Fuka
Mineralogical Record: 27: 303.; Journal of Mineralogical and Petrological Sciences Vol. 99 (2004) , No. 2 April 67-71
        • Shitouyouze
Matsueda, H. (1983) Journal of the Mining College, Akita University, Ser. A, Mining Geology, 6, #3, 259-292.
Namibia
 
  • Otjozondjupa Region
    • Grootfontein
      • Kombat
Dunn, P.J. (1991), Rare minerals of the Kombat Mine, Mineralogical Record: 22(6): 421-425.
New Zealand
 
  • Southland Region
    • Southland District
Railton, G.T., Watters, W.A. (1990) Minerals of New Zealand. New Zealand Geological Survey Bulletin 104, 89 pages.
Norway
 
  • Telemark
    • Skien
Jamtveit B., Dahlgren S. and Austrheim H. (1997): High-grade contact metamorphism of calcareous rocks from the Oslo Rift, Southern Norway. American Mineralogist. 82 : 1241 - 1254
Palestine
 
  • West Bank
    • Hatrurim Formation
Seryotkin Y.V., Sokol E.V. & Kokh S.N. 2012: Natural pseudowollastonite: Crystal structure, associated minerals, and geological context. Lithos, vol. 134-135, pp. 75-90; Seryotkin, Yu.V., Sokol, E.V., Kokh, S.N. (2012): Natural pseudowollastonite: Crystal structure, associated minerals, and geological context. Lithos, 134–135, 75-90.
Poland
 
  • Lower Silesian Voivodeship
    • Kłodzko Co.
      • Gmina Nowa Ruda
        • Przygórze
          • Bolesław Mine
Kruszewski, Ł., Ciesielczuk, J., Misz-Kennan, M. (2012): What have meteorites to do with coal fires? A case of Upper and Lower Silesian Basins. Mineralogia Special Papers 40: 28-30; Kruszewski, Ł., Ciesielczuk, J., Misz-Kennan, M., 2014: Mineralogy of some metacarbonate rocks from burned coal-mining dump in Przygórze (Lower Silesian Coal Basin) and its analogy to "olive" rocks from the Hatrurim Formation. Proceedings of the International Symposium CEMC 2014, Skalský Dvůr, April 23-26th, 26-27
  • Silesian Voivodeship
    • Bytom City Co.
Ł. Kruszewski PXRD & EPMA data + field and microscopic observations
    • Siemianowice Śląskie City Co.
Kruszewski L. 2006: Oldhamite-periclase-portlandite-fluorite assemblage and coexisting minerals of burnt dump in Siemianowice Śląskie - Dąbrówka Wielka area (Upper Silesia, Poland) - preliminary report. Mineralogia Polonica Special Papers, vol.28, 118-120
Romania
 
  • Brașov
    • Racoş Commune
Szakáll, S., Kristály, F., 2010. Mineralogy of Székelyland, Eastern Transylvania, Romania. Sfântu Gheorghe-Miercurea Ciuc-Târgu Mureş. 2010.
  • Caraş-Severin
    • Banat Mts
Marincea, S., Dumitraş. D-G., Ghinet, C, Fransolet, A.-M., Hatert, F. & Rondeaux, M. (2011): Gehlenite from three occurrences of high-temperature skarns, Romania: new mineralogical data. Canadian Mineralogist. 49, 1001-1014
  • Harghita
    • Odorheiu Secuiesc (Székelyudvarhely; Oderhellen)
      • Racoş (Racoşu de Jos)
Szakáll, S. & Kristály, F., Eds. (2010): Mineralogy of Székelyland, Eastern Transylvania, Romania. Csík County Nature and Conservation Society, Miercurea-Ciuc, Romania, 321 pp.
  • Hunedoara
    • Brad
The Canadian Mineralogist Vol. 39, pp. 1405-1434 (2001)
    • Hunedoara
The Canadian Mineralogist Vol. 39, pp. 1405-1434 (2001)
Russia
 
  • Chelyabinsk Oblast
    • Chelyabinsk coal basin
Sharygin, V. V. (2015). Mayenite-supergroup minerals from burned dump of the Chelyabinsk Coal Basin. Russian Geology and Geophysics, 56(11), 1603-1621.
Zateeva, S. N., Sokol, E. V., & Sharygin, V. V. (2007). Specificity of pyrometamorphic minerals of the ellestadite group. Geology of Ore Deposits, 49(8), 792-805.
Cesnokov, B., M. Kotrly, and T. Nisanbajev (1998): Brennende Abraumhalden und Aufschlüsse im Tscheljabinsker Kohlenbecken - eine reiche Mineralienküche. Mineralien-Welt, 9 (3), 54-63 (in German).
  • Kabardino-Balkaria
    • Baksan Valley
P.M. Kartashov data
Bailau, R., Gałuskin, E. V., Gazeev, V. M., & Gałuskina, I. O. Raman investigation of potential new mineral-Fe 3-analogue of wadalite from calcareous-silicate xenoliths of the Upper Chegem caldera, Northern Caucasus, Russia.
        • Lakargi Mt.
Galuskina, I. O., Galuskin, E. V., Kusz, J., Dzierżanowski, P., Prusik, K., Gazeev, V. M., ... & Dubrovinsky, L. (2013). Dzhuluite, Ca3SbSnFe3+ 3O12, a new bitikleite-group garnet from the Upper Chegem Caldera, Northern Caucasus, Kabardino-Balkaria, Russia. European Journal of Mineralogy, 25(2), 231-239
Galuskina, I., Galuskin, E.V., Dzieržanowski, P., Gazeev, V., Prusik, K., Pertsev, N., Winiarski, A., Zadov, A., Wrzalik, R. (2010): Toturite Ca3Sn2Fe2SiO12 - a new mineral species of the garnet group. American Mineralogist, 95, 1305-1311
Galuskin, E. V.; Gazeev, V. M.; Lazic, B.; Armbruster, T.; Galuskina, I. O.; Zadov, A. E.; Pertsev, N. N.; Wrzalik, R.; Dzierzanowski, P.; Gurbanov, A. G. & Bzowska, G. (2009): Chegemite Ca7(SiO4)3(OH)2 - a new humite-group calcium mineral from the Northern Caucasus, Kabardino-Balkaria, Russia. European Journal of Mineralogy 21, 1045-1059.
  • Krasnoyarsk Krai
    • Evenkia (Evenkiyskiy Autonomous okrug)
      • Nizhnyaya Tunguska River Basin (Lower Tunguska River)
Reverdatto, V. V., Pertsev, N. N., & Korolyuk, V. N. (1979). P_ {CO_2}-T-Evolution and origin of zoning in melilite during the regressive stage of contact metamorphism in carbonate-bearing rocks. Contributions to Mineralogy and Petrology, 70(2), 203-208
  • Murmansk Oblast
Potter, N. J., Kamenetsky, V. S., Chakhmouradian, A. R., & Goemann, K. (2017) Inclusions in perovskite-magnetite-silicate rocks from Afrikanda, Russia: Clues to the early history of carbonatites?. 11th International Kimberlite Conference
www.koeln.netsurf.de/~w.steffens/khib.htm
Veksler, I. V., Nielsen, T. F. D., & Sokolov, S. V. (1998). Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis. Journal of Petrology, 39(11-12), 2015-2031
    • Turii Cape
Keith Bell, Elizabeth Ann Dunworth, Andrei G. Bulakh, and Valeriy V. Ivanikov (1996) Alkaline rocks of the Turiy Peninsula, Russia, including type-locality turjaite and turjite; a review. Can Mineral, v. 34, p. 265-280
  • Sakha Republic (Yakutia)
    • Daldyn-Alakit kimberlite field
      • Daldyn
Sharygin, V. V., Kamenetsky, V. S., & Kamenetsky, M. B. (2008). Potassium sulfides in kimberlite-hosted chloride–“nyerereite” and chloride clasts of Udachnaya-East pipe, Yakutia, Russia. The Canadian Mineralogist, 46(4), 1079-1095.
  • Tuva
    • Sayan Mts
      • Eastern Sayan
Andreeva, I.A., (2006) Genesis Of The Alkaline Rocks And Carbonatites From The Belaya Zima Carbonatite Complex (Eastern Sayan, Russia): Evidence From Melt Inclusions. in Geological Association of Canada, Program with Abstracts Volume 31
South Africa
 
  • Northern Cape
    • Francis Baard District
      • Kimberley
        • KEM JV Mine (Kimberley Ekapa Mining Joint Venture mine; Kimberley Underground mine)
Giuliani, A., Soltys, A., Phillips, D., Kamenetsky, V. S., Maas, R., Goemann, K., ... & Griffin, W. L. (2017). The final stages of kimberlite petrogenesis: petrography, mineral chemistry, melt inclusions and Sr-CO isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chemical Geology, 455, 342-356.
South Ossetia
 
  • Greater Caucasus Mountain Range
    • Kel’ volcanic area
      • Shadil-Khokh volcano
Środek, D., Juroszek, R., Krüger, H., Krüger, B., Galuskina, I., & Gazeev, V. (2018). New Occurrence of Rusinovite, Ca10 (Si2O7) 3Cl2: Composition, Structure and Raman Data of Rusinovite from Shadil-Khokh Volcano, South Ossetia and Bellerberg Volcano, Germany. Minerals, 8(9), 399.
Tanzania
 
  • Arusha Region
Mitchell, R.H. and Belton, F. (2004) Niocalite-cuspidine solid solution and manganoan monticellite from natrocarbonatite, Oldoinyo Lengai, Tanzania. Mineralogical Magazine: 68: 787-799.; Mattsson, H. B., & Reusser, E. (2010). Mineralogical and geochemical characterization of ashes from an early phase of the explosive September 2007 eruption of Oldoinyo Lengai (Tanzania). Journal of African Earth Sciences, 58(5), 752-763.
Zaitsev, A. N., Marks, M. A. W., Wenzel, T., Spratt, J., Sharygin, V. V., Strekopytov, S., & Markl, G. (2012). Mineralogy, geochemistry and petrology of the phonolitic to nephelinitic Sadiman volcano, Crater Highlands, Tanzania. Lithos, 152, 66-83.
Turkey
 
  • Black Sea Region
    • Rize Province
Taner, M. F., Martin, R. F., & Gault, R. A. (2013). The Mineralogy of Skarns of the Spurrite–Merwinite Subfacies, Sanidinite Facies, Güneyce–Ikizdere Area, Eastern Black Sea, Turkey. The Canadian Mineralogist, 51(6), 893-911.
UK
 
  • Scotland
    • Highland
      • Ardnamurchan
Mineralogical Magazine 1965 34 : 1-15.
      • Isle of Muck
Tilley, C.E. (1947) The gabbro-limestone contact zone of Camas Mor, Muck, Inverness-shire. Comptes Rendus de la Société geologique de Finlande, No. 140, 97–105.
      • Isle of Skye
        • Broadford
          • Kilchrist
Tilley, C.E. (1947) Cuspidine from dolomite contact skarns, Broadford, Skye. Mineralogical Magazine: 28: 90-95.
Ukraine
 
  • Donetsk Oblast
V.V. Sharygin (2011) Lakargiite and Minerals of the Perovskite-brownmillerite Series in Metacarbonate Rocks from Donetsk Burned Dumps
      • Kalinin coal mine
Шарыгин, В. В. (2015). Минералогия метакарбонатной породы из горелого террикона угольной шахты им. Калинина, г. Донецк. Минералогия техногенеза–2015, Миасс, Имин УрО РАН, 13-40. (Mineralogy of a Metacarbonate Rock from a Burned Dump of the Kalinin Coal Mine, Donetsk)
USA
 
  • California
    • Riverside Co.
      • Crestmore
        • Crestmore quarries
          • Sky Blue Hill
Tilley, Cecil Edgar (1947), Cuspidine from dolomite contact skarns, Broadford, Skye: Mineralogical Magazine: 28: 90-95; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 477.
  • Idaho
    • Custer Co.
Rocks & Minerals (1995) 70: 250.
  • New Jersey
    • Sussex Co.
      • Franklin Mining District
        • Franklin
Palache(1935):102; Dunn(1995):Pt3:409.
Chris O'neill
  • New York
    • Essex Co.
      • Keene Township
        • Cascade Mountain
Contrib. Mineral. Petrol. 74, 143-152 (1980)
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: June 18, 2019 02:11:29 Page generated: June 16, 2019 03:52:12
Go to top of page