Help|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery


This page is currently not sponsored. Click here to sponsor this page.
Cu2(AsO4)(OH) · 3H2O
Bright emerald-green, leek-green; bright bluish green in transmitted light.
3½ - 4
Specific Gravity:
Crystal System:
Named in 1823 by August Breithaupt from the Greek ευχροια for "beautiful color."
A rare secondary copper arsenate.

May be pseudomorphed by olivenite.

In the structure there are two symmetrically-independent Cu sites; the CuO6 octahedra are (typically) strongly distorted (Jahn-Teller distortion). As occurs in a single symmetrically independent site. The Cu-bearing octahedra share edges to form chains || [001]. The arsenate tetrahedra link the chains to constitute a framework, stabilized by hydrogen bonds involving OH groups and water molecules. The hydrogen bonding scheme is complex: there are strong two-center ones and bifurcated three-center ones. There are both bent and almost planar Cu-H2O configurations.

Classification of Euchroite

Approved, 'Grandfathered' (first described prior to 1959)

D : Phosphates, etc. with additional anions, with H2O
C : With only medium-sized cations, (OH, etc.):RO4 = 1:1 and < 2:1

6 : A2(XO4)Zq·xH2O

20 : Arsenates (also arsenates with phosphate, but without other anions)
1 : Arsenates of Cu

Physical Properties of Euchroite

Transparent, Translucent
Bright emerald-green, leek-green; bright bluish green in transmitted light.
3½ - 4 on Mohs scale
On {101} and {110}, in traces.
Irregular/Uneven, Sub-Conchoidal
3.44 g/cm3 (Measured)    3.45 g/cm3 (Calculated)

Optical Data of Euchroite

Biaxial (+)
RI values:
nα = 1.695 nβ = 1.698 nγ = 1.733
Measured: 28° to 30°, Calculated: 34°
Max Birefringence:
δ = 0.038
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
relatively weak

Chemical Properties of Euchroite

Cu2(AsO4)(OH) · 3H2O
IMA Formula:
Cu2AsO4(OH) · 3H2O

Crystallography of Euchroite

Crystal System:
Class (H-M):
2 2 2 - Disphenoidal
Space Group:
P21 21 21
Cell Parameters:
a = 10.035-10.07 Å, b = 10.4-10.52 Å, c = 6.11-6.12 Å
a:b:c = 0.965 : 1 : 0.588
Unit Cell V:
637.66 ų (Calculated from Unit Cell)
Crystals short prismatic [010] to equant; also thick tabular {100}, rare. Faces m s l striated [010]. Crystals normally holohedral in appearance.
V=642.27 (material from Krivovichev et al., 2016)

Type Occurrence of Euchroite

General Appearance of Type Material:
Crystals lining crevices in mica schist.
Associated Minerals at Type Locality:

Other Language Names for Euchroite


Common Associates

Associated Minerals Based on Photo Data:
Azurite20 photos of Euchroite associated with Azurite on
Olivenite8 photos of Euchroite associated with Olivenite on
Cornubite8 photos of Euchroite associated with Cornubite on
Malachite7 photos of Euchroite associated with Malachite on
Parnauite5 photos of Euchroite associated with Parnauite on
Limonite4 photos of Euchroite associated with Limonite on
Chrysocolla3 photos of Euchroite associated with Chrysocolla on
Cornwallite2 photos of Euchroite associated with Cornwallite on
Goethite2 photos of Euchroite associated with Goethite on
Quartz1 photo of Euchroite associated with Quartz on

Related Minerals - Nickel-Strunz Grouping

8.DC.05NissoniteCu2Mg2(PO4)2(OH)2 · 5H2O
8.DC.10LegranditeZn2(AsO4)(OH) · H2O
8.DC.12StrashimiriteCu8(AsO4)4(OH)4 · 5H2O
8.DC.15ArthuriteCuFe3+2(AsO4)2(OH)2 · 4H2O
8.DC.15EarlshannoniteMn2+Fe3+2(PO4)2(OH)2 · 4H2O
8.DC.15OjuelaiteZnFe3+2(AsO4)2(OH)2 · 4H2O
8.DC.15WhitmoreiteFe2+Fe3+2(PO4)2(OH)2 · 4H2O
8.DC.15Cobaltarthurite(Co,Mg)Fe3+2(AsO4)2(OH)2 · 4H2O
8.DC.15BendadaiteFe2+Fe3+2(AsO4)2(OH)2 · 4H2O
8.DC.15KunatiteCuFe3+2(PO4)2(OH)2 · 4H2O
8.DC.15UKI-2006-(PO:FeHZn)ZnFe3+2(PO4)2(OH)2 · 4H2O
8.DC.15UKI-2006-(PO:AlCuFeH)Fe2+Al3+2(PO4)2(OH)2 · 4H2O
8.DC.17KleemaniteZnAl2(PO4)2(OH)2 · 3H2O
8.DC.20BermaniteMn2+Mn3+2(PO4)2(OH)2 · 4H2O
8.DC.20CoralloiteMn2+Mn3+2(AsO4)2(OH)2 · 4H2O
8.DC.22KovdorskiteMg2(PO4)(OH) · 3H2O
8.DC.25FerristrunziteFe3+Fe3+2(PO4)2(OH)3 · 5H2O
8.DC.25FerrostrunziteFe2+Fe3+2(PO4)2(OH)2 · 6H2O
8.DC.25MetavauxiteFe2+Al2(PO4)2(OH)2 · 8H2O
8.DC.25MetavivianiteFe2+Fe3+2(PO4)2(OH)2 · 6H2O
8.DC.25StrunziteMn2+Fe3+2(PO4)2(OH)2 · 6H2O
8.DC.27BerauniteFe2+Fe3+5(PO4)4(OH)5 · 6H2O
8.DC.30GordoniteMgAl2(PO4)2(OH)2 · 8H2O
8.DC.30LaueiteMn2+Fe3+2(PO4)2(OH)2 · 8H2O
8.DC.30MangangordoniteMn2+Al2(PO4)2(OH)2 · 8H2O
8.DC.30ParavauxiteFe2+Al2(PO4)2(OH)2 · 8H2O
8.DC.30PseudolaueiteMn2+Fe3+2(PO4)2(OH)2 · 8H2O
8.DC.30SigloiteFe3+Al2(PO4)2(OH)3 · 7H2O
8.DC.30StewartiteMn2+Fe3+2(PO4)2(OH)2 · 8H2O
8.DC.30UshkoviteMgFe3+2(PO4)2(OH)2 · 8H2O
8.DC.30FerrolaueiteFe2+Fe3+2(PO4)2(OH)2 · 8H2O
8.DC.30Kastningite(Mn2+,Fe2+,Mg)Al2(PO4)2(OH)2 · 8H2O
8.DC.30MaghrebiteMgAl2(AsO4)2(OH)2 · 8H2O
8.DC.30NordgauiteMnAl2(PO4)2(F,OH)2 · 5H2O
8.DC.32TinticiteFe3+5.34(PO4)3.62(VO4)0.38(OH)4 · 6.7H2O
8.DC.35VauxiteFe2+Al2(PO4)2(OH)2 · 6H2O
8.DC.37VantasseliteAl4(PO4)3(OH)3 · 9H2O
8.DC.40CacoxeniteFe3+24Al(PO4)17O6(OH)12 · 17H2O
8.DC.45Gormanite(Fe2+,Mg)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
8.DC.45Souzalite(Mg,Fe2+)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
8.DC.47KingiteAl3(PO4)2F2(OH) · 7H2O
8.DC.50WavelliteAl3(PO4)2(OH,F)3 · 5H2O
8.DC.50AllanpringiteFe3+3(PO4)2(OH)3 · 5H2O
8.DC.52KribergiteAl5(PO4)3(SO4)(OH)4 · 4H2O
8.DC.55MapimiteZn2Fe3+3(AsO4)3(OH)4 · 10H2O
8.DC.57OgdensburgiteCa2Fe3+4(Zn,Mn2+)(AsO4)4(OH)6 · 6H2O
8.DC.60Nevadaite(Cu2+,Al,V3+)6Al8(PO4)8F8(OH)2 · 22H2O
8.DC.60CloncurryiteCu0.5(VO)0.5Al2(PO4)2F2 · 5H2O

Related Minerals - Hey's Chemical Index of Minerals Grouping

20.1.6Chlorotile (of Frenzel)
20.1.7GeminiteCu(HAsO4) · H2O
20.1.9StrashimiriteCu8(AsO4)4(OH)4 · 5H2O
20.1.11LindackeriteCuCu4(AsO4)2(HAsO4)2 · 9H2O
20.1.13LiroconiteCu2Al(AsO4)(OH)4 · 4H2O
20.1.14CeruleiteCu2Al7(AsO4)4(OH)13 · 11.5H2O
20.1.16ArthuriteCuFe3+2(AsO4)2(OH)2 · 4H2O

Fluorescence of Euchroite


Other Information

Soluble in acids.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for Euchroite

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Breithaupt, A. (1823) Vollständige Characteristik etc., 1st. ed.: 172, 266.
Haidinger, W. (1825): Ueber den Euchroit, eine neue Mineralspecies. 1. Vorläufige Notiz über dieses Mineral. J. Chem. Phys. (Schweigger), 45, 231-232.
Haidinger (1825) Annalen der Physik, Halle, Leipzig: 5: 165.
Haidinger (1825) Ed. J. Sc.: 2: 133.
Grailich and Lang (1857) Königliche Akademie der Wissenschaften, Vienna, Sitzber.: 27: 47.
Des Cloizeaux (1859): 2: 30.
Dana, J.D. (1868) System of Mineralogy, 5th. Edition, New York: 566.
Church (1895) Mineralogical Magazine: 11: 1.
Goldschmidt, V. (1916) Atlas der Krystallformen. 9 volumes, atlas, and text: vol. 3: 157.
Larsen, E.S. (1921) The Microscopic Determination of the Nonopaque Minerals, First edition, USGS Bulletin 679: 73.
Hintze, Carl (1931) Handbuch der Mineralogie. Berlin and Leipzig. 6 volumes: 1 [4B]: 876.
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged, 1124 pp.: 934-935.
Giuseppetti, G. (1963): La struttura cristallina dell'Eucroite Cu2(AsO)(OH)*3(H2O). Periodico di Mineralogia – Roma, 131-156.
Finney, J.J. (1966): Refinement of the crystal structure of euchroite, Cu2(AsO4)(OH)·3H2O. Acta Crystallogr 21: 437–440.
Eby, R.K. & Hawthorne, F.C. (1989): Euchroite, a heteropolyhedral framework structure. Acta Crystallographica: C45: 1479-1482.
Papp, G. (2004): History of Minerals, Rocks and Fossil Resins Discovered in the Carpathian Region. Studia Naturale 14, Hungarian Natural History Museum, Budapest, Hungary, 215 pp.
Krivovichev, S.V., Zolotarev, A.A., Pekov, I.V. (2016): Hydrogen bonding system in euchroite, Cu2(AsO4)(OH)(H2O)3: low-temperature crystal-structure refinement and solid-state density functional theory modeling. Mineralogy and Petrology: 110, 877-883.

Internet Links for Euchroite URL:
Please feel free to link to this page.
The following Euchroite specimens are currently listed for sale on

Localities for Euchroite

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.
(TL) indicates type locality for a valid mineral species. (FRL) indicates first recorded locality for everything else. ? indicates mineral may be doubtful at this locality. All other localities listed without reference should be considered as uncertain and unproven until references can be found.
  • New South Wales
    • Yancowinna Co.
      • Silverton
Alan Melbourne
  • South Australia
    • Olary Province
      • Boolcoomatta Reserve (Boolcoomata Station; Boolcoomatta)
Vera Munro-Smith (2006) Cobalt Mineralisation in Selected Australian Deposits. PhD thesis, University of Western Sydney.
  • Salzburg
    • Saalfelden
      • Leogang
        • Hütten
          • Schwarzleograben
            • Inschlag Alp
C.L. Lengauer, G. Giester, E. Kirchner: Mineralogy and Petrology 81:187-201 (2004)
            • Schwarzleo District
R.Poeverlein (2016)
C.L. Lengauer, G. Giester, E. Kirchner: Mineralogy and Petrology 81:187-201 (2004)
peter neschen collection
Poeverlein, R. (2008): Euchroit und seine Begleiter vom prähistorischen Bergbau, Leogang, Österreich. Lapis, 33 (5), 13-22.
  • Tyrol
    • North Tyrol
      • Inn valley
        • Wörgl
          • Wildschönau
            • Thierbach
R. Poeverlein, J. Gröbner & U. Kolitsch (2010): Mineralien und Bergbau vom Graschberg bei Thierbach in der Tiroler Wildschönau. Lapis 35 (3), 35-40; 54 (in German).
R. Poeverlein, J. Gröbner & U. Kolitsch (2010): Mineralien und Bergbau vom Graschberg bei Thierbach in der Tiroler Wildschönau. Lapis 35 (3), 35-40; 54 (in German).
      • Stanz valley
        • Flirsch
J. Gröbner, U. Kolitsch, R. Poeverlein & M. Strasser (2009): Ein ungewöhnliches Fahlerzvorkommen bei der Flirscher Schihütte im Stanzer Tal, Tirol. Lapis 34, 13-19; 58.
  • Sofiya Oblast (Sofia Oblast)
    • Svoge Obshtina
      • Bov
Mincheva-Stefanova, I. (1968): Strashimirite, a new hydrous copper arsenate. Zap. Vses. Mineral. Obshch. 97, 470-477 (in Russian). [Abstract in Am. Mineral. 54 (1969) 1221]; Lapis 23(4), 9 (1998)
  • Antofagasta Region
    • Antofagasta Province
Czech Republic
  • Bohemia (Böhmen; Boehmen)
    • Hradec Králové Region
      • Náchod (Nachod)
Černý, P., Doubek, Z., Veselovský, F.: Nerosty z Bělovsi u Náchoda – Jiráskova lomu. Minerál, roč. 11, č. 6, s. 406-418.
  • Auvergne-Rhône-Alpes
    • Rhône
      • Le Bois d'Oingt
        • Chessy-les-Mines
Lapis 23(4), 9 (1998)
  • Rhineland-Palatinate
    • Siegerland
      • Betzdorf
        • Schutzbach
Weiss: "Mineralfundstellen, Deutschland West", Weise (Munich), 1990
  • Attikí Prefecture (Attica; Attika)
    • Lavrion District (Laurion; Laurium)
Kohlberger, W. (1976): Minerals of the Laurium Mines, Attica, Greece. Mineralogical Record, 7, 114-125.
        • Agios Konstantinos [St Constantine] (Kamariza)
No reference listed
  • Sardinia
    • Medio Campidano Province
      • Arbus and Guspini municipalities
Preite, D., & Zuanel, A. (2007). Montevecchio: storia, miniere e minerali. Rivista Mineralogica Italiana, 31 (4), 230-246.
  • Caraş-Severin Co.
    • Banat Mts
      • Moldova Nouă-Sasca Cu-Mo ore field
  • Banská Bystrica Region
    • Banská Bystrica Co.
      • Ľubietová (Libetbánya; Libethen)
Martin Števko, unpublished-EMPA-WDS and PXRD confirmed
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 935; Pauliš, P., Ďuďa, R. (2002) Nejzajímavejší mineralogická naletište Slovenska. Kuttna,K.Hora, 136p
      • Poniky
Števko M., Sejkora J., Bačík P., 2011: Mineralogy and origin of supergene mineralization at the Farbište ore occurrence near Poniky, central Slovakia. Journal of Geosciences, 57, 3, 273-298.
  • Asturias
    • Salas
      • Carlés
Calvo, M. & Viñals, J. (2014). Mineralogy of the gold deposit in Carlés, Salas, Asturias, Spain. Mineral Up, 3 (6), 6-32
  • Glarus
    • Murg Valley
Stalder, H. A., Wagner, A., Graeser, S. and Stuker, P. (1998): "Mineralienlexikon der Schweiz", Wepf (Basel), p. 155.
  • Montana
    • Missoula Co.
      • Copper Cliff District
Lapis 23(4), 9 (1998)
  • Nevada
    • Eureka Co.
      • Lynn District
AIME Pacific Southwest Mineral Industry Conference 1977
  • New Jersey
    • Sussex Co.
      • Franklin Mining District
        • Ogdensburg
          • Sterling Hill
  • Washington
    • Snohomish Co.
      • Monte Cristo District
        • Monte Cristo
Anthony et al; 1995, Handbook of mineralogy.;
Mineral and/or Locality is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © and the Hudson Institute of Mineralogy 1993-2017, except where stated. relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: July 26, 2017 15:29:59 Page generated: July 24, 2017 07:01:49
Go to top of page