LIVE REPORT! Moscow mindat tour - last updated 1 minute ago. Click here to watch.
Help|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on Mindat
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralSearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery


This page is currently not sponsored. Click here to sponsor this page.
Colorles to white when pure, also green, blue, pink, yellow, brown, violet, purple.
Vitreous, Sub-Vitreous, Resinous, Waxy, Greasy
Specific Gravity:
3.1 - 3.25
Crystal System:
Renamed in 1860 from the original apatite of Abraham Werner by Carl F. Rammelsberg to emphasize the chemical composition. Apatite is from the Greek ἀπατάω (apatao), to deceive, as apatite was often confused with other minerals (e.g. beryl, milarite). Rammelsberg added the "Fluor-" prefix in allusion to the dominance of fluorine in the composition. See Weiss (2012) and Meier (2013) for the nomenclature history of apatite.
Apatite Group.
The fluorine analogue of chlorapatite and hydroxylapatite, phosphate analogue of svabite. The Ca5 analogue of belovite-(Ce), belovite-(La), and kuannersuite-(Ce). Note that the five cation sites are non-equivalent and substituents in the larger 3 sites preferentially accommodate larger cations.

Fluorapatite is by far the most common species in the apatite group. It occurs in almost all igneous rocks, during initial phases of paragenesis, as an accessory mineral, commonly in microscopic crystals, and may occur as very large bodies as late-magmatic segregations in alkaline igneous rocks. Also occurs crystallized in pegmatitic facies of acidic and basic types of igneous rocks. Common in magnetite deposits, and in hydrothermal veins, particularly those formed at high temperatures, and in Alpine cleft-type veins.

Fluorapatite may be confused with beryl, milarite or phenakite.

Visit for gemological information about Fluorapatite.

Hide all sections | Show all sections

Classification of FluorapatiteHide

Approved, 'Grandfathered' (first described prior to 1959)

B : Phosphates, etc., with additional anions, without H2O
N : With only large cations, (OH, etc.):RO4 = 0.33:1

8 : A5(XO4)3Zq

22 : Phosphates, Arsenates or Vanadates with other Anions
1 : Phosphates, arsenates or vanadates with fluoride

Pronounciation of FluorapatiteHide

PlayRecorded byCountry
Jolyon & Katya RalphUnited Kingdom

Physical Properties of FluorapatiteHide

Vitreous, Sub-Vitreous, Resinous, Waxy, Greasy
Transparent, Opaque
Colorles to white when pure, also green, blue, pink, yellow, brown, violet, purple.
Hardness Data:
Mohs hardness reference species
Indistinct (0001) and (1010)
Irregular/Uneven, Conchoidal
3.1 - 3.25 g/cm3 (Measured)    3.18 g/cm3 (Calculated)

Optical Data of FluorapatiteHide

Uniaxial (-)
RI values:
nω = 1.631 - 1.650 nε = 1.627 - 1.646
Max Birefringence:
δ = 0.004
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
Weak to strong in coloured crystals:
Colour: .Violet .........Pale Green .............Yellow ..............Blue
O = ..Deep violet .....Pale yellow ..Yellow-brown ......Sky-blue
E = ..Red-violet .Pale blue-green ..Dark green ...Green-blue
Refractive index increases with diminished fluorine content.

Chemical Properties of FluorapatiteHide

Idealised Formula:
Common Impurities:

Crystallography of FluorapatiteHide

Crystal System:
Class (H-M):
6/m - Dipyramidal
Space Group:
Cell Parameters:
a = 9.3973 Å, c = 6.8782 Å
a:c = 1 : 0.732
Unit Cell V:
526.03 ų (Calculated from Unit Cell)
Crystals short to long hexagonal prisms [0001], with {1010} and {1011} dominant; also thick tabular {0001}, frequently in the crystals of hydrothermal origin in pegmatites and veins, with {1010}, relatively large {0001}, and often also {1011} or low pyramids. Massive, coarse granular to compact.
Rare contact twins on {1121}. Twin plane {1013} rare. Also twinning reported on {1010} and {1123}.
May be space group P21/b.

Epitaxial Relationships of FluorapatiteHide

Epitaxy Comments:
Needle-like rutile crystals included in the apatite with the c-axes of the two species parallel; Monazite in oriented inclusions; Carbonate-fluorapatite enclosing fluorapatite.

X-Ray Powder DiffractionHide

Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
Powder Diffraction Data:
3.442 (40)
2.800 (100)
2.772 (55)
2.702 (60)
2.624 (30)
1.937 (25)
1.837 (30)

Type Occurrence of FluorapatiteHide

Synonyms of FluorapatiteHide

Other Language Names for FluorapatiteHide

Varieties of FluorapatiteHide

Carbonate-rich FluorapatiteA variety of fluorapatite with carbonate group (CO3) substituting for some of the phosphate (PO4) groups.
CuproapatiteVariety of Fluorapatite containing 20 wt.% CuO (possibly a mixture).
Originally reported from Minillas Mine, Tambillos mining District, La Serena, Elqui Province, Coquimbo Region, Chile.
HolmbushiteAn acicular microcrystalline variety of Carbonate-rich Fluorapatite.
Originally reported from Holmbush Mine (Callington United Mine; Callington Mine), Callington, Callington District, Cornwall, England, UK.
ManganapatiteA variety of fluorapatite containing divalent Mn was called maganapatite. Manganapatite is usually a medium to dark green, cloudy translucent, rarely transparent, and fluorescent in UV. Unit-cell dimensions are slightly smaller than pure fluorapatite, whi...
Mn-bearing FluorapatiteA high valence manganese-bearing variety of fluorapatite, generally containing Mn5+. The name "manganapatite" has been incorrectly applied to this variety.
Saamite (of Volkova & Melentiev)A Strontium- and REE-bearing fluorapatite from the Kola peninsula with contents SrO around 10 mas.% and LREE2O3 about 12 mas.%. Usual ore apatite of Khibina with SrO ~5 mas.% and REE2O3 ~2 mas.% don't considered as saamite.
Soda-DehrniteA sodian variety of 'Dehrnite' (Carbonate Fluorapatite).
Strontian ApatiteA strontian variety of Fluorapatite
SulphatapatitPresumably a sulfate-bearing fluorapatite.

Relationship of Fluorapatite to other SpeciesHide

Other Members of this group:
AlforsiteBa5(PO4)3ClHex. 6/m : P63/m
ChlorapatiteCa5(PO4)3ClHex. 6/m : P63/m
HydroxylapatiteCa5(PO4)3(OH)Hex. 6/m : P63/m
JohnbaumiteCa5(AsO4)3OHHex. 6/m : P63/m
MimetitePb5(AsO4)3ClHex. 6/m : P63/m
PieczkaiteMn5(PO4)3ClHex. 6/m : P63/m
PyromorphitePb5(PO4)3ClHex. 6/m : P63/m
StronadelphiteSr5(PO4)3FHex. 6/m : P63/m
SvabiteCa5(AsO4)3FHex. 6/mmm (6/m 2/m 2/m) : P63/mmc
Unnamed (F-analogue of Pyromorphite)Pb5(PO4)3F
Unnamed (OH-analogue of Mimetite)Pb5(AsO4)3(OH)
VanadinitePb5(VO4)3ClHex. 6/m : P63/m

Common AssociatesHide

Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Pyroxene GroupA large group of inosilicate (chain silicate) minerals with the general formula ABSi2O6.
Associated Minerals Based on Photo Data:
Quartz737 photos of Fluorapatite associated with Quartz on
Muscovite652 photos of Fluorapatite associated with Muscovite on
Albite474 photos of Fluorapatite associated with Albite on
Siderite448 photos of Fluorapatite associated with Siderite on
Calcite410 photos of Fluorapatite associated with Calcite on
Fluorite175 photos of Fluorapatite associated with Fluorite on
Arsenopyrite148 photos of Fluorapatite associated with Arsenopyrite on
Pyrite137 photos of Fluorapatite associated with Pyrite on
Schorl111 photos of Fluorapatite associated with Schorl on
Microcline92 photos of Fluorapatite associated with Microcline on

Related Minerals - Nickel-Strunz GroupingHide

8.BN.05AlforsiteBa5(PO4)3ClHex. 6/m : P63/m
8.BN.05Belovite-(Ce)NaCeSr3(PO4)3FTrig. 3 : P3
8.BN.05Carbonate-rich FluorapatiteCa5(PO4,CO3)3(F,O)Hex.
8.BN.05Carbonate-rich HydroxylapatiteCa5(PO4,CO3)3(OH,O)Hex.
8.BN.05ChlorapatiteCa5(PO4)3ClHex. 6/m : P63/m
8.BN.05Mimetite-MPb5(AsO4)3ClMon. 2/m : P21/b
8.BN.05Johnbaumite-MCa5(AsO4)3OHMon. 2/m : P21/m
8.BN.05HedyphaneCa2Pb3(AsO4)3ClHex. 6/mmm (6/m 2/m 2/m) : P63/mmc
8.BN.05HydroxylapatiteCa5(PO4)3(OH)Hex. 6/m : P63/m
8.BN.05JohnbaumiteCa5(AsO4)3OHHex. 6/m : P63/m
8.BN.05MimetitePb5(AsO4)3ClHex. 6/m : P63/m
8.BN.05PyromorphitePb5(PO4)3ClHex. 6/m : P63/m
8.BN.05FluorstrophiteSrCaSr3(PO4)3FHex. 6/m : P63/m
8.BN.05SvabiteCa5(AsO4)3FHex. 6/mmm (6/m 2/m 2/m) : P63/mmc
8.BN.05VanadinitePb5(VO4)3ClHex. 6/m : P63/m
8.BN.05Belovite-(La)NaLaSr3(PO4)3FTrig. 3 : P3
8.BN.05FluorcaphiteSrCaCa3(PO4)3FHex. 6/m : P63/m
8.BN.05Kuannersuite-(Ce)NaCeBa3(PO4)3F0.5Cl0.5Trig. 3 : P3
8.BN.05Hydroxylapatite-MCa5(PO4)3OHMon. 2/m : P21/b
8.BN.05PhosphohedyphaneCa2Pb3(PO4)3ClHex. 6/m : P63/m
8.BN.05StronadelphiteSr5(PO4)3FHex. 6/m : P63/m
8.BN.05FluorphosphohedyphaneCa2Pb3(PO4)3FHex. 6/m : P63/m
8.BN.05Carlgieseckeite-(Nd)NaNdCa3(PO4)3FTrig. 3 : P3
8.BN.05Miyahisaite(Sr,Ca)2Ba3(PO4)3F Hex. 6/m : P63/m
8.BN.10ArctiteNa2Ca4(PO4)3FTrig. 3m (3 2/m) : R3m

Related Minerals - Dana Grouping (8th Ed.)Hide 6/m : P63/m 6/m : P63/m FluorapatiteCa5(PO4,CO3)3(F,O)Hex. 6/m : P63/m 3 : P3 6/m : P63/m

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

22.1.1AmblygoniteLiAl(PO4)FTric. 1 : P1
22.1.2LacroixiteNaAl(PO4)FMon. 2/m : B2/b
22.1.3NatrophosphateNa7(PO4)2F · 19H2OIso. m3m (4/m 3 2/m) : Fd3c
22.1.5NacaphiteNa2Ca(PO4)FMon. 2/m : P21/b
22.1.6ArctiteNa2Ca4(PO4)3FTrig. 3m (3 2/m) : R3m
22.1.10HerderiteCaBePO4(F,OH)Mon. 2/m
22.1.11IsokiteCaMg(PO4)FMon. 2/m : B2/b
22.1.14FluelliteAl2(PO4)F2(OH) · 7H2OOrth. mmm (2/m 2/m 2/m) : Fddd
22.1.15MinyuliteKAl2(PO4)2(OH,F) · 4H2OOrth. mm2 : Pba2
22.1.16MoriniteNaCa2Al2(PO4)2(OH)F4 · 2H2OMon. 2/m
22.1.18FluorstrophiteSrCaSr3(PO4)3FHex. 6/m : P63/m
22.1.20VäyryneniteMn2+Be(PO4)(OH,F)Mon. 2/m : P21/b
22.1.22Wagnerite(Mg,Fe2+)2(PO4)FMon. 2/m : P21/b
22.1.23Triplite(Mn2+,Fe2+)2(PO4)(F,OH)Mon. 2/m
22.1.25Zwieselite(Fe2+,Mn2+)2(PO4)FMon. 2/m : P21/b
22.1.26McauslaniteFe3Al2(PO4)3(PO3OH)F · 18H2OTric.
22.1.28SvabiteCa5(AsO4)3FHex. 6/mmm (6/m 2/m 2/m) : P63/mmc
22.1.29TilasiteCaMg(AsO4)FMon. m : Bb
22.1.30Johnbaumite-MCa5(AsO4)3OHMon. 2/m : P21/m
22.1.31DurangiteNaAl(AsO4)FMon. 2/m : B2/b

Fluorescence of FluorapatiteHide

Often fluorescent bright yellow or blue white and phosphorescent, especially the manganoan varieties.

Other InformationHide

Thermal Behaviour:
Strongly thermoluminescent at times.
Soluble in HCl or in HNO3. Varieties containing CO3 may dissolve with slight effervescence.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Industrial Uses:
Source of phosphorus.

References for FluorapatiteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Koksharov, N. von (1854) Materialien zur Mineralogie Russlands. 11 volumes with atlas: vol. 2: 39.
Rammelsberg, C.F. (1860) Handbuch der Mineralchemie. First edition, Leipzig: 353 (as Fluorapatit).
Koksharov, N. von (1866) Materialien zur Mineralogie Russlands. 11 volumes with atlas: vol. 5: 5: 86.
Baumhauer (1887) Akademie der Wissenschaften, Berlin (Sitzungsberichte der): 42: 863.
Hidden and Washington (1887) American Journal of Science: 33: 501.
Karnojitsky (1895) Vh. Min. Ges. St. Petersburg: 33: 65.
Washington (1895) Journal of Geology, Chicago: 3: 25.
Baumhauer (1899) Akademie der Wissenschaften, Berlin (Sitzungsberichte der): 45: 447.
Heddle, M.F. (1901) The Mineralogy of Scotland. 2 volumes, Edinburgh: 2: 158.
Wolff and Palache (1902) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 36: 438.
Baumhauer (1908) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 45: 555.
Pöschl (1909) Härte der fest. Körper: 55.
Lacroix, A. (1910) Minéralogie de la France et des ses colonies, Paris. 5 volumes: vol. 4: 387.
Dürrfeld (1912) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 50: 590.
Nacken (1912) Centralblatt für Mineralogie, Geologie und Paleontologie, Stuttgart: 547.
Eissner (1913) Inaugural Dissertation, Leipzig.
Elschner (1913) Corallogene Phosphat-Insel Austral Oceanien, Lubeck (as Nauruite).
Goldschmidt, V. (1913) Atlas der Krystallformen. 9 volumes, atlas, and text: vol. 1: 73.
Elschner (1914) Centralblatt für Mineralogie, Geologie und Paleontologie, Stuttgart: 543 (as Nauruite).
Grosspietsch (1915) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 54: 461.
Brauns (1916) Jb. Min., Beil.-Bd.: 41: 60 (as Sulfatapatit).
Holmquist (1916) Geologiska Föeningens I Stockholm. Förhandlinger, Stockholm: 38: 501.
Bellucci and Grassi (1919) Gazzetta chimica italiana, Rome: 49: 232.
Bianchi (1919) Atti soc. ital. sc. Nat.: 58: 306.
Lorenz (1921) Ber. Ak. Leipzig, Sitzber., math.-phys.: 73: 249, 267.
Mieleitner (1921) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 56: 90.
Hawkins (1922) American Mineralogist: 7: 27.
Zambonini (1923) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 58: 226.
Bornemann-Starinkevitch (1924) Comptes rendus de l’académie des sciences de l’U.R.S.S., n.s.: 39.
Fersman (1924) Comptes rendus de l’académie des sciences de l’U.R.S.S., n.s.: 42.
Barthoux (1925) Bulletin de la Société française de Minéralogie: 48: 225.
Niggli and Faesy (1925) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 62: 154-166.
Whitlock (1925) American Museum Nov., No. 190.
Parker (1926) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 64: 224.
Honess, A.P. (1927) The Nature, Origin and Interpretation of the Etch Figures on Crystals. 171pp., New York: 98.
Ichikawa (1927) American Journal of Science: 14: 231.
Hausen (1929) Acta Ac. Aboensis, Math. Physica: Kl. 5, no. 3.
Himmelbauer (1929) Konigliche Akademie der Wissenschaften, Vienna, Sitzber.: 138: 251.
Kalb (1930) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 74: 469.
Mehmel (1930) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 75: 323.
Náray-Szabó (1930) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 75: 387.
Gennaro (1931) Reale accademia delle scienze di Torino, Att.: 66: 433.
Mehmel (1931) Zeitschrift für Physikalische Chemie, Leipzig, Berlin: 15: 223.
Hendricks, Jefferson, and Mosley (1932) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 81: 352.
de Jesus (1933) Com. Serv. Geol. Portugal: 19: 142 (as Mangualdite).
Granigg (1933) Zeitschrift für praktische Geologie, Berlin, hale a.S. 41: 1.
Antonov (1934) State Chem. Tech. Publ., Leningrad: 7, 196 pp.
Köhler and Haberlandt (1934) Chemie der Erde, Jena: 9: 88 (luminescence).
Dadson (1935) University of Toronto Stud., Geology Series, no. 35: 51.
Iwase (1935) Sci. Pap. Inst. Phys. Chem. Res., Tokyo: 27, no. 567: 1.
Otto (1935) Mineralogische und petrographische Mitteilungen, Vienna: 47: 89.
Royer (1936) Comptes rendus de l’Académie des sciences de Paris: 202: 1346.
Gruner and McConnell (1937) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 97: 208.
McConnell (1937) American Mineralogist: 22: 977.
Hoffmann (1938) Chemie der Erde, Jena: 11: 552 (colour).
Kind (1938) Chemie der Erde, Jena: 12: 50.
McConnell (1938) American Mineralogist: 23: 1.
Volkova and Melentiev (1939) Comptes rendus de l’académie des sciences de l’U.R.S.S., n.s.: 25: 120 (REE substitution).
Bale (1940) American Journal of Roentg. Rad. Therapy: 43: 735.
McConnell and Gruner (1940) American Mineralogist: 25: 157.
Ulrich (1940) Mineralogical Abstracts: 7: 529.
Baker (1941) American Mineralogist: 26: 382.
Sahama (1941) Bull. Comm.. géol. Finlande: no. 126: 50.
Dihn and Klement (1942) Zeitschrift für Elektrochemie und angewandte physikalische Chemie, Halle a.S.: 48: 331.
Hendricks and Hill (1942) Science: 96: 255.
Beevers and McIntyre (1945) Mineralogical Magazine: 27: 254.
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged, 1124 pp.: 879-889.
Kohn, M. Hughes, J.M. and Rakovan, J. Eds. (2002) Phosphates: Geochemical, Geobiological and Materials Importance. In: Kohn, M., Rakovan, J., Hughes, J.M. (eds.), Reviews in Mineralogy and Geochemistry, Mineralogical Society of America. Washington, DC, 742 pp.
Segall, B., Ludwig, G.W., Woodbury, H.H., and Johnson, P.D. (1962) Electron spin resonance of a centre in calcium fluorophosphate Phys. Rev.: 128: 76-79.
Piper, W.W., Kravitz, L.C., and Swank, R.K. (1965) Axially symmetric paramagnetic color centres in fluorapatite. Phys. Rev.: 138: A1802-A1814.
Prener, J.S. (1967) The growth and crystallographic properties of calcium fluor- and chlorapatite. Journal of the Electrochem. Society: 114: 77-83.
Young, E.J., Mayers, A.T., Munson, E.L., and Cankln, N.M. (1969) Mineralogy and geochemistry of fluorapatite from Cerro de Mercado, Mexico. U.S. Geological Survey, Professional Paper 650-D: 84-93.
Warren, R.W. (1972) Defect centres in calcium fluorophosphate. Phys. Rev.: B 6: 4679-4689.
American Mineralogist (1990): 75: 295-304.
Elliott, J. C. (1994): Structure and chemistry of the apatites and other calcium orthophosphates. Elservier, Amsterdam, 389 pp.
Fleet, M.E. and Pan, Y. (1994) Site preference of Nd in fluorapatite [Ca10(PO4)6F2]. Journal of Solid State Chemistry: 111: 78-81.
Fleet, M.E. and Pan, Y. (1995) Site preference of rare earth elements in fluorapatite. American Mineralogist: 80: 329-335.
Fleet, M.E. and Pan, Y. (1997) Site preference of rare earth elements in fluorapatite: binary (LREE+HREE)-substituted crystals. American Mineralogist: 82: 870-877.
Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (2000) Handbook of Mineralogy, Volume IV. Arsenates, Phosphates, Vanadates. Mineral Data Publishing, Tucson, AZ, 680pp.: 189.
Haohao Yi, Etienne Balan, Christel Gervais, Loïc Segalen, Franck Fayon, Damien Roche, Alain Person, Guillaume Morin, Maxime Guillaumet, Marc Blanchard, Michele Lazzeri, and Florence Babonneau (2013): A carbonate-fluoride defect model for carbonate-rich fluorapatite. Am. Mineral. 98, 1066-1069.
Rakovan, J., Staebler, G. and Dallaire, D. (Eds.) (2013): Apatite - The Great Pretender. Mineral monographs V. 17, Lithographie, LLC, Denver, USA, 128 pp.
Weiss, S. (2012): Der Ehrenfriedersdorfer Sauberg – Typlokalität für Apatit. – Lapis, 37 (7-8), 42-43. (In German.)
Meier, S. (2013) Type Locality-Ehrenfriedersdorf. In: Rakovan, J., Staebler, G. and Dallaire, D., Eds., Apatite - The Great Pretender. Mineral monographs V. 17. Lithographie, LLC, Denver, USA. pp. 18-20. (In English.)
Hughes, J.M. & Rakovan, J.F. (2015). Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements 11, 165-170.
Teiber, Holger; Marks, Michael A. W.; Arzamastsev, Andrei A.; Wenzel, Thomas; Markl, Gregor (2015): Compositional variation in apatite from various host rocks: clues with regards to source composition and crystallization conditions. Neues Jahrbuch für Mineralogie - Abhandlungen, 192, 151-167.
Rakovan, J. (2015) Connoisseur's Choise: Fluorapatite. Rocks & Minerals, 90: 244-256.

Internet Links for FluorapatiteHide

Localities for FluorapatiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListShow