SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Gordonite

This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About GordoniteHide

00433560015069090481253.jpg
Samuel G. Gordon
Formula:
MgAl2(PO4)2(OH)2 · 8H2O
Colour:
Smoky-white, buff, colourless; crystals = pale pink or pale green on tips; colourless in transmitted light.
Lustre:
Vitreous, Pearly
Hardness:
Specific Gravity:
2.23
Crystal System:
Triclinic
Name:
Named in honor of Samuel (Sam) George Gordon (21 June 1897, Philadelphia, Pennsylvania, USA - 17 May 1953, Cincinnati, Ohio, USA), mineralogist, Academy of Natural Sciences, Philadelphia, Pennsylvania, USA. The wrote 'The Mineralogy of Pennsylvania' when he was 24. He made five international trips to collect minerals for the Academy's Vaux collectionn, travelling to Peru, Bolivia, Chile, Greenland and Africa and described 9 new species. He was also a founder of the Mineralogical Society of America and helped start the American Mineralogist.
The magnesium analogue of Mangangordonite.

A rare secondary mineral formed from the alteration of variscite in nodules in limestone or as a late-stage hydrothermal mineral in complex granitic pegmatites.


Classification of GordoniteHide

Approved, 'Grandfathered' (first described prior to 1959)
8.DC.30

8 : PHOSPHATES, ARSENATES, VANADATES
D : Phosphates, etc. with additional anions, with H2O
C : With only medium-sized cations, (OH, etc.):RO4 = 1:1 and < 2:1
42.11.14.4

42 : HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
11 : (AB)3(XO4)2Zq·xH2O
19.8.9

19 : Phosphates
8 : Phosphates of Al and other metals

Pronounciation of GordoniteHide

Pronounciation:
PlayRecorded byCountry
Jolyon & Katya RalphUnited Kingdom

Physical Properties of GordoniteHide

Vitreous, Pearly
Transparency:
Transparent
Comment:
Lustre pearly on {010}.
Colour:
Smoky-white, buff, colourless; crystals = pale pink or pale green on tips; colourless in transmitted light.
Streak:
White
Hardness:
3½ on Mohs scale
Tenacity:
Brittle
Cleavage:
Perfect
On {010}, perfect; on {100}, fair; on {001}, poor.
Fracture:
Conchoidal
Density:
2.23 g/cm3 (Measured)    2.22 g/cm3 (Calculated)

Optical Data of GordoniteHide

Type:
Biaxial (+)
RI values:
nα = 1.534 nβ = 1.543 nγ = 1.558
2V:
Measured: 73°
Max Birefringence:
δ = 0.024
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
Low
Dispersion:
r > v weak

Chemical Properties of GordoniteHide

Formula:
MgAl2(PO4)2(OH)2 · 8H2O

Crystallography of GordoniteHide

Crystal System:
Triclinic
Class (H-M):
1 - Pedial
Space Group:
P1
Cell Parameters:
a = 5.246 Å, b = 10.532 Å, c = 6.975 Å
α = 107.51°, β = 111.03°, γ = 72.21°
Ratio:
a:b:c = 0.498 : 1 : 0.662
Unit Cell V:
334.48 ų (Calculated from Unit Cell)
Z:
1
Morphology:
Crystals rare, prismatic [001] to platy {010}, with dominant basal pedions; elongated and strongly striated along [001], and less markedly on [100]. {001} is lacking at times, leaving the crystals terinated entirely by {011}; rarely doubly terinated. May exhibit numerous lesser forms. Commonly in bundles and sheaflike aggregates with all individual crystals of one group similarly terminated.

Crystal StructureHide

Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File    Best | x | y | z | a | b | c
Rotation
Stop | Start
Labels
Console Off | On | Grey | Yellow
IDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0014827GordoniteLeavens P B, Rheingold A L (1988) Crystal structures of gordonite, MgAl2(PO4)2(OH)2(H2O)6*2H2O, and its Mn analog Neues Jahrbuch fur Mineralogie, Monatshefte 1988 265-2701988Little Green Monster mine, Fairfield, Utah, USA0293
CIF Raw Data - click here to close

Geological EnvironmentHide

Geological Setting:
Complex granitic pegmatite

Type Occurrence of GordoniteHide

Place of Conservation of Type Material:
U.S. National Museum of Natural History, Washington, D.C., USA: #137128.
Geological Setting of Type Material:
Variscite nodules in limestone.
Associated Minerals at Type Locality:

Other Language Names for GordoniteHide

German:Gordonit
Spanish:Gordonita

Relationship of Gordonite to other SpeciesHide

Other Members of this group:
FerrolaueiteFe2+Fe3+2(PO4)2(OH)2 · 8H2OTric. 1 : P1
Kastningite(Mn2+,Fe2+,Mg)Al2(PO4)2(OH)2 · 8H2OTric. 1 : P1
KummeriteMn2+Fe3+Al(PO4)2(OH)2 · 8H2OTric. 1 : P1
LaueiteMn2+Fe3+2(PO4)2(OH)2 · 8H2OTric. 1 : P1
MangangordoniteMn2+Al2(PO4)2(OH)2 · 8H2OTric.
ParavauxiteFe2+Al2(PO4)2(OH)2 · 8H2OTric. 1 : P1
SigloiteFe3+Al2(PO4)2(OH)3 · 7H2OTric.
UshkoviteMgFe3+2(PO4)2(OH)2 · 8H2OTric.

Common AssociatesHide

CollinsiteCa2Mg(PO4)2 · 2H2O
HydroxylapatiteCa5(PO4)3(OH)
MontgomeryiteCa4MgAl4(PO4)6(OH)4 · 12H2O
RobertsiteCa2Mn3+3(PO4)3O2 · 3H2O
Associated Minerals Based on Photo Data:
16 photos of Gordonite associated with WarditeNaAl3(PO4)2(OH)4 · 2H2O
14 photos of Gordonite associated with CrandalliteCaAl3(PO4)(PO3OH)(OH)6
7 photos of Gordonite associated with VarisciteAlPO4 · 2H2O
7 photos of Gordonite associated with LazuliteMgAl2(PO4)2(OH)2
7 photos of Gordonite associated with ChildreniteFe2+Al(PO4)(OH)2 · H2O
7 photos of Gordonite associated with Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe2+13Al(PO4)11(PO3OH)(OH)2
5 photos of Gordonite associated with Millisite(Na,K)CaAl6(PO4)4(OH)9 · 3H2O
2 photos of Gordonite associated with CacoxeniteFe3+24AlO6(PO4)17(OH)12 · 75H2O
2 photos of Gordonite associated with QuartzSiO2
1 photo of Gordonite associated with OveriteCaMgAl(PO4)2(OH) · 4H2O

Related Minerals - Nickel-Strunz GroupingHide

8.DC.CésarferreiraiteFe2+ Fe3+2(AsO4)2(OH)2 · 8H2OTric. 1 : P1
8.DC.05NissoniteCu2Mg2(PO4)2(OH)2 · 5H2OMon.
8.DC.07EuchroiteCu2(AsO4)(OH) · 3H2OOrth. 2 2 2 : P21 21 21
8.DC.10LegranditeZn2(AsO4)(OH) · H2OMon. 2/m : P21/b
8.DC.12StrashimiriteCu8(AsO4)4(OH)4 · 5H2OMon.
8.DC.15ArthuriteCuFe3+2(AsO4)2(OH)2 · 4H2OMon.
8.DC.15EarlshannoniteMn2+Fe3+2(PO4)2(OH)2 · 4H2OMon.
8.DC.15OjuelaiteZnFe3+2(AsO4)2(OH)2 · 4H2OMon.
8.DC.15WhitmoreiteFe2+Fe3+2(PO4)2(OH)2 · 4H2OMon. 2/m : P21/b
8.DC.15Cobaltarthurite(Co,Mg)Fe3+2(AsO4)2(OH)2 · 4H2OMon. 2/m : P21/b
8.DC.15BendadaiteFe2+Fe3+2(AsO4)2(OH)2 · 4H2OMon. 2/m : P21/b
8.DC.15KunatiteCuFe3+2(PO4)2(OH)2 · 4H2OMon. 2/m : P21/b
8.DC.15UM2006-27-PO:FeHZnZnFe3+2(PO4)2(OH)2 · 4H2OMon.
8.DC.15UKI-2006-(PO:AlCuFeH)Fe2+Al3+2(PO4)2(OH)2 · 4H2O
8.DC.17KleemaniteZnAl2(PO4)2(OH)2 · 3H2OMon.
8.DC.20BermaniteMn2+Mn3+2(PO4)2(OH)2 · 4H2OMon. 2/m : P2/b
8.DC.20CoralloiteMn2+Mn3+2(AsO4)2(OH)2 · 4H2OTric. 1 : P1
8.DC.22KovdorskiteMg2(PO4)(OH) · 3H2OMon.
8.DC.25FerristrunziteFe3+Fe3+2(PO4)2(OH)3 · 5H2OTric.
8.DC.25FerrostrunziteFe2+Fe3+2(PO4)2(OH)2 · 6H2OTric.
8.DC.25MetavauxiteFe2+Al2(PO4)2(OH)2 · 8H2OMon. 2/m : P21/b
8.DC.25MetavivianiteFe2+Fe3+2(PO4)2(OH)2 · 6H2OTric. 1 : P1
8.DC.25StrunziteMn2+Fe3+2(PO4)2(OH)2 · 6H2OTric. 1 : P1
8.DC.27BerauniteFe2+Fe3+5(PO4)4(OH)5 · 6H2OMon. 2/m : B2/b
8.DC.30LaueiteMn2+Fe3+2(PO4)2(OH)2 · 8H2OTric. 1 : P1
8.DC.30MangangordoniteMn2+Al2(PO4)2(OH)2 · 8H2OTric.
8.DC.30ParavauxiteFe2+Al2(PO4)2(OH)2 · 8H2OTric. 1 : P1
8.DC.30PseudolaueiteMn2+Fe3+2(PO4)2(OH)2 · 8H2OMon. 2/m : P21/b
8.DC.30SigloiteFe3+Al2(PO4)2(OH)3 · 7H2OTric.
8.DC.30StewartiteMn2+Fe3+2(PO4)2(OH)2 · 8H2OTric. 1 : P1
8.DC.30UshkoviteMgFe3+2(PO4)2(OH)2 · 8H2OTric.
8.DC.30FerrolaueiteFe2+Fe3+2(PO4)2(OH)2 · 8H2OTric. 1 : P1
8.DC.30Kastningite(Mn2+,Fe2+,Mg)Al2(PO4)2(OH)2 · 8H2OTric. 1 : P1
8.DC.30MaghrebiteMgAl2(AsO4)2(OH)2 · 8H2OTric. 1 : P1
8.DC.30NordgauiteMnAl2(PO4)2(F,OH)2 · 5H2OTric. 1 : P1
8.DC.32TinticiteFe3+3(PO4)2(OH)3 · 3H2OTric. 1 : P1
8.DC.35VauxiteFe2+Al2(PO4)2(OH)2 · 6H2OTric. 1 : P1
8.DC.37VantasseliteAl4(PO4)3(OH)3 · 9H2OOrth.
8.DC.40CacoxeniteFe3+24AlO6(PO4)17(OH)12 · 75H2OHex. 6/m : P63/m
8.DC.45Gormanite(Fe2+,Mg)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2OTric.
8.DC.45Souzalite(Mg,Fe2+)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2OTric.
8.DC.47KingiteAl3(PO4)2F2(OH) · 7H2OTric.
8.DC.50WavelliteAl3(PO4)2(OH,F)3 · 5H2OOrth. mmm (2/m 2/m 2/m)
8.DC.50AllanpringiteFe3+3(PO4)2(OH)3 · 5H2OMon. 2/m : P21/m
8.DC.52KribergiteAl5(PO4)3(SO4)(OH)4 · 4H2OTric. 1 : P1
8.DC.55MapimiteZn2Fe3+3(AsO4)3(OH)4 · 10H2OMon.
8.DC.57OgdensburgiteCa2Fe3+4(Zn,Mn2+)(AsO4)4(OH)6 · 6H2OOrth. mmm (2/m 2/m 2/m) : Cmmm
8.DC.60Nevadaite(Cu2+,Al,V3+)6Al8(PO4)8F8(OH)2 · 22H2OOrth. mmm (2/m 2/m 2/m)
8.DC.60CloncurryiteCu0.5(VO)0.5Al2(PO4)2F2 · 5H2OMon. 2/m : P21/b

Related Minerals - Dana Grouping (8th Ed.)Hide

42.11.14.1VauxiteFe2+Al2(PO4)2(OH)2 · 6H2OTric. 1 : P1
42.11.14.2ParavauxiteFe2+Al2(PO4)2(OH)2 · 8H2OTric. 1 : P1
42.11.14.3SigloiteFe3+Al2(PO4)2(OH)3 · 7H2OTric.
42.11.14.5MangangordoniteMn2+Al2(PO4)2(OH)2 · 8H2OTric.

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

19.8.1MontebrasiteLiAl(PO4)(OH)Tric. 1 : P1
19.8.2BrazilianiteNaAl3(PO4)2(OH)4Mon. 2/m : P2/b
19.8.3WarditeNaAl3(PO4)2(OH)4 · 2H2OTet. 4 2 2 : P41 21 2
19.8.4TancoiteLiNa2Al(PO4)(PO3OH)(OH)Orth. mmm (2/m 2/m 2/m) : Pbca
19.8.5Bertossaite(Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4Orth.
19.8.6TinsleyiteKAl2(PO4)2(OH) · 2H2OMon.
19.8.7Taranakite(K,NH4)Al3(PO4)3(OH) · 9H2OTrig. 3m (3 2/m) : R3c
19.8.8FrancoanelliteK3Al5(PO3OH)6(PO4)2 · 12H2OTrig.
19.8.10AldermaniteMg5Al12(PO4)8(OH)22 · 32H2OOrth.
19.8.11OveriteCaMgAl(PO4)2(OH) · 4H2OOrth. mmm (2/m 2/m 2/m) : Pbca
19.8.12MontgomeryiteCa4MgAl4(PO4)6(OH)4 · 12H2OMon. 2 : B2
19.8.14FoggiteCaAl(PO4)(OH)2 · H2OOrth. mmm (2/m 2/m 2/m)
19.8.15GatumbaiteCaAl2(PO4)2(OH)2 · H2OMon. 2/m : P2/m
19.8.16CrandalliteCaAl3(PO4)(PO3OH)(OH)6Trig. 3m (3 2/m) : R3m
19.8.17Matulaite(Fe3+,Al)Al7(PO4)4(PO3OH)2(OH)8(H2O)8 · 8H2OMon.
19.8.19LehiiteCaAl3(PO4)(PO3OH)(OH)6
19.8.20Millisite(Na,K)CaAl6(PO4)4(OH)9 · 3H2OTet.
19.8.21EnglishiteK3Na2Ca10Al15(PO4)21(OH)7 · 26H2OMon. 2/m
19.8.22KleemaniteZnAl2(PO4)2(OH)2 · 3H2OMon.
19.8.23MantienneiteKMg2Al2Ti(PO4)4(OH)3 · 15H2OOrth.
19.8.24PaulkerriteK(Mg,Mn2+)2(Fe3+,Al,Ti,Mg)2Ti(PO4)4(OH)3 · 15H2OOrth. mmm (2/m 2/m 2/m) : Pbca

Other InformationHide

Notes:
Soluble in acids.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for GordoniteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Larsen, E.S., Shannon, E.V. (1930) The minerals of the phosphate nodules from near Fairfield, Utah. American Mineralogist: 15: 307-337.
Pough, F. (1937) The morphology of gordonite. American Mineralogist: 22: 625.
Larsen, E.S. (1942) The mineralogy and paragenesis of the variscite nodules from near Fairfield, Utah, Part 1. American Mineralogist: 27: 281-300.
Palache, C., Berman, H., Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged, 1124 pp.: 975-976.
Hurlbut, C., Jr., Honea, R. (1962) Sigloite, a new mineral from Llallagua, Bolivia. American Mineralogist: 47: 1–8 [X-ray data].
Leavens, P.B., Rheingold, A.L. (1988) Crystal structures of gordonite, MgAl2(PO4)2(OH)2(H2O)6 •2H2O, and its Mn analog. Neues Jahrbuch für Mineralogie, Monatshefte: 1988: 265-270.

Internet Links for GordoniteHide

Localities for GordoniteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Australia
 
  • South Australia
    • Mt Lofty Ranges
      • North Mt Lofty Ranges
        • Barossa Valley
          • Angaston
Francis, G.L., Peisley, V., 2012. Minerals from Penrice quarry and the phosphate deposits Klemms and St Kitts, Angaston, South Australia. (self published).
        • Kapunda
Peter Elliott
      • South Mt Lofty Ranges (Adelaide Hills)
        • Noarlunga
  • Victoria
    • Moorabool Shire
      • Bacchus Marsh
Birch, W.D. & Henry, D.J., 1993, Phosphate Minerals of Victoria, The Mineralogical Society of Victoria, Special Publication No. 3
  • Western Australia
    • Meekatharra Shire
      • Milgun Station
Mineralogical Magazine 39,577-579(1974); ; Peter Downes, Benjamin Grguric, Margot Willing, Geoff Deacon, Michael Verrall (2018) Variscite and associated phosphate minerals from the Mt Deverell variscite deposits, Milgun Station, Gascoyne region, Western Australia. in abstracts of the 22nd IMA Meeting Melbourne p 319
Brazil
 
  • Minas Gerais
    • Conselheiro Pena
Sergio Varvello collection
    • Galiléia
      • Sapucaia do Norte
Cassedanne, J.P. & Baptista, A. (1999): Famous Mineral Localities: The Sapucaia Pegmatite Minas Gerais, Brazil. Mineralogical Record, 30: 347-360 + 365
Canada
 
  • Yukon
    • Dawson mining district
MinRec 23:4-47
Grice, Joel D. (1989) Unexpected Treasures from Rapid Creek, Yukon Territory. In: Famous mineral localities of Canada. Published by Fitzhenry & Whiteside Limited & the National Museum of Natural Sciences, 190 pages: 31-39; 150-152.; Van Velthuizen, Jerry, Sturman, B. Darko, Robinson, George W., Ansell, H. Gary (1992) Mineralogy of the Rapid Creek and Big Fish River Area, Yukon Territory. Mineralogical Record, 23(4), 1-47 [22].
        • Kulan Camp (Area A; Area 1)
Robinson, G.W., Van Velthuizen, J., Ansell, H.G. & Sturman, B.D. (1992): Mineralogy of the Rapid Creek and Big Fish River area, Yukon Territory. Mineralogical Record 23, 1-47
France
 
  • Occitanie
    • Pyrénées-Orientales
Berbain,C., Riley, T., Favreau, G., (2012): Phosphates des pegmatites du massif des Albères (Pyrénées-Orientales). Le Cahier des Micromonteurs. 117, 121-172
      • Céret
        • Collioure
BERBAIN. C, RILEY. T, FAVREAU. G, (2012) Phosphates des pegmatites du massif des Albères. Ed Association Française de Microminéralogie
Germany
 
  • Bavaria
    • Upper Palatinate
      • Neustadt an der Waldnaab District
        • Pleystein
DILL, H.G., MELCHER, F., GERDES, A. and WEBER, B. (2008): The origin and zoning of hypogene and supergene Fe-Mn-Mg-Sc-U-REE-Zn phosphate mineralization from the newly discovered Trutzhofmühle aplite (Hagendorf pegmatite province, Germany). Canadian Mineralogist 46, 1131-1157.; Dill, H. G., Melcher, F., Gerdes, A., & Weber, B. (2008). The origin and zoning of hypogene and supergene Fe–Mn–Mg–Sc–U–REE phosphate mineralization from the newly discovered Trutzhofmühle aplite, Hagendorf pegmatite province, Germany. The Canadian Mineralogist, 46(5), 1131-1157.
        • Waidhaus
Dill, H. G., Škoda, R., & Weber, B. (2011). Preliminary results of a newly-discovered lazulite–scorzalite pegmatite–aplite in the Hagendorf-Pleystein Pegmatite Province, SE Germany. Asociación Geológica Argentina, Serie D, Publicación Especial, (14), 79-81.
Morocco
 
  • Drâa-Tafilalet Region
    • Ouarzazate Province
      • Tazenakht
Favreau, G. (2012): Les minéralisations à phosphates de la pegmatite d'Angarf-Sud (Maroc).Le Cahier des Micromonteurs, 3-2012, 3-70.
Russia
 
  • Murmansk Oblast
Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva: 121(2): 95-103(1992)
Voloshin, A.V., Pakhomovskiy, Y.A., Tyusheva, F.N. (1992) Manganosegelerite (Mn,Ca)(Mn,Fe,Mg)Fe3+(PO4)2(OH)·4H2O: a new phosphate of the overite group from granitic pegmatites of the Kola Peninsula. Zapiski Vserossijskogo Mineralogicheskogo Obshchestva: 121(2): 95-103.
USA
 
  • Nevada
    • Mineral Co.
      • Candelaria Mining District
Kampf, A.R., Adams, P.M. and Nash, B.P. (2016) Whiteite-(CaMgMg),CaMg3Al2(PO4)4(OH)2·8H2O, a New Jahnsite-group Mineral from the Northern Belle Mine, Candelaria, Nevada, U.S.A. Canadian Mineralogist. 54: 1513-1523.
  • New Hampshire
    • Grafton Co.
      • Groton
NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Journal of Pegmatology vol. 1, no. 1 ; Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115; NIZAMOFF, J. W. (2004, November). Phosphate mineralogy and paragenesis of the Palermo# 2 pegmatite, North Groton, New Hampshire. In 2004 Denver Annual Meeting.
  • South Dakota
    • Custer Co.
      • Custer Mining District
        • Fourmile
Campbell, T.J., Roberts, W.L. (1985) Mineral Localities in the Black Hills of South Dakota. Rocks & Minerals: 60: 109-118 (117).
  • Utah
    • Utah Co.
      • Oquirrh Mountains
        • Fairfield
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 976; UGMS Bull 117 Minerals and Mineral Localities of Utah.
Rocks & Minerals (1970): 45(11): 667-674.; Wilson, W. (2010): The Clay Canyon Variscite Mine, Fairfield Utah. Mineralogical Record. 41:321-349.
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2020, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: October 28, 2020 11:40:26 Page generated: September 21, 2020 21:58:37
Go to top of page