Help mindat.org|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Hematite

This page kindly sponsored by Norman King
Formula:
Fe2O3
System:
Trigonal
Colour:
Steel-grey to black in ...
Lustre:
Metallic, Sub-Metallic, Dull, Earthy
Hardness:
5 - 6
Member of:
Name:
Originally named about 300-325 BCE by Theophrastus from the Greek, "αιματίτις λίθος" ("aematitis lithos") for "blood stone". It is possibly the first mineral ever named ending with a "-ite" suffix. Translated in 79 by Pliny the Elder to haematites, "bloodlike", in allusion to the vivid red colour of the powder. The modern form evolved by authors frequently simplifying the spelling by excluding the "a", somewhat in parallel with other words originally utilising the root "haeme".
Polymorph of:
Hematite Group. The iron analogue of Corundum, Eskolaite, and Karelianite.

Hematite is rather variable in its appearance - it can be in reddish brown, ocherous masses, dark silvery-grey scaled masses, silvery-grey to black crystals, and dark-grey masses, to name a few. What they all have in common is a rust-red streak.
Black crystals may be confused with ilmenite.

NOTE: The 'hematite' used in jewelry, and often sold as magnetized items, is nothing of the sort and is an artificially created material, see Magnetic Hematite.

In an experimental volcanic gas condensation by Africano et al. (2002) it deposited in high fO2 conditions during cooling from ca. 800oC down to ca. 650oC.

Visit gemdat.org for gemological information about Hematite.


Classification of Hematite

Approved, 'Grandfathered' (first described prior to 1959)
4.CB.05

4 : OXIDES (Hydroxides, V[5,6] vanadates, arsenites, antimonites, bismuthites, sulfites, selenites, tellurites, iodates)
C : Metal: Oxygen = 2: 3,3: 5, and similar
B : With medium-sized cations
Dana 7th ed.:
4.3.1.2
4.3.1.2

4 : SIMPLE OXIDES
3 : A2X3
7.20.4

7 : Oxides and Hydroxides
20 : Oxides of Fe

Physical Properties of Hematite

Metallic, Sub-Metallic, Dull, Earthy
Diaphaneity (Transparency):
Opaque
Colour:
Steel-grey to black in crystals and massively crystalline ores, dull to bright "rust-red" in earthy, compact, fine-grained material.
Comment:
See Rossman, G. R. (1996) for cause of red colour.
Streak:
Reddish brown ("rust-red")
Hardness (Mohs):
5 - 6
Hardness (Vickers):
VHN100=1000 - 1100 kg/mm2
Hardness Data:
Measured
Tenacity:
Brittle
Cleavage:
None Observed
Parting:
Partings on {0001} and {1011} due to twinning. Unique cubic parting in masses and grains at Franklin Mine, Franklin, NJ.
Fracture:
Irregular/Uneven, Sub-Conchoidal
Comment:
Elastic in thin lamellae
Density:
5.26 g/cm3 (Measured)    5.255 g/cm3 (Calculated)

Optical Data of Hematite

Type:
Uniaxial (-)
RI values:
nω = 3.150 - 3.220 nε = 2.870 - 2.940
Max Birefringence:
δ = 0.280
Image shows birefringence interference colour range (at 30µm thickness) and does not take into account mineral colouration.
Surface Relief:
Very High
Type:
Anisotropic
Anisotropism:
Distinct
Colour in reflected light:
White to greyish white with bluish tint
Internal Reflections:
Red
Pleochroism:
Weak
Comments:
O = brownish red
E = yellowish red

Chemical Properties of Hematite

Formula:
Fe2O3
Elements listed in formula:
Common Impurities:
Ti,Al,Mn,H2O

Crystallography of Hematite

Crystal System:
Trigonal
Class (H-M):
3m (3 2/m) - Hexagonal Scalenohedral
Space Group:
R3c
Cell Parameters:
a = 5.038(2) Å, c = 13.772(12) Å
Ratio:
a:c = 1 : 2.734
Unit Cell Volume:
V 302.72 ų (Calculated from Unit Cell)
Z:
6
Morphology:
Crystals generally thick to thin tabular {0001}, rarely prismatic [0001] or scalenohedral; also rarely rhombohedral {1011}, producing pseudo-cubic crystals. Often found in sub-parallel growths on {0001} or as rosettes ("iron roses.") Sometimes in micaceous to platy masses. May be compact columnar or fibrous masses, sometimes radiating, or in reniform masses with a smooth fracture ("kidney ore"), and botryoidal and stalactic. Frequently in earthy masses, also granular, friable to compact, concretionary and oolitic.
Twinning:
Penetration twins on {0001}, or with {1010} as a composition plane. Frequently exhibits a lamellar twinning on {1011} in polished section.

Crystallographic forms of Hematite

Crystal Atlas:
Image Loading
Click on an icon to view
Hematite no.319 - Goldschmidt (1913-1926)
Hematite no.331 - Goldschmidt (1913-1926)
Hematite no.337 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by www.smorf.nl.

Toggle
Edge Lines | Miller Indicies | Axes

Transparency
Opaque | Translucent | Transparent

View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation
X-Ray Powder Diffraction:
Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
X-Ray Powder Diffraction Data:
d-spacingIntensity
3.68(30)
2.70(100)
2.52(70)
2.21(20)
1.84(40)
1.69(50)
1.49(30)
1.45(30)

Occurrences of Hematite

Relationship of Hematite to other Species

Member of:
Other Members of Group:
4.CB.05BrizziiteNaSb5+O3
4.CB.05CorundumAl2O3
4.CB.05Ecandrewsite(Zn,Fe2+,Mn2+)TiO3
4.CB.05EskolaiteCr2O3
4.CB.05GeikieliteMgTiO3
4.CB.05IlmeniteFe2+TiO3
4.CB.05KarelianiteV23+O3
4.CB.05MelanostibiteMn2+(Sb5+,Fe3+)O3
4.CB.05PyrophaniteMn2+TiO3
4.CB.05Akimotoite(Mg,Fe2+)SiO3
4.CB.05AuroantimonateAuSbO3
4.CB.05UM1998-11-O-AuHSbAu2+Sb3+O2(OH)
4.CB.05TistariteTi23+O3
4.CB.10AvicenniteTl2O3
4.CB.10BixbyiteMn23+O3
4.CB.15Armalcolite(Mg,Fe2+)Ti2O5
4.CB.15PseudobrookiteFe2TiO5
4.CB.20Zincohögbomite-2N2S[(Zn,Al,Fe2+)3(Al,Fe3+,Ti)8O15(OH)]2
4.CB.20Zincohögbomite-2N6S[(Zn,Mg)7(Al,Fe3+,Ti)16O31(OH)]2
4.CB.20Magnesiohögbomite-6N6S[(Mg,Fe2+)3(Al,Ti,Fe3+)8O15(OH)]6
4.CB.20Magnesiohögbomite-2N3S[(Mg,Fe2+,Zn)4(Al,Ti,Fe3+)10O19(OH)]2
4.CB.20Magnesiohögbomite-2N2S[(Mg,Fe2+)3[Al7(Ti,Fe3+)]O15(OH)]2
4.CB.20Ferrohögbomite-6N12S[(Fe2+,Mg,Zn)5(Al,Ti,Fe3+)12O23(OH)]6
4.CB.25PseudorutileFe2Ti3O9
4.CB.25KleberiteFeTi6O11(OH)5
4.CB.30BerdesinskiiteV23+TiO5
4.CB.30OxyvaniteV23+V4+O5
4.CB.35Olkhonskite(Cr,V)2Ti3O9
4.CB.35SchreyeriteV23+Ti3O9
4.CB.40KamiokiteFe2Mo3O8
4.CB.40Nolanite(V3+,Fe3+,Fe2+,Ti)10O14(OH)2
4.CB.40RinmaniteZn2Sb2Mg2Fe4O14(OH)2
4.CB.40IseiteMn2Mo3O8
4.CB.40MajindeiteMg2Mo3O8
4.CB.45ClaudetiteAs2O3
4.CB.45StibioclaudetiteAsSbO3
4.CB.50ArsenoliteAs2O3
4.CB.50SenarmontiteSb2O3
4.CB.55ValentiniteSb2O3
4.CB.60BismiteBi2O3
4.CB.65SphaerobismoiteBi2O3
4.CB.70SilléniteBi12SiO20
4.CB.75KyzylkumiteV3+Ti2O5(OH)
4.CB.80TietaiyangiteFe43+Fe2+TiO9
7.20.1WüstiteFeO
7.20.2MagnetiteFe2+Fe23+O4
7.20.3MaghemiteFe23+O3
7.20.5Goethiteα-Fe3+O(OH)
7.20.6Akaganeite(Fe3+,Ni2+)8(OH,O)16Cl1.25 · nH2O
7.20.7FeroxyhyteFe3+O(OH)
7.20.8Lepidocrociteγ-Fe3+O(OH)
7.20.9FerrihydriteFe103+O14(OH)2
7.20.10Amakinite(Fe2+,Mg)(OH)2
7.20.11MagnesioferriteMgFe23+O4
7.20.12MuskoxiteMg7Fe4O13 · 10H2O
7.20.13SrebrodolskiteCa2Fe23+O5
7.20.14HercyniteFe2+Al2O4
7.20.15BrownmilleriteCa2(Al,Fe3+)2O5

Other Names for Hematite

Other Information

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Industrial Uses:
A major ore of iron.

Hematite in petrology

An essential component of (items highlighted in red)
Common component of (items highlighted in red)

References for Hematite

Reference List:
Agricola (1546) 565, 468.

Biäsch (1929) Zs. Kr.: 70: 1.

Palache, C., Berman, H., Frondel, C. (1944) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Volume I: Elements, Sulfides, Sulfosalts, Oxides. John Wiley and Sons, Inc., New York. 7th edition, revised and enlarged: 527-534.

Blake, R.L., Hessevick, R.E., Zoltai, T., Finger, L.W. (1966) Refinement of the hematite structure. American Mineralogist: 51: 123-129.

Mao, H.K., Virgo, D., Bell, P.M. (1977) High-pressure 57Fe Mössbauer data on the phase and magnetic transitions of magnesioferrite (MgFe2O4), magnetite (Fe3O4), and hematite (Fe2O3). Carnegie Institution of Washington Year Book: 76: 522-525.

Fleet, M.E., Arima, M. (1985) Oriented hematite inclusions in sillimanite. American Mineralogist: 70: 1232-1237.

Rossman, G. R. (1996). Why hematite is red: Correlation of optical absorption intensities and magnetic moments of Fe3+ minerals. Mineral Spectroscopy: A tribute to Roger G. Burns, Special Publication, (5). pp 23-27

Gaines, R.V., Skinner, C.W.H., Foord, E.E., Mason, B., Rosenzweig, A. (1997) Dana's New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana: 217.

Andrault, D., Bolfan-Casanova, N. (2001) High-pressure phase transformation in the MgFe2O4 and Fe2O3-MgSiO3 systems. Physics and Chemistry of Minerals: 28: 211-217.

Rozenberg, G.K., Dubrovinsky, L.S., Pasternak, M.P., Naaman, O., LeBihan, T., Ahuja, R. (2002) High-pressure structural studies of hematite (Fe2O3). Physical Review B: 65: 064112.

Shim, S-H., Duffy, T.S. (2002) Raman spectroscopy of Fe2O3 to 62GPa. American Mineralogist: 87: 318-326.

Cornell, R.M., Schwertmann, U. (2003) The iron oxides. Structure, properties, reactions, occurrences and uses. Wiley-VCH, Weinheim.

Das, S., Hendry, M.J. (2011) Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chemical Geology: 290: 101-108.

Africano, F., Van Rompaey, G., Bernard, A., Le Guern, F. (2002): Deposition of trace elements from high temperature gases of Satsuma-Iwojima volcano. Earth Planets Space: 54: 275-286.

Internet Links for Hematite

mindat.org URL:
https://www.mindat.org/min-1856.html
Please feel free to link to this page.
Specimens:
The following Hematite specimens are currently listed for sale on minfind.com.

Significant localities for Hematite

Showing 25 significant localities out of 14,712 recorded on mindat.org.

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.
(TL) indicates type locality for a valid mineral species. (FRL) indicates first recorded locality for everything else. ? indicates mineral may be doubtful at this locality. All other localities listed without reference should be considered as uncertain and unproven until references can be found.
Argentina
 
  • Tucumán
    • Tafí del Valle Department
[var: Martite] Raúl Jorge Tauber Larry´s collection.
Austria
 
  • Salzburg
    • Radstädter Tauern
      • Großarl valley
        • Hüttschlag
A. Strasser: Die Minerale Salzburgs, 1989
France
 
  • Auvergne-Rhône-Alpes
    • Puy-de-Dôme
      • Pontgibaud
        • Saint-Ours-les-Roches
Mboungou-Kongo J.B. (2002), L'hématite spéculaire du puy de Tunisset, Chaîne des Puys (Puy de Dôme), Le Régne Minéral, n°46, pp: 51-55
  • Grand Est
    • Haut-Rhin
      • Ste Marie-aux-Mines (Markirch)
Wittern, Journée: "Mineralien finden in den Vogesen", von Loga (Cologne), 1997
  • Provence-Alpes-Côte d'Azur
    • Alpes-de-Haute-Provence
Favreau G., Meisser N., Chiappero P.J. (2004), Saint-Maime (Alpes-de-Haute-Provence): un exemple de pyrométamorphisme en région provençale, n°3, pp: 59-92
Italy
 
  • Piedmont
    • Cuneo Province
      • Varaita Valley
        • Bellino
          • Varaita di Rui Valley
Piccoli, G.C. (2002): I minerali delle Alpi Marittime e Cozie. Provincia di Cuneo. Associazione Amici del Museo "F. Eusebio" di Alba, Ed., Alba, 362 pp.; Piccoli, G.C., Maletto, G., Bosio, P., Lombardo, B. (2007): Minerali del Piemonte e della Valle d'Aosta. Associazione Amici del Museo "F. Eusebio" di Alba, Ed., Alba, 607 pp.
  • Tuscany
    • Livorno Province
      • Elba Island
        • Rio Marina
          • Rio Mine (Rio Marina Mine)
E. Grill (1911) - Osservazioni cristallografiche sull’ematite dell’Elba - R. Ist. Studi Sup. Prat. e Perf. Firenze.
Orlandi, P., & Pezzotta, A., 1997. I minerali dell'Isola d'Elba. I minerali dei Giacimenti metalliferi dell'Elba orientale e delle Pegmatiti del Monte Capanne. Ed. Novecento Grafico, Bergamo, 245 pp.
    • Lucca Province
      • Apuan Alps
        • Minucciano
          • Gorfigliano
Orlandi P., Dini A., Gemignani E., Pierotti L., Quilici U., Romani U., 2002. Paragenesi alpine nelle Alpi Apuane: I minerali delle vene di quarzo della Valle dell'Acqua Bianca, Gorfigliano (LU) Riv. Mineral. It., 26, 4: 216-223
        • Pietrasanta
Dini A., Bramanti A., Mancini S., Orlandi P. (1997) - La lazulite del Monte Folgorito (Alpi Apuane), Pietrasanta, Lucca - Rivista Mineralogica Italiana, Milano, Fasc. 2, 1997
        • Vagli di Sotto
Biagioni C., 2004. Le mineralizzazioni manganesifere dei Diaspri Auctt. di Vagli (Alpi Apuane, Lucca). Tesina di laurea inedita, Università di Pisa.
Morocco
 
  • Drâa-Tafilalet Region
    • Ouarzazate Province
      • Tazenakht
        • Bou Azer District (Bou Azzer District)
          • Ightem
Favreau, G. and Dietrich, J. E. (2006). Die Mineralien von Bou Azzer. Lapis 31(7/8), 27-68
Norway
 
  • Telemark
    • Kragerø
      • Kragerø Archipelago
        • Langøy
          • Langøy Fe Mines
Vogt (1892b, pp. 119-121); Neumann (1985, p. 63); S. Flaata (1990).
Spain
 
  • Aragón
    • Zaragoza
      • Tierga
- Calvo, M. (2008). Minerales de Aragón. Prames, Zaragoza, 463 pags.
  • Asturias
[var: Iron Rose] Fuertes Acevedo, M. (1884): Mineralogía asturiana. Catálogo descriptivo de las sustancias así metálicas como lapídeas de la provincia de Asturias. Imprenta del Hospicio Provincial. 224 pp. Calvo, M. (2009): Minerales y Minas de España. Vol. IV, Óxidos e Hidróxidos. Escuela Técnica Superior de Ingenieros de Minas de Madrid - Fundación Gómez Pardo. 752 pp
      • El LLagú
        • Castro Cegallú-El Bravo
Fuertes Acevedo, M. (1884): Mineralogía asturiana. Catálogo descriptivo de las sustancias así metálicas como lapídeas de la provincia de Asturias. Imprenta del Hospicio Provincial. 224 pp.
Switzerland
 
  • Grischun (Grisons; Graubünden)
    • Vorderrhein Valley
      • Tujetsch (Tavetsch)
        • Curnera Valley
Stalder, H. A., Wagner, A., Graeser, S. and Stuker, P. (1998): "Mineralienlexikon der Schweiz", Wepf (Basel), p. 207.
UK
 
  • England
    • Cumbria
      • Eastern Fells
        • Shap
No reference listed
USA
 
  • Arizona
    • La Paz Co.
      • Buckskin Mts
        • Santa Maria District (Planet District; Swansea District; Bill Williams District)
Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 195, 246.
    • Maricopa Co.
      • Vulture Mts
self-collected by C. Lemanski, Jr.
  • Connecticut
    • Hartford Co.
      • East Granby
P. Cristofono collection
    • New Haven Co.
      • East Haven
Powell, Richard C. and Wolfgang Vogt. (1987), Cinque Quarry, A Suburban Site in Connecticut Makes Collecting a Cinch. Rock and Gem: (6): 36-39.
  • Rhode Island
    • Providence Co.
      • North Smithfield
Michael W. Kieron collection
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2017, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: June 29, 2017 11:47:27 Page generated: June 26, 2017 20:02:32
Go to top of page