SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography


This page kindly sponsored by Norman King
Hide all sections | Show all sections

About HematiteHide

Steel-grey to black in crystals and massively crystalline ores, dull to bright "rust-red" in earthy, compact, fine-grained material.
Metallic, Sub-Metallic, Dull, Earthy
5 - 6
Specific Gravity:
Crystal System:
Member of:
Originally named about 300-325 BCE by Theophrastus from the Greek, "αιματίτις λίθος" ("aematitis lithos") for "blood stone". It is possibly the first mineral ever named ending with a "-ite" suffix. Translated in 79 by Pliny the Elder to haematites, "bloodlike", in allusion to the vivid red colour of the powder. The modern form evolved by authors frequently simplifying the spelling by excluding the "a", somewhat in parallel with other words originally utilising the root "haeme".
Polymorph of:
Hematite Group. The iron analogue of Corundum, Eskolaite, and Karelianite.

Hematite is rather variable in its appearance - it can be in reddish brown, ocherous masses, dark silvery-grey scaled masses, silvery-grey to black crystals, and dark-grey masses, to name a few. What they all have in common is a rust-red streak.
Black crystals may be confused with ilmenite.

NOTE: The 'hematite' used in jewelry, and often sold as magnetized items, is nothing of the sort and is an artificially created material, see Magnetic Hematite.

In an experimental volcanic gas condensation by Africano et al. (2002), it deposited in high fO2 conditions during cooling from ca. 800°C down to ca. 650°C.

Visit for gemological information about Hematite.

Classification of HematiteHide

Approved, 'Grandfathered' (first described prior to 1959)

4 : OXIDES (Hydroxides, V[5,6] vanadates, arsenites, antimonites, bismuthites, sulfites, selenites, tellurites, iodates)
C : Metal: Oxygen = 2: 3,3: 5, and similar
B : With medium-sized cations
Dana 7th ed.:

3 : A2X3

7 : Oxides and Hydroxides
20 : Oxides of Fe

Pronounciation of HematiteHide

PlayRecorded byCountry
Jolyon & Katya RalphUnited Kingdom

Physical Properties of HematiteHide

Metallic, Sub-Metallic, Dull, Earthy
Steel-grey to black in crystals and massively crystalline ores, dull to bright "rust-red" in earthy, compact, fine-grained material.
See Rossman, G. R. (1996) for cause of red colour.
Reddish brown ("rust-red")
5 - 6 on Mohs scale
VHN100=1000 - 1100 kg/mm2 - Vickers
Hardness Data:
None Observed
Partings on {0001} and {1011} due to twinning. Unique cubic parting in masses and grains at Franklin Mine, Franklin, NJ.
Irregular/Uneven, Sub-Conchoidal
Elastic in thin lamellae
5.26 g/cm3 (Measured)    5.255 g/cm3 (Calculated)

Optical Data of HematiteHide

Uniaxial (-)
RI values:
nω = 3.150 - 3.220 nε = 2.870 - 2.940
Max Birefringence:
δ = 0.280
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
Very High
Colour in reflected light:
White to greyish white with bluish tint
Internal Reflections:
O = brownish red
E = yellowish red

Chemical Properties of HematiteHide

Common Impurities:

Crystallography of HematiteHide

Crystal System:
Class (H-M):
3m (3 2/m) - Hexagonal Scalenohedral
Space Group:
Cell Parameters:
a = 5.038(2) Å, c = 13.772(12) Å
a:c = 1 : 2.734
Unit Cell V:
302.72 ų (Calculated from Unit Cell)
Crystals generally thick to thin tabular {0001}, rarely prismatic [0001] or scalenohedral; also rarely rhombohedral {1011}, producing pseudo-cubic crystals. Often found in sub-parallel growths on {0001} or as rosettes ("iron roses.") Sometimes in micaceous to platy masses. May be compact columnar or fibrous masses, sometimes radiating, or in reniform masses with a smooth fracture ("kidney ore"), and botryoidal and stalactic. Frequently in earthy masses, also granular, friable to compact, concretionary and oolitic.
Penetration twins on {0001}, or with {1010} as a composition plane. Frequently exhibits a lamellar twinning on {1011} in polished section.

Crystallographic forms of HematiteHide

Crystal Atlas:
Image Loading
Click on an icon to view
Hematite no.319 - Goldschmidt (1913-1926)
Hematite no.331 - Goldschmidt (1913-1926)
Hematite no.337 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by

Edge Lines | Miller Indices | Axes

Opaque | Translucent | Transparent

Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

Crystal StructureHide

Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
CIF File    Best | x | y | z | a | b | c
Stop | Start
Console Off | On | Grey | Yellow
IDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0000143HematiteBlake R L, Hessevick R E, Zoltai T, Finger L W (1966) Refinement of the hematite structure American Mineralogist 51 123-1291966Elba, Italy0293
0002228HematiteGualtieri A, Venturelli P (1999) In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction American Mineralogist 84 895-90419990586
0002229HematiteGualtieri A, Venturelli P (1999) In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction American Mineralogist 84 895-90419990790
0002230HematiteGualtieri A, Venturelli P (1999) In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction American Mineralogist 84 895-904199901052
0017806HematiteMaslen E N, Streltsov V A, Streltsova N R, Ishizawa N (1994) Synchrotron X-ray study of the electron density in alpha-Fe2O3 Acta Crystallographica B50 435-4411994synthetic0293
0017807HematiteMaslen E N, Streltsov V A, Streltsova N R, Ishizawa N (1994) Synchrotron X-ray study of the electron density in alpha-Fe2O3 Acta Crystallographica B50 435-4411994synthetic0293
0017808HematiteMaslen E N, Streltsov V A, Streltsova N R, Ishizawa N (1994) Synchrotron X-ray study of the electron density in alpha-Fe2O3 Acta Crystallographica B50 435-4411994synthetic0293
0017731HematiteFinger L W, Hazen R M (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Journal of Applied Physics 51 5362-53671980synthetic0.0001293
0017732HematiteFinger L W, Hazen R M (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Journal of Applied Physics 51 5362-53671980synthetic1.54293
0017733HematiteFinger L W, Hazen R M (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Journal of Applied Physics 51 5362-53671980synthetic3.14293
0017734HematiteFinger L W, Hazen R M (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Journal of Applied Physics 51 5362-53671980synthetic4.16293
0017735HematiteFinger L W, Hazen R M (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Journal of Applied Physics 51 5362-53671980synthetic4.39293
0017736HematiteFinger L W, Hazen R M (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Journal of Applied Physics 51 5362-53671980synthetic5.24293
0014076HematitePauling L, Hendricks S B (1925) Crystal structures of hematite and corundum Journal of the American Chemical Society 47 781-79019250293
0018106HematitePauling L, Hendricks S (1925) The Structure of Hematite Journal of the American Chemical Society 47 781-79019250293
CIF Raw Data - click here to close

X-Ray Powder DiffractionHide

Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
Powder Diffraction Data:
3.68 Å(30)
2.70 Å(100)
2.52 Å(70)
2.21 Å(20)
1.84 Å(40)
1.69 Å(50)
1.49 Å(30)
1.45 Å(30)

Geological EnvironmentHide

Geological Setting:
Large ore bodies of hematite are usually of sedimentary origin; also found in high-grade ore bodies in metamorphic rocks due to contact metasomatism, and occasionally as a sublimate on igneous extrusive rocks ("lavas") as a result of volcanic activity. It is also usually the cause of red soils all over the planet.

Synonyms of HematiteHide

Other Language Names for HematiteHide

Varieties of HematiteHide

AlumohematiteAluminian Hematite
CrucilitePseudomorphs of Hematite and/or Goethite after Arsenopyrite, named for cruciform shape of crystals.
Originally described from Clonmel, Co. Waterford, Ireland.
HydrohematiteOriginally considered as a hydrated hematite, Fe2O3 x nH2O, based on specimens from Bavaria and Prussia having ~5 wt% H2O (Breithaupt, 1847).

A crystal-structure study by Wolska (1981) showed the presence of OH groups and suggested the formula Fe2-x(OH)x...
Iridescent HematiteAn iridescent variety of specularite (hematite), its colour play caused by a very thin coating of nanoparticles of an unidentified aluminium phosphate (Nadin, 2007).
Iron RoseA term used to describe rounded aggregates of tabular crystals. In these formations, the arrangement of the crystals somewhat reminds of the leaves in a rose blossom, hence the name.
Kidney OreA reniform (kidney-shaped) or botryoidal variety of hematite. The internal structure of the kidney-shaped nodules is usually concentric and radiating.
MartiteThe name given for hematite pseudomorphs after magnetite, formed under conditions of increasing oxygen fugacity.

Originally described from Itabira, Minas Gerais, Southeast Region, Brazil.
Red OchreEarthy, reddish variety of hematite.
Used as a natural red pigment.
SpeculariteA variety of hematite characterized by aggregates of silvery, metallic, specular ("mirror-like") hematite flakes or tabular, anhedral crystals.
TitanohematiteTi-bearing variety of hematite.

Relationship of Hematite to other SpeciesHide

Member of:
Other Members of this group:
CorundumAl2O3Trig. 3m (3 2/m) : R3c
TistariteTi3+2O3Trig. 3m (3 2/m) : R3c

Common AssociatesHide

Associated Minerals Based on Photo Data:
2,051 photos of Hematite associated with QuartzSiO2
1,213 photos of Hematite associated with CalciteCaCO3
843 photos of Hematite associated with RutileTiO2
405 photos of Hematite associated with AmethystSiO2
276 photos of Hematite associated with PyriteFeS2
250 photos of Hematite associated with Smoky QuartzSiO2
245 photos of Hematite associated with Goethiteα-Fe3+O(OH)
202 photos of Hematite associated with FluoriteCaF2
196 photos of Hematite associated with MagnetiteFe2+Fe3+2O4
173 photos of Hematite associated with DolomiteCaMg(CO3)2

Related Minerals - Nickel-Strunz GroupingHide

4.CB.05BrizziiteNaSb5+O3Trig. 3 : R3
4.CB.05CorundumAl2O3Trig. 3m (3 2/m) : R3c
4.CB.05Ecandrewsite(Zn,Fe2+,Mn2+)TiO3Trig. 3 : R3
4.CB.05GeikieliteMgTiO3Trig. 3 : R3
4.CB.05IlmeniteFe2+TiO3Trig. 3 : R3
4.CB.05PyrophaniteMn2+TiO3Trig. 3 : R3
4.CB.05Unnamed (Auroantimonate)AuSbO3
4.CB.05TistariteTi3+2O3Trig. 3m (3 2/m) : R3c
4.CB.10AvicenniteTl2O3Iso. m3 (2/m 3) : Ia3
4.CB.10BixbyiteMn3+2O3Iso. m3 (2/m 3) : Ia3
4.CB.15Armalcolite(Mg,Fe2+)Ti2O5Orth. mmm (2/m 2/m 2/m)
4.CB.15PseudobrookiteFe2TiO5Orth. mmm (2/m 2/m 2/m)
4.CB.20Zincohögbomite-2N2S[(Zn,Al,Fe2+)3(Al,Fe3+,Ti)8O15(OH)]2Hex. 6mm : P63mc
4.CB.20Zincohögbomite-2N6S[(Zn,Mg)7(Al,Fe3+,Ti)16O31(OH)]2Hex. 6mm : P63mc
4.CB.20Magnesiohögbomite-6N6S[(Mg,Fe2+)3(Al,Ti,Fe3+)8O15(OH)]6Trig. 3m (3 2/m) : R3m
4.CB.20Magnesiohögbomite-2N3S[(Mg,Fe2+,Zn)4(Al,Ti,Fe3+)10O19(OH)]2Trig. 3m (3 2/m) : P3 1m
4.CB.20Magnesiohögbomite-2N2S[(Mg,Fe2+)3[Al7(Ti,Fe3+)]O15(OH)]2Hex. 6mm : P63mc
4.CB.20Ferrohögbomite-6N12S[(Fe2+,Mg,Zn)5(Al,Ti,Fe3+)12O23(OH)]6Trig. 3m (3 2/m) : R3m
4.CB.25KleberiteFeTi6O11(OH)5Mon. 2/m : P21/b
4.CB.30OxyvaniteV3+2V4+O5Mon. 2/m : B2/b
4.CB.40RinmaniteZn2Sb2Mg2Fe4O14(OH)2Hex. 6 : P63
4.CB.40IseiteMn2Mo3O8Hex. 6mm : P63mc
4.CB.40MajindeiteMg2Mo3O8Hex. 6mm : P63mc
4.CB.45ClaudetiteAs2O3Mon. 2/m
4.CB.45StibioclaudetiteAsSbO3Mon. 2/m : P21/m
4.CB.50ArsenoliteAs2O3Iso. m3m (4/m 3 2/m) : Fd3m
4.CB.50SenarmontiteSb2O3Iso. m3m (4/m 3 2/m) : Fd3m
4.CB.55ValentiniteSb2O3Orth. mmm (2/m 2/m 2/m) : Pccn
4.CB.60BismiteBi2O3Mon. 2/m : P21/b
4.CB.70SilléniteBi12SiO20Iso. 2 3 : I2 3
4.CB.75KyzylkumiteV3+Ti2O5(OH)Mon. 2/m : P21/b

Related Minerals - Dana Grouping (8th Ed.)Hide 3m (3 2/m) : R3c

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

7.20.1WüstiteFeOIso. m3m (4/m 3 2/m) : Fm3m
7.20.2MagnetiteFe2+Fe3+2O4Iso. m3m (4/m 3 2/m) : Fd3m
7.20.3Maghemite(Fe3+0.670.33)Fe3+2O4Iso. 4 3 2 : P41 3 2
7.20.5Goethiteα-Fe3+O(OH)Orth. mmm (2/m 2/m 2/m)
7.20.6Akaganeite(Fe3+,Ni2+)8(OH,O)16Cl1.25 · nH2OMon. 2/m
7.20.8Lepidocrociteγ-Fe3+O(OH)Orth. mm2 : Cmc21
7.20.11MagnesioferriteMgFe3+2O4Iso. m3m (4/m 3 2/m) : Fd3m
7.20.12MuskoxiteMg7Fe4O13 · 10H2OTrig. 3m (3 2/m)
7.20.13SrebrodolskiteCa2Fe3+2O5Orth. mmm (2/m 2/m 2/m) : Pnma
7.20.14HercyniteFe2+Al2O4Iso. m3m (4/m 3 2/m) : Fd3m
7.20.15BrownmilleriteCa2(Al,Fe3+)2O5Orth. mm2

Fluorescence of HematiteHide

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Industrial Uses:
A major ore of iron.

Hematite in petrologyHide

References for HematiteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Agricola (1546) 565, 468.
Biäsch (1929) Zs. Kr., 70, 1.
Palache, C., Berman, H., Frondel, C. (1944) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Volume I: Elements, Sulfides, Sulfosalts, Oxides. John Wiley and Sons, Inc., New York. 7th edition, revised and enlarged: 527-534.
Bourguignon, P., Toussaint, J. (1955) Caractères chimiques et minéralogiques d'hématites manganésifères d'Ardenne. Annales de la Société géologique de Belgique, 78, 419.
Blake, R.L., Hessevick, R.E., Zoltai, T., Finger, L.W. (1966) Refinement of the hematite structure. American Mineralogist, 51, 123-129.
Mao, H.K., Virgo, D., Bell, P.M. (1977) High-pressure 57Fe Mössbauer data on the phase and magnetic transitions of magnesioferrite (MgFe2O4), magnetite (Fe3O4), and hematite (Fe2O3). Carnegie Institution of Washington Year Book, 76, 522-525.
Fleet, M.E., Arima, M. (1985) Oriented hematite inclusions in sillimanite. American Mineralogist, 70, 1232-1237.
Rossman, G.R. (1996) Why hematite is red: Correlation of optical absorption intensities and magnetic moments of Fe3+ minerals. Mineral Spectroscopy: A tribute to Roger G. Burns, Special Publication, (5), 23-27.
Gaines, R.V., Skinner, C.W.H., Foord, E.E., Mason, B., Rosenzweig, A. (1997) Dana's New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana: 217.
Andrault, D., Bolfan-Casanova, N. (2001) High-pressure phase transformation in the MgFe2O4 and Fe2O3-MgSiO3 systems. Physics and Chemistry of Minerals, 28, 211-217.
Rozenberg, G.K., Dubrovinsky, L.S., Pasternak, M.P., Naaman, O., LeBihan, T., Ahuja, R. (2002) High-pressure structural studies of hematite (Fe2O3). Physical Review B, 65, 064112.
Shim, S-H., Duffy, T.S. (2002) Raman spectroscopy of Fe2O3 to 62GPa. American Mineralogist, 87, 318-326.
Cornell, R.M., Schwertmann, U. (2003) The iron oxides. Structure, properties, reactions, occurrences and uses. Wiley-VCH, Weinheim.
Das, S., Hendry, M.J. (2011) Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chemical Geology, 290, 101-108.
Africano, F., Van Rompaey, G., Bernard, A., Le Guern, F. (2002) Deposition of trace elements from high temperature gases of Satsuma-Iwojima volcano. Earth Planets Space, 54, 275-286.

Internet Links for HematiteHide

Significant localities for HematiteHide

Showing 32 significant localities out of 17,949 recorded on

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
  • Tucumán Province
    • Tafí del Valle Department
      • Tafí del Valle
[var: Martite] Raúl Jorge Tauber Larry´s collection.
  • Salzburg
    • St. Johann im Pongau District
      • Hüttschlag
A. Strasser: Die Minerale Salzburgs, 1989
  • Coquimbo
    • Limarí Province
      • Monte Patria
[var: Specularite] Maksaev, V., Townley, B., Palacios, C., and Camus, F. (2007): Metallic ore deposits. In: Moreno, T., and Gibbons, W. (editors): The Geology of Chile. The Geological Society (London), pp. 414.
  • Auvergne-Rhône-Alpes
    • Puy-de-Dôme
      • Riom
        • Saint-Ours-les-Roches
Mboungou-Kongo J.B. (2002), L'hématite spéculaire du puy de Tunisset, Chaîne des Puys (Puy de Dôme), Le Régne Minéral, n°46, pp: 51-55
  • Grand Est
    • Haut-Rhin
      • Colmar-Ribeauvillé
        • Ste Marie-aux-Mines
Wittern, Journée: "Mineralien finden in den Vogesen", von Loga (Cologne), 1997
  • Provence-Alpes-Côte d'Azur
    • Alpes-de-Haute-Provence
      • Forcalquier
        • Saint-Maime
Favreau G., Meisser N., Chiappero P.J. (2004), Saint-Maime (Alpes-de-Haute-Provence): un exemple de pyrométamorphisme en région provençale, n°3, pp: 59-92
  • Munster
    • Cork County
      • Mizen Peninsula
        • Ballydehob
          • Audley Mines
[var: Specularite] Barry Flannery (Personal Collection)
  • Piedmont
    • Cuneo Province
      • Bellino
        • Varaita di Rui Valley
Piccoli, G.C. (2002): I minerali delle Alpi Marittime e Cozie. Provincia di Cuneo. Associazione Amici del Museo "F. Eusebio" di Alba, Ed., Alba, 362 pp.; Piccoli, G.C., Maletto, G., Bosio, P., Lombardo, B. (2007): Minerali del Piemonte e della Valle d'Aosta. Associazione Amici del Museo "F. Eusebio" di Alba, Ed., Alba, 607 pp.
  • Tuscany
    • Livorno Province
      • Rio
        • Rio Marina
          • Rio Mine (Rio Marina Mine)
E. Grill (1911) - Osservazioni cristallografiche sull’ematite dell’Elba - R. Ist. Studi Sup. Prat. e Perf. Firenze.
Orlandi, P., & Pezzotta, A., 1997. I minerali dell'Isola d'Elba. I minerali dei Giacimenti metalliferi dell'Elba orientale e delle Pegmatiti del Monte Capanne. Ed. Novecento Grafico, Bergamo, 245 pp.; Benvenuti, N., Dini, A., D’Orazio, M., Chiarantini, L., Corretti, A., Costagliola, P. (2013): The tungsten and tin signature of iron ores from Elba Island (Italy): a tool for provenance studies of iron production in the Mediterranean Region. Archaeometry, 55, 3, 479–506.
    • Lucca Province
      • Minucciano
        • Gorfigliano
Orlandi P., Dini A., Gemignani E., Pierotti L., Quilici U., Romani U., 2002. Paragenesi alpine nelle Alpi Apuane: I minerali delle vene di quarzo della Valle dell'Acqua Bianca, Gorfigliano (LU) Riv. Mineral. It., 26, 4: 216-223
      • Pietrasanta
Dini A., Bramanti A., Mancini S., Orlandi P. (1997) - La lazulite del Monte Folgorito (Alpi Apuane), Pietrasanta, Lucca - Rivista Mineralogica Italiana, Milano, Fasc. 2, 1997
      • Vagli Sotto
Biagioni C., 2004. Le mineralizzazioni manganesifere dei Diaspri Auctt. di Vagli (Alpi Apuane, Lucca). Tesina di laurea inedita, Università di Pisa.
  • Drâa-Tafilalet Region
    • Zagora Province
      • Agdz Cercle
        • Ightem
Favreau, G. and Dietrich, J. E. (2006). Die Mineralien von Bou Azzer. Lapis 31(7/8), 27-68
  • Vestfold og Telemark
    • Kragerø
      • Kragerø Archipelago
        • Langøy
          • Langøy Iron Mines
Vogt, J. H. L. (1892) Om dannelsen af de vigtigste i Norge og sverige representerede grupper ad jernmalmforekomster. Norges Geologiske Undersøkelse. 6: 114-127; Flaata, Stig (1990): Historien om Peder Anker gruve. Stein 17(4), 1-2 + 20-22.
  • Andalusia
    • Málaga
      • Antequera
Calvo, M. (2009): Minerales y Minas de España. Vol. IV, Óxidos e Hidróxidos. Escuela Técnica Superior de Ingenieros de Minas de Madrid .Fundación Gómez Pardo. 752 pp. Romero Silva JC (2003). MInerales y Rocas de la provincia de Málaga. Edited by CEDMA, Malaga city Council. 318pg. 1map; Romero Silva, J.C (2003). Minerales y Rocas de la Provincia de Málaga. CEDMA County Council 318 pp 1 map
  • Aragón
    • Zaragoza
      • Tierga
- Calvo, M. (2008). Minerales de Aragón. Prames, Zaragoza, 463 pags.
  • Asturias
Fuertes Acevedo, M. (1884): Mineralogía asturiana. Catálogo descriptivo de las sustancias así metálicas como lapídeas de la provincia de Asturias. Imprenta del Hospicio Provincial. 224 pp. Calvo, M. (2009): Minerales y Minas de España. Vol. IV, Óxidos e Hidróxidos. Escuela Técnica Superior de Ingenieros de Minas de Madrid - Fundación Gómez Pardo. 752 pp
      • El LLagú
        • Castro Cegallú-El Bravo
Calvo, Miguel. (2009). Minerales y Minas de España. Vol. IV. Óxidos e hidróxidos. Escuela Técnica Superior de Ingenieros de Minas de Madrid. Fundación Gómez Pardo. 751 págs.
  • Grisons
    • Surselva Region
      • Tujetsch
        • Curnera Valley
Kipfer, A. (1974) Ein neues Hobby: Kleinmineralien sammeln und präparieren. Franckh'sche Verlagshandlung, W. Keller & Co., Stuttgart, 64 pp.; Stalder, H.A., Wagner, A., Graeser, S., and Stuker, P. (1998) Mineralienlexikon der Schweiz. Wepf (Basel), p. 207.
  • England
    • Cumbria
      • Eden
        • Shap Rural
No reference listed
  • Arizona
    • La Paz County
      • Buckskin Mountains
        • Santa Maria Mining District (Planet Mining District; Swansea Mining District; Bill Williams Mining District)
Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 195, 246.
    • Maricopa Co.
self-collected by C. Lemanski, Jr.
    • Navajo Co.
      • Apache Iron Mining District
USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, deposit ID #10027418.
  • Connecticut
    • Hartford Co.
      • East Granby
P. Cristofono collection
    • New Haven Co.
      • East Haven
Powell, Richard C. and Wolfgang Vogt. (1987), Cinque Quarry, A Suburban Site in Connecticut Makes Collecting a Cinch. Rock and Gem: (6): 36-39.
  • Montana
    • Jefferson Co.
      • Cataract Mining District (Comet Mining District; Basin Mining District)
Chris Van Laer Collection
  • Rhode Island
    • Providence Co.
      • North Smithfield
Michael W. Kieron collection
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © and the Hudson Institute of Mineralogy 1993-2021, except where stated. Most political location boundaries are © OpenStreetMap contributors. relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us - Report a bug/vulnerability Current server date and time: April 12, 2021 04:31:11 Page generated: April 12, 2021 00:40:32
Go to top of page