Help|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on Mindat
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralSearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Amphibole Supergroup

This page is currently not sponsored. Click here to sponsor this page.
A = ☐, Na, K, Ca, Pb2+
X = Li, Na, Mg, Fe2+, Mn2+, Ca
Z = Li, Na, Mg, Fe2+, Mn2+, Zn, Co, Ni, Al, Fe3+, Cr3+, Mn3+, V3+, Ti, Zr

The IMA nomenclature report (Hawthorne et al., 2012) uses the general formula AB2C5T8W2. On we avoid using variables with the same symbol as elements and we use X rather than B, Z rather than C and (OH,F,Cl,O) rather than W.
The name amphibole (Greek αμφιβολος - amphibolos meaning 'ambiguous') was used by René Just Haüy to include tremolite, actinolite, tourmaline and hornblende. The group was so named by Haüy in allusion to the protean variety, in composition and appearance, assumed by its minerals. This term has since been applied to the whole group. (Wikipedia).
An extensive and complex group of minerals presently divided into a group/subgroup/root-name hierarchy (see group/subgroup/root-name files for the individual species). The amphibole group remains under study with the most recent, IMA-approved nomenclature being published in 2012 (Hawthorne et al., 2012, superseding Hawthorne & Oberti, 2006).

Individual members can often only be correctly identified by a combination of chemical-analytical, X-ray diffraction and spectroscopic methods.

The crystal symmetry is either monoclinic (more common) or orthorhombic.

Hide all sections | Show all sections

Classification of Amphibole SupergroupHide

Group Name

Chemical Properties of Amphibole SupergroupHide


A = ☐, Na, K, Ca, Pb2+
X = Li, Na, Mg, Fe2+, Mn2+, Ca
Z = Li, Na, Mg, Fe2+, Mn2+, Zn, Co, Ni, Al, Fe3+, Cr3+, Mn3+, V3+, Ti, Zr

The IMA nomenclature report (Hawthorne et al., 2012) uses the general formula AB2C5T8W2. On we avoid using variables with the same symbol as elements and we use X rather than B, Z rather than C and (OH,F,Cl,O) rather than W.

Age informationHide

Age range:
Paleoproterozoic to Neogene : 1908 ± 15 Ma to 15 Ma - based on data given below.
Sample ages:
Sample IDRecorded ageGeologic TimeDating method
118 to 15 MaMioceneK-Ar
2150 to 140 MaMesozoic40Ar/39Ar
3274.3 ± 2.2 MaCisuralianRe-Os
4297 ± 13 MaCisuralianK-Ar
5297 ± 13 MaCisuralianK-Ar
6305.9 ± 3.5 MaPennsylvanianRe-Os
7308 MaPennsylvanianK-Ar
8365.6 ± 8 MaLate DevonianAr-Ar
9376 ± 1.6 MaLate DevonianRb-Sr
10385.4 ± 9.2 MaMiddle DevonianAr-Ar
111301 to 1241 MaEctasianK-Ar
121740 MaStatherianK-Ar
131903 ± 16 MaOrosirianAr-Ar
141908 ± 15 MaOrosirianAr-Ar
Sample references:
1Apigania Bay, Tinos Island, Cyclade Islands, Kykládes Prefecture, Aegean Islands Department, GreeceTombros, S. F., Seymour, K. S., Williams-Jones, A. E., & Spry, P. G. (2008) Later stages of evolution of an epithermal system: Au–Ag mineralizations at Apigania Bay, Tinos Island, Cyclades, Hellas, Greece. Mineralogy and Petrology, 94(3-4), 175-194.
2Magurka, Partizánska Lupča, Liptovský Mikuláš Co., Žilina Region, SlovakiaKohút M, Stein H (2005) Re–Os molybdenite dating of granite-related Sn–W–Mo mineralisation at Hnilec, Gemeric Superunit, Slovakia, Mineralogy and Petrology, 85, 117-139
3Huangshandong Cu-Ni-PGE deposit, Huangshan-Jing'erquan ore belt, Hami Co., Hami Prefecture, Xinjiang Autonomous Region, ChinaJingwen, M., Jianmin, Y., Wenjun, Q., Andao, D., Zhiliang, W., & Chunming, H. (2003). Re?Os Age of Cu?Ni Ores from the Huangshandong Cu?Ni Sulfide Deposit in the East Tianshan Mountains and Its Implication for Geodynamic Processes. Acta Geologica Sinica?English Edition, 77(2), 220-226.
4Erzgebirge, Saxony, GermanyRomer R L, Förster H-J, Štemprok M (2010) Age constraints for the late-Variscan magmatism in the Altenberg-Teplice Caldera (Eastern Erzgebirge/Krušné hory). N. Jb. Miner. Abh. 187 (3), 289-305.
5Altenberg, Erzgebirge, Saxony, GermanyRomer, R. L., & Thomas, R. (2005, January) U-Pb dating of micro-inclusions: The age of the Ehrenfriedersdorf tin deposit (Erzgebirge, Germany). In Mineral Deposit Research: Meeting the Global Challenge (pp. 817-820). Springer Berlin Heidelberg.
6Huangshandong Cu-Ni-PGE deposit, Huangshan-Jing'erquan ore belt, Hami Co., Hami Prefecture, Xinjiang Autonomous Region, ChinaJingwen, M., Jianmin, Y., Wenjun, Q., Andao, D., Zhiliang, W., & Chunming, H. (2003). Re?Os Age of Cu?Ni Ores from the Huangshandong Cu?Ni Sulfide Deposit in the East Tianshan Mountains and Its Implication for Geodynamic Processes. Acta Geologica Sinica?English Edition, 77(2), 220-226.
7Krušné Hory Mts, Karlovy Vary Region, Bohemia, Czech RepublicBreiter K (2012) Nearly contemporanous evolution of the A- and S-type fractionated granites in the Krusne hory/Erzgebirge Mts., Central Europe. Lithos 151, 105-121.
8Kempirsai Cr deposit, Urals, Aktobe Province, KazakhstanMelcher, F., Grum, W., Thalhammer, T. V., & Thalhammer, O. A. R. (1999). The giant chromite deposits at Kempirsai, Urals: constraints from trace element (PGE, REE) and isotope data. Mineralium Deposita, 34(3), 250-272.
9  "  "  "  "
10  "  "  "  "
11Strange Lake complex, Québec & Newfoundland and Labrador, CanadaOrris, G. J., Grauch, R. I. (2002) Rare Earth element mines, deposits, and occurenes. USGS Open-File Report 02-189, 1-174.
12Malotersyanskii, Zaporozhskaya Oblast', Ukraine  "  "
13P. Pinigin deposit, Aldan Shield, Sakha Republic, Eastern-Siberian Region, RussiaKravchenko A.A., Smelov A.P., Berezkin V.I., Dobretsov V.N. (2008) Mineralogy and geochemistry of bipyroxene schisthosted gold mineralization (P. Pinigin deposit, the Aldan Craton). Domestic geology, 5, 14-24
14  "  "  "  "

Crystallographic forms of Amphibole SupergroupHide

Crystal Atlas:
Image Loading
Click on an icon to view
Amphibole no.7 - Goldschmidt (1913-1926)
Amphibole no.39 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by

Edge Lines | Miller Indicies | Axes

Opaque | Translucent | Transparent

Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

Synonyms of Amphibole SupergroupHide

Other Language Names for Amphibole SupergroupHide

Norwegian (Bokmål):Amfibol
Simplified Chinese:角闪石

Varieties of Amphibole SupergroupHide

ByssoliteA fibrous to hair-like crystal or mass of fibers frequently in the actinolite-ferroactinolite-tremolite series, but may be any amphibole species.
UralitePseudomorphs of hornblende group minerals, mainly actinolite, after a pyroxene group mineral, mainly augite.
Originally described from the Urals Region, Russia.

Relationship of Amphibole Supergroup to other SpeciesHide

Group Members:
Clino-suenoite □Mn2+2 Mg5Si8O22(OH)2Mon. 2/m : B2/m
Unnamed (F-dominant analogue of Ferri-kaersutite) (Na,K)Ca2[Mg3(Fe3+,Fe2+)Ti](Si6Al2O22)(F,O)2Mon. 2/m : B2/m
Vanadiopargasite NaCa2(Mg4V)[Si6Al2]O22(OH)2Mon. 2/m : B2/m
w(O)-dominant Amphibole Group {A0-1}{X2}{Z5}(T8O22)O2
  Kaersutite Root Name {A}{Ca2}{Z2+3Z3+Ti}(Al2Si6O22)O2 Mon.
    Ferri-kaersutite NaCa2(Mg3Fe3+Ti)(Al2Si6O22)O2 Mon. 2/m : B2/m
    Ferro-kaersutite {Na}{Ca2}{Fe2+3AlTi}(Al2Si6O22)O2Mon.
    Kaersutite {Na}{Ca2}{Mg3AlTi}(Al2Si6O22)O2 Mon.
  Mangani-dellaventuraite {Na}{Na2}{MgMn3+2LiTi4+}Si8O22O2Mon. 2/m : B2/m
  Mangano-mangani-ungarettiite NaNa2(Mn2+2Mn3+3)(Si8O22)O2Mon.
  Obertiite Root Name {A}{Na2}{Z2+3Z3+Ti}{Si8O22}O2
    Ferri-obertiite Na(Na2)(Mg3Fe3+Ti)(Si8O22)O2Mon. 2/m : B2/m
    Ferro-ferri-obertiite NaNa2(Fe2+3Fe3+Ti)Si8O22O2Mon. 2/m : B2/m
    Mangani-obertiite Na(Na2)(Mg3Mn3+Ti)(Si8O22)O2Mon. 2/m : B2/m
    Unnamed (possible K-analogue of Ferri-obertiite) KNa2[(Mg,Fe,Na)3Fe3+(Ti,Fe)]Si8O22(O,F)2
  Oxo-magnesio-hastingsite NaCa2(Mg2Fe3+3)(Al2Si6)O22O2Mon. 2/m : B2/m
  Oxo-pargasite NaCa2(Mg2Al3)(Al2Si6)O22O2

Other InformationHide

Health Risks:
Amphiboles with an asbestiform morphology present a health risk if finely divided fibrous particles are inhaled.

Amphibole Supergroup in petrologyHide

An essential component of (items highlighted in red)
Common component of (items highlighted in red)
Accessory component of (items highlighted in red)

References for Amphibole SupergroupHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Burns, R.G., Strens, R.G.J. (1966) Infrared study of the hydroxyl band in clinoamphiboles. Science: 153: 890-892.
Strens, R.G.J. (1966) Infrared study of clustering and ordering in some (Fe,Mg) amphibole solid solutions. Chemical Communications: 519-520.
Leake, B.E. (1968) A catalog of analyzed calciferous and sub-calciferous amphiboles together with their nomenclature and associated minerals. Geological Society of America Special Paper 98.
Himmelberg, G.R., Papike, J.J. (1969) Coexisting amphiboles from blueschist facies metamorphic rock: Journal of Petrology: 10: 102-114.
Papike, J.J., Ross, M., Clark, J.R. (1969) Crystal chemical characterization of clinoamphiboles based on five new structure refinements. Mineralogical Society of America Special Paper 2: 117-136.
Saxena, S.K., Ekstrom, T.K. (1970) Statistical chemistry of calcic amphiboles. Contributions to Mineralogy and Petrology: 26: 276-284.
Strens, R.G.J. (1974) The common chain, ribbon, and ring silicates. In V.C. Farmer, Ed., The infrared spectra of minerals: 305-330. Mineralogical Society, London.
Law, A.D. (1976) A model for the investigation of hydroxyl spectra of amphiboles. In: The Physics and Chemistry of Minerals and Rocks (R.G.J. Strens, ed.). J. Wiley & Sons, London, U.K.
Boettcher, A.L., O'Neil, J.R. (1980) Stable isotope, chemical and petrographic studies of high-pressure amphiboles and micas: evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites. American Journal of Science: 280A: 594-621.
Ungaretti, L. (1980) Recent developments in X-ray single crystal diffractometry applied to the crystal-chemical study of amphiboles. Godisnjak Jugoslavenskog centra za Kristalografiju: 15: 29-65.
Hawthorne, F.C.H. (1983) The crystal chemistry of the amphiboles. The Canadian Mineralogist: 21: 173-480.
Rock, N.M.S., Leake, B.E. (1984) The International Mineralogical Association amphibole nomenclature scheme: computerization and its consequences. Mineralogical magazine: 48: 211-227.
Phillips, M.W., Popp, R.K., Clowe, C.A. (1988) Structural adjustments accompanying oxidation-dehydrogenation n amphiboles. American Mineralogist: 73: 500-506.
Hogarth, D.D. (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. In K. Bell, Ed., Carbonatites: Genesis and Evolution: 105-148. Unwin Hyman Ltd., London.
Deloule, E., Albarède, F., Sheppard, S.M.F. (1991) Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphiboles from ultramafic rocks. Earth Planet. Sci. Lett.: 105: 543-553.
Skogby, H., Rossman, G.R. (1991) The intensity of amphibole OH bands in the infrared absorption spectrum. Physics and Chemistry of Minerals: 18: 64-68.
Oberti, R., Ungaretti, L., Cannillo, E., Hawthorne, F.C. (1992) The behaviour of Ti in amphiboles. I. Four- and six-coordinate Ti in richterite. European Journal of Mineralogy: 4: 425-439.
Hawthorne, F.C., Ungaretti, L., Oberti, R., Bottazzi, P., Czamanske, G.K. (1993) Li: an important component in igneous alkali amphiboles. American Mineralogist: 78: 733-745.
Oberti, R., Ungaretti, L., Cannillo, E., Hawthorne, F.C. (1993) The mechanism of Cl incorporation in amphibole. American Mineralogist: 78: 746-752.
Hawthorne, F.C., Ungaretti, L., Oberti, Cannillo, E., Smelik, E.A. (1994) The mechanism of [6]Li incorporation in amphiboles. American Mineralogist: 79: 443-451.
Oberti, R., Hawthorne, F.C., Ungaretti, L., Cannillo, E. (1995) [6]Al disorder in amphiboles from mantle peridotite: The Canadian Mineralogist: 33: 867-878.
Oberti, R., Ungaretti, L., Cannillo, E., Hawthorne, F.C., Memmi, I. (1995) Temperature-dependent Al order-disorder in the tetrahedral double chain of C2/m amphiboles. European Journal of Mineralogy: 7: 1049-1063.
Hawthorne, F.C., Della Ventura, G., Robert, J.-L. (1996) Short-range order and long-range order in amphiboles: a model for the interpretation of infrared spectra in the principal OH-stretching region. In: Mineral Spectroscopy: a Tribute to Roger G. Burns (M.D. Dyar, C. McCammon & M.W. Schaefer, eds.). Geochemical Society, Special Publication 5: 49-54.
Hawthorne, F.C. (1997) Short-range order in amphiboles: a bond-valence approach. The Canadian Mineralogist: 35: 203-218.
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., J.Kisch, H.J.., G. Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., Guo, Y. (1997) Nomenclature of amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist: 82: 1019-1037.
Hawthorne, F.C., Oberti, R., Zanetti, A., Czamanske, G.K. (1998) The role of Ti in hydrogen-deficient amphiboles: sodic-calcic and sodic amphiboles from Coyote Peak, California. The Canadian Mineralogist: 36: 1253-1265.
Welch, M.D., Lu, S., Klinowski, J. (1998) 29Si MAS NMR systematics of calcic and sodic-calcic amphiboles. American Mineralogist: 83: 85-96.
Robert, J.-L., Della Ventura, G., Hawthorne, F.C. (1999) Near-infrared study of short-range disorder of OH and F in monoclinic amphiboles. American Mineralogist: 84: 86-91.
Melzer, S., Gottschalk, M., Andrut, M., Heinrich, W. (2000) Crystal chemistry of K-richterite-richterite-tremolite solid solutions: a SEM, EMP, XRD, HRTEM and IR study. European Journal of Mineralogy: 12: 273-291.
Reece, J.J., Redfern, S.A.T., Welch, M.D., Henderson, C.M.B., McCammon, C.A. (2002) Temperature-dependent Fe2+ - Mn2+ order-disorder behaviour in amphiboles. Physics and Chemistry of Minerals: 29: 562-570.
Najorka, J., Gottschalk, M. (2003) Crystal chemistry of tremolite-tschermakite solid solutions. Physics and Chemistry of Minerals: 30: 108-124.
Oberti, R., F. Cámara, L. Ottolini, J.M. Caballero (2003) Lithium in amphiboles: detection, quantification, and incorporation mechanisms in the compositional space bridging sodic and [B} Li amphiboles. European Journal of Mineralogy: 15: 309-319.
Leake, B.E., Woolley, A.R., W.D. Birch, W.D., E.A.J. Burke, E.A.J., G. Ferraris, G., J.D. Grice, J.D., F.C. Hawthorne, F.C., H.J. Kisch, H.J., V.G. Krivovichev, V.G., J.C. Schumacher, J.C., N.C.N. Stephenson, N.C.N., Whittaker, E.J.W. (2004) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association's amphibole nomenclature. American Mineralogist: 88: 883-887.
Burke, E.A.J., Leake, B.E. (2005) “Named amphiboles”: a new category of amphiboles recognized by the International Mineralogical Association (IMA), and the proper order of prefixes to be used in amphibole names. American Mineralogist: 90: 516-517.
Hawthorne, F.C.H., Della Ventura, G., Oberti, R., Robert, J.-L., Iezzi, G. (2005) Short-range order in minerals: amphiboles. The Canadian Mineralogist: 43: 1895-1920.
Hawthorne, F.C., Oberti, R. (2006) On the classification of amphiboles. The Canadian Mineralogist: 44: 1-21.
Ishida, K., Hawthorne, F.C. (2006) Assignment of infrared OH-stretching bands in calcic amphiboles through deuteration and heat treatment. American Mineralogist: 91: 871-879.
Hawthorne, F. C. & Oberti, R. (2007): Amphiboles: Crystal Chemistry. Reviews in Mineralogy and Geochemistry 67, 1-54. []
Esawi, E.K. (2011) Calculations of amphibole chemical parameters and implementation of the 2004 recommendations of the IMA classification and nomenclature of amphiboles. Journal of Mineralogical and Petrological Sciences: 106: 123-129.
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist: 97: 2031-2048.
Hawthorne, F.C. (2016): Short-range atomic arrangements in minerals. I: The minerals of the amphibole, tourmaline and pyroxene supergroups. Eur. J. Mineral. 28, 513-536.

Internet Links for Amphibole SupergroupHide

Localities for Amphibole SupergroupHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListShow