Help|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery


This page is currently not sponsored. Click here to sponsor this page.
NaAlSi2O6 · H2O
White, colourless, gray, ...
5 - 5½
Member of:
First described by the french geologist Déodat de Dolomieu (1750-1801) as zéolithe dure [hard zeolite] in lava from the Cyclopean Islands near Sicily, Italy. Named in 1797 by the french mineraloguist Rene Just Haüy from the Greek ανάλκιμος ("analkimos"), "weak" or "without force", alluding to weak electrostatic charge developed when the mineral is heated or rubbed.
Zeolite Group. Analcime-Pollucite Series and the Analcime-Wairakite Series. The sodium analogue of Pollucite. Possible unnamed K analogue is known ('UM1967-09-SiO:AlHKNa').

The aluminosilicate framework of the crystal structure does not change in topology at all. The reduction to various lower symmetries occurs because of slight changes in the ordering of Si and Al atoms and slight crumpling of the framework. Macroscopically, the crystals always look pseudocubic, apart from the very slight nonzero birefringence and fine lamellar twinning visible in the polarising microscope, because the ordering and crumpling happens in different directions in different lamellae, and over the whole crystal it averages out. Hence, the differences are far too slight to merit multiple species names, and analcime is a common example of a number of minerals which occur in multiple crystal system/space group varieties. The crystal structure topology and maximum possible symmetry of the idealised structure are what really matters. There is a slight analogy with hand specimen colour versus streak: a hand specimen can show a range of colours due to trace impurities, but these are diluted out in the small particles of the streak powder, so that only the true inherent colour of the material, much more constant, remains. (Andy Christy, 2010)

Visit for gemological information about Analcime.

Classification of Analcime

Approved, 'Grandfathered' (first described prior to 1959)

9 : SILICATES (Germanates)
G : Tektosilicates with zeolitic H2O; zeolite family
B : Chains of single connected 4-membered rings
Dana 7th ed.:

1 : Zeolite group - True zeolites

16 : Silicates Containing Aluminum and other Metals
2 : Aluminosilicates of Na

Physical Properties of Analcime

Diaphaneity (Transparency):
Transparent, Translucent
White, colourless, gray, pink, greenish, yellowish
colourless in thin section
Hardness (Mohs):
5 - 5½
on {100}
2.24 - 2.29 g/cm3 (Measured)    2.271 g/cm3 (Calculated)

Optical Data of Analcime

Biaxial (-)
RI values:
nα = 1.479 - 1.493 nγ = 1.480 - 1.494
Max Birefringence:
δ = 0.001
Image shows birefringence interference colour range (at 30µm thickness) and does not take into account mineral colouration.
Surface Relief:
Also isotropic.

Chemical Properties of Analcime

IMA Formula:
NaAlSi2O6 · H2O Formula:
Na(AlSi2O6) · H2O

According to the International Zeolite Association ( the mineral has variable composition, that can be given as Na16-x(H2O)16+x[Al16-xSi32+xO96], with x varying from -3.4 to +4.3. The Na content generally is ~16 atoms per formula unit, but may range from 12 to 17. Si ranges from 28.6 to 36.3.
Elements listed in formula:

Crystallography of Analcime

Crystal System:
Crystals commonly trapezohedra {211}, to 25 cm. Also granular, compact, massive, typically showing concentric structure.
Polysynthetic on {001} and {110}
May be cubic, tetragonal, orthorhombic, monoclinic depending upon ordering. Cubic/pseudocubic cell parameter: a = 13.723-13.733 A, Z = 16.

Crystallographic forms of Analcime

Crystal Atlas:
Image Loading
Click on an icon to view
Analcime no.1 - Goldschmidt (1913-1926)
Analcime no.2 - Goldschmidt (1913-1926)
Analcime no.3 - Goldschmidt (1913-1926)
Analcime no.5 - Goldschmidt (1913-1926)
Analcime no.9 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by

Edge Lines | Miller Indicies | Axes

Opaque | Translucent | Transparent

Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation
X-Ray Powder Diffraction:
Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.

Occurrences of Analcime

Type Occurrence of Analcime

Place of Conservation of Type Material:
Natural History Museum, Paris, France, 13.77, H4154.

Relationship of Analcime to other Species

Forms a series with Pollucite (see here)
Forms a series with Wairakite (see here)
Member of:
Other Members of Group:
AlflarseniteNaCa2Be3Si4O13(OH) · 2H2O
AmiciteK2Na2Al4Si4O16 · 5H2O
Barrerite(Na,K,Ca0.5)2[Al2Si7O18] · 7H2O
Bellbergite(K,Ba,Sr)2Sr2Ca2(Ca,Na)4[Al3Si3O12]6 · 30H2O
BikitaiteLiAlSi2O6 · H2O
BoggsiteCa8Na3(Si,Al)96O192 · 70H2O
Brewsterite-Ba(Ba,Sr)[Al2Si6O16] · 5H2O
Brewsterite-Sr(Sr,Ba,Ca)[Al2Si6O16] · 5H2O
Chabazite-Levyne SubgroupA subgroup of the Zeolite Group.
ChiavenniteCaMnBe2Si5O13(OH)2 · 2H2O
ClinoptiloliteNote on the distinguishing differences between clinoptilolite and heulandite (hhttp://rruff.
CowlesiteCaAl2Si3O10 · 6H2O
Dachiardite-Ca(Ca,Na2,K2)5Al10Si38O96 · 25H2O
Dachiardite-Na(Na2,Ca,K2)5Al10Si38O96 · 25H2O
DirenzoiteNaK6MgCa2(Al13Si47O120) · 36H2O
EdingtoniteBa[Al2Si3O10] · 4H2O
EpistilbiteCaAl2Si6O16 · 5H2O
ErioniteThis name now refers to a group of related minerals.
Faujasite SubgroupA subgroup of the Zeolite Group.
FerrieriteZeolite Group.
FerrochiavenniteCa1-2Fe[(Si,Al,Be)5Be2O13(OH)2] · 2H2O
Flörkeite(K3Ca2Na)[Al8Si8O32] · 12H2O
Garronite-CaNa2Ca5Al12Si20O64 · 27H2O
GaultiteNa4Zn2Si7O18 · 5H2O
Gismondine-BaBa2Al4Si4O16 · 4-6H2O
Gismondine-CaCaAl2Si2O8 · 4H2O
GmeliniteIn 1997, gmelinite was split into Gmelinite-Ca, Gmelinite-Na and Gmelinite-K.
GobbinsiteNa5(Si11Al5)O32 · 11H2O
GoosecreekiteCa[Al2Si6O16] · 5H2O
GottardiiteNa3Mg3Ca5Al19Si117O272 · 93H2O
Harmotome(Ba0.5,Ca0.5,K,Na)5[Al5Si11O32] · 12H2O
HeulanditeNote on the distinguishing differences between heulandite and clinoptilolite (http://rruff.
LaumontiteCaAl2Si4O12 · 4H2O
LovdariteK2Na6Be4Si14O36 · 9H2O
MaricopaitePb7Ca2(Si,Al)48O100 · 32H2O
Mazzite-Mg(Mg,K,Ca)5(Si26Al10)O72 · 28H2O
Mazzite-NaNa8[Al4Si14O36]2 · 30H2O
Merlinoite(K,Na)5(Ca,Ba)2Al9Si23O64 · 23H2O
Montesommaite(K,Na)9Al9Si23O64 · 10H2O
Mordenite(Na2,Ca,K2)Al2Si10O24 · 7H2O
MutinaiteNa3Ca4Si85Al11O192 · 60H2O
NabesiteNa2BeSi4O10 · 4H2O
Natrolite SubgroupA subgroup of the Zeolite Group.
OffretiteKCaMg(Si13Al5)O36 · 15H2O
PahasapaiteLi8(Ca,Li,K)10.5Be24(PO4)24 · 38H2O
ParthéiteCa2(Si4Al4) O15 (OH)2•4H2O
Paulingite-Ca(Ca,K,Na,Ba,◻)10 (Si, Al)42O84•34H2O
Paulingite-K(K2,Ca,Na2,Ba)5[Al10Si35O90] · 45H2O
Paulingite-Na(Na2,K2,Ca,Ba)5[Al10Si35O90] · 45H2O
PerlialiteK9Na(Ca,Sr)[Al2Si4O12]6 · 15H2O
PhillipsiteZeolite Group.
Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
RoggianiteCa2Be(OH)2Al2Si4O13 · 2.5H2O
StelleriteCa4(Si28Al8)O72 · 28H2O
Stilbite-CaNaCa4[Al9Si27O72] · nH2O
Stilbite-Na(Na,Ca,K)6-7[Al8Si28O72] · nH2O
Terranovaite(Na,Ca)8(Si68Al12)O160 · 29H2O
Thomsonite-CaNaCa2[Al5Si5O20] · 6H2O
Thomsonite-SrNa(Sr,Ca)2[Al5Si5O20] · 7H2O
Tschernichite(Ca,Na2)[Al2Si4O12] · 4-8H2O
TschörtneriteCa4(Ca,Sr,K,Ba)3Cu3[(OH)2|Al3Si3O12]4 · nH2O
WairakiteCa(Al2Si4O12) · 2H2O
WeinebeneiteCaBe3(PO4)2(OH)2 · 4H2O
Wenkite(Ba,K)4(Ca,Na)6[(SO4)3|(Si,Al)20O39(OH)2] · 0.5H2O
WillhendersoniteKCa[Al3Si3O12] · 5H2O
YugawaraliteCaAl2Si6O16 · 4H2O
9.GB.05PolluciteCs(Si2Al)O6 · nH2O
9.GB.05WairakiteCa(Si4Al2)O12 · 2H2O
9.GB.10LaumontiteCa(Si4Al2)O12 · 4H2O
9.GB.15YugawaraliteCa(Si6Al2)O16 · 4H2O
9.GB.20RoggianiteCa2BeAl2Si4O13(OH)2 · nH2O (n < 2.5)
9.GB.25GoosecreekiteCa(Si6Al2)O16 · 5H2O
9.GB.30MontesommaiteK9(Si23Al9)O64 · 10H2O
9.GB.35ParthéiteCa2(Si4Al4)O15(OH)2 · 4H2O
16.2.5NatroliteNa2(Si3Al2)O10 · 2H2O
16.2.7ParanatroliteNa2(Si3Al2)O10 · 3H2O
16.2.9Rectorite(Na,Ca)Al4(Si,Al)8O20(OH)4 · 2H2O
16.2.11Brammallite(Na,H3O)(Al,Mg,Fe)2((Si,Al)4O10)(OH)2 · nH2O · 2H2O

Other Names for Analcime

Other Information

Weakly piezoelectric, weakly electrostatic when rubbed or heated.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Analcime in petrology

An essential component of (items highlighted in red)
Common component of (items highlighted in red)

References for Analcime

Reference List:
Haüy, R.J. (1797) Analcime, c'est-à-dire, sans vigueur. Journal des Mines: 5: 278-279.

Mineralogical Record: 30: 5-6.

Zeitschrift für Kristallographie: 184: 63-69.

Taylor, W.H. (1930) The structure of analcime (NaAlSi2O6·H2O). Zeitschrift für Kristallographie: 74: 1-19.

Coombs, D.S. (1955) X-ray investigation on wairakite and non-cubic analcime. Mineralogical Magazine: 30: 699-708.

Yoder, H.S. Jr., Weir, C.E. (1960) High-pressure form of analcime and free energy change with pressure of analcime reactions. American Journal of Science: 258A: 420-433.

Kim, K.T., Burley, B.J. (1971) Phase equilibria in the system NaAlSi3O8 - NaAlSiO4·H2O with special emphasis on the stability of analcime. Canadian Journal of Earth Sciences 8: 311-338, 549-558, 558-572.

Liou, J.G. (1971) Analcime equilibria. Lithos: 4: 389-402.

Ferraris, G., Jones, D.W., Yerkess, J. (1972) A neutron diffraction study of the crystal structure of analcime, NaAlSi2O6·H2O. Zeitschrift für Kristallographie: 135: 240-252.

Černý, P. (1974) The present status of the analcime-pollucite series. The Canadian Mineralogist: 12: 334-341.

Gupta,A.K., Fyfe, W.S. (1975) Leucite survival: The alteration to analcime. The Canadian Mineralogist: 13: 361-363.

Roux, J., Hamilton, D. (1976) Primary igneous analcime; an experimental study. Journal of Petrology: 17: 244-257.

Woolley, A.R., Symes, R.F. (1976) The analcime-phyric phonolites (blairmorites) and associated analcime kenytes of the Lupata Gorge, Mocanbique. Lithos: 9: 9-15.

Wilkinson, J.F.G. (1977) Analcime phenocrysts in a vitrophyric analcimite; primary or secondary? Contributions to Mineralogy and Petrology: 64: 1-10.

Mazzi, F., Galli, E. (1978) Is each analcime different? American Mineralogist: 63: 448-460.

Hazen, R.M., Finger, L.W. (1979) Polyhedral tilting: A common type of pure displacive phase transition and its relationship to analcime at high pressure. Phase Transitions: 1: 1-22.

Kim, K.T., Burley, B.J. (1980) A further study of analcime solid solutions in the system NaAlSi3O8 - NaAlSiO4·H2O with particular note of an analcime phase transformation. Mineralogical Magazine: 43: 1035-1045.

Papezik, V.S., Elias, P. (1980) Tetragonal analcime from southeastern Newfoundland. The Canadian Mineralogist: 18: 73-75.

Pechar, F. (1988) The crystal structure of natural monoclinic analcime (NaAlSi2O6·H2O). Zeitschrift für Kristallographie: 184: 63-69.

Luhr, J.F., Kyser, T.K. (1989) Primary igneous analcime: The Colima minettes. American Mineralogist: 74: 216-223.

Teertstra, D.K., Černý, P. (1992) Controls on morphology of analcime-pollucite in natural minerals, synthetic phases, and nuclear waste products. Crystal Research Technology: 27: 931-939.

Putnis, A., Giampaolo, G., Graeme-Barber, A. (1993) High temperature X-ray diffraction and thermogravimetric analysis of the dehydration of analcime, NaAlSi2O6·H2O EUG VII, Strasourg, France, Terra Abstracts: 5: 497.

Phillips, B.L., Kirkpatrick, R.J. (1994) Short-range Al-Si order in leucite and analcime: determination of the configurational entropy from 27Al and variable-temperature 29Si NMR spectroscopy of leucite, its Cs- and Rb-exchanged derivatives, and analcime. American Mineralogist: 79: 1025-1031.

Anthony, J.W., Bideaux, R.A., Bladh, K.W., Nichols, M.C. (1995) Handbook of Mineralogy, Volume II. Silica, Silicates. Mineral Data Publishing, Tucson, AZ, 904pp., 2 volumes: 25.

Line, C.M.B. (1995) The behavior of water in analcime. PhD Thesis, University of Cambridge, Cambridge, UK.

Legache, M. (1995) New experimental data on the stability of the pollucite-analcime series: application to natural assemblages. European Journal of Mineralogy: 7: 319-323.

Line, C.M.B., Putnis, A., Putnis, C., Gianpaolo, C. (1995) The dehydration kinetics and microtexture of analcime from two parageneses. American Mineralogist: 80: 268-279.

Goryainov, S.V., Fursenko, B.A., and Belitsky, I.A. (1996) Phase transition in analcime and wairakite at low-high temperature and pressure. Physics and Chemistry of Minerals: 23: 297-308.

Line, C.M.B., Dove, M.T., Knight, K.S., and Winkler, B. (1996) The low-temperature behavior of analcime: I. High-resolution neutron powder diffraction. Mineralogical Magazine: 60: 499-507.

Coombs, D.S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., Grice, J.D., Liebau, F., Mandarino, J.A., Minato, H., Nickel, E.H., Passaglia, E., Peacor, D.R., Quartieri, S., Rinaldi, R., Ross, M., Sheppard, R.A., Tillmanns, E., Vezzalini, G. (1997) Recommended nomenclature for zeolite minerals: report of the Subcommittee on Zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist: 35: 1571-1606.

Kapusta, J., Wlodka, R. (1997) The X-ray powder diffraction profile analysis of analcimes from the teschenitic sills of the Outer Carpathians, Poland. Neues Jahrbuch fuer Mineralogie, Monatshefte: 6: 241-255.

Kato, M., Hattori, T. (1998) Ordered distribution of aluminum atoms in analcime. Physics and Chemistry of Minerals: 25: 556-565.

Takaishi, T. (1998) Ordered distribution of Al atoms in the framework of analcimes. Journal of the Chemical Society - Faraday Transactions: 94: 1507-1518.

Yokomori, Y., Idaka, S. (1998) The crystal structure of analcime. Microporous and Mesoporous Materials: 21: 365-370.

Cruciani, G., Gualtieri, A. (1999) Dehydration dynamics of analcime by in situ synchrotron powder diffraction. American Mineralogist: 84: 112-119.

Cheng, X., Zhao, P.D., and Stebbins, J.F. (2000) Solid state NMR study of oxygen site exchange and Al-O-Al site concentration in analcime. American Mineralogist: 85: 1030-1037.

Miroshnichenko Y.M. & S.V. Goryainov (2000) Raman study of high-pressure phase transitions in dehydrated analcime. Mineralogical Magazine: 64: 301-309.

Neuhoff, P.S., Stebbins, J.F., Bird, D.K. (2003) Si-Al disorder and solid solutions in analcime, chabazite, and wairakite. American Mineralogist: 88: 410-423.

Likhacheva, A.Y., Veniaminov, S.A., Paukshtis, E.A. (2004) Thermal decomposition of NH4-analcime. Physics and Chemistry of Minerals: 31: 306-312.

Prelević, D., Foley, S.F., Cvetković, V., Romer, R.M. (2004) The analcime problem and its impact on the geochemistry of ultrapotassic rocks from Serbia. Mineralogical Magazine: 68: 633-648.

Luth, R.W., Bowerman, M. (2004) Microtextual and power-diffraction study of analcime phenocrysts in volcanic rocks of the Crownest Formation, southern Alberta, Canada. The Canadian Mineralogist: 42: 897-903.

Gatta, G.D., Nestola, F., Ballaran, T.B. (2006) Elastic behavior, phase transition, and pressure induced structural evolution of analcime. American Mineralogist: 91(4): 568-578.

Presser, V., Klouzková, A., Mrázová, Kohoutková, M., Berthold, C. (2008) Micro-raman spectroscopy on analcime and pollucite in comparison to X-ray diffraction. Journal of Raman Spectroscopy: 39, 587-592.

Chipera, S.J., Bish, D.L. (2010) Rehydration kinetics of a natural analcime. European Journal of Mineralogy: 22: 787-795.

Likhacheva, A.Y., Rashchenko, S.V., Seryotkin, Y.V. (2012) The deformation mechanism of a pressure-induced phase transition in dehydrated analcime. Mineralogical Magazine: 76: 129-142.

Internet Links for Analcime URL:
Please feel free to link to this page.
The following Analcime specimens are currently listed for sale on

Localities for Analcime

map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.
Mineral and/or Locality is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © and the Hudson Institute of Mineralogy 1993-2017, except where stated. relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: February 22, 2017 22:03:12 Page generated: February 17, 2017 17:11:21
Go to top of page