SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Larnite

This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About LarniteHide

04505910014965206473490.jpg
Aerial View of Larne
Formula:
Ca2SiO4
Colour:
White, gray, colorless in thin section
Lustre:
Vitreous
Hardness:
6
Specific Gravity:
3.28 - 3.33
Crystal System:
Monoclinic
Member of:
Name:
The material was first identified from Portland cement and named belite by Törneborn in 1897. The natural substance, a mineral, was named by Tilley in 1929 after the town of Larne, North Ireland, UK. The town is near the type locality of Scawt Hill.
Dimorph of:
The high-temperature, monoclinic polymorph of Calcio-Olivine.

Larnite crystallizes at high temperatures. It occurs in limestones or chalk zones in contact with molten basaltic rocks. Larnite is stable in the range of 520° to 670° C; otherwise, it is only metastable at lower temperatures and inverts to its low-temperature polymorph, Calcio-Olivine, when shocked.

An important phase (Belite, β-C2S) in cement clinker.
Five polymorphs of Ca2SiO4 are known; some are stabilised by impurities.


Classification of LarniteHide

Approved, 'Grandfathered' (first described prior to 1959)
First published:
1929
9.AD.05

9 : SILICATES (Germanates)
A : Nesosilicates
D : Nesosilicates without additional anions; cations in [6] and/or greater coordination
51.5.1.1

51 : NESOSILICATES Insular SiO4 Groups Only
5 : Insular SiO4 Groups Only with cations in >[6] coordination
14.5.6

14 : Silicates not Containing Aluminum
5 : Silicates of Ca

Physical Properties of LarniteHide

Vitreous
Transparency:
Transparent, Translucent
Colour:
White, gray, colorless in thin section
Hardness:
Cleavage:
Distinct/Good
{100} good;
{010} imperfect
Density:
3.28 - 3.33 g/cm3 (Measured)    3.326 g/cm3 (Calculated)

Optical Data of LarniteHide

Type:
Biaxial (+)
RI values:
nα = 1.707 nβ = 1.715 nγ = 1.730
2V:
Calculated: 74°
Max Birefringence:
δ = 0.023
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
High
Dispersion:
r > v

Chemical Properties of LarniteHide

Formula:
Ca2SiO4
IMA Formula:
Ca2(SiO4)
Common Impurities:
Al,Fe,Mg,Na,H2O,C,P

Crystallography of LarniteHide

Crystal System:
Monoclinic
Class (H-M):
2/m - Prismatic
Cell Parameters:
a = 5.5 Å, b = 6.74 Å, c = 9.29 Å
β = 94.59°
Ratio:
a:b:c = 0.816 : 1 : 1.378
Unit Cell V:
343.28 ų (Calculated from Unit Cell)
Twinning:
Common. Polysynthetic parallel to {100}.

Crystal StructureHide

Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File    Best | x | y | z | a | b | c
Rotation
Stop | Start
Labels
Console Off | On | Grey | Yellow
IDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0012179LarniteTsurumi T, Hirano Y, Kato H, Kamiya T, Daimon M (1994) Crystal structure and hydration of belite Ceramic Transactions 40 19-251994synthetic0293
0012180LarniteTsurumi T, Hirano Y, Kato H, Kamiya T, Daimon M (1994) Crystal structure and hydration of belite Ceramic Transactions 40 19-251994synthetic0293
0012181LarniteTsurumi T, Hirano Y, Kato H, Kamiya T, Daimon M (1994) Crystal structure and hydration of belite Ceramic Transactions 40 19-251994synthetic0293
0012182LarniteTsurumi T, Hirano Y, Kato H, Kamiya T, Daimon M (1994) Crystal structure and hydration of belite Ceramic Transactions 40 19-251994synthetic0293
0012183LarniteTsurumi T, Hirano Y, Kato H, Kamiya T, Daimon M (1994) Crystal structure and hydration of belite Ceramic Transactions 40 19-251994synthetic0293
0012184LarniteTsurumi T, Hirano Y, Kato H, Kamiya T, Daimon M (1994) Crystal structure and hydration of belite Ceramic Transactions 40 19-251994synthetic0293
0020214LarniteYamnova N A, Zubkova N V, Eremin N N, Zadov A E, Gazeev V M (2011) Crystal structure of larnite beta-Ca2SiO4 and specific features of polymorphic transitions in dicalcium orthosilicate Crystallography Reports 56 210-2202011synthetic0293
CIF Raw Data - click here to close

Geological EnvironmentHide

Paragenetic Mode(s):
Geological Setting:
Metamorphosed sedimentary carbonate formations in contact with basaltic rocks.

Type Occurrence of LarniteHide

Synonyms of LarniteHide

Other Language Names for LarniteHide

Russian:Ларнит
Simplified Chinese:斜硅钙石
Traditional Chinese:斜矽鈣石

Relationship of Larnite to other SpeciesHide

Member of:
Other Members of this group:
Calcio-olivineCa2SiO4Orth. mmm (2/m 2/m 2/m)
FayaliteFe2+2SiO4Orth. mmm (2/m 2/m 2/m)
ForsteriteMg2SiO4Orth. mmm (2/m 2/m 2/m)
GlaucochroiteCaMn2+SiO4Orth. mmm (2/m 2/m 2/m)
KirschsteiniteCaFe2+SiO4Orth. mmm (2/m 2/m 2/m) : Pnma
Laihunite(Fe2+0.50.5)Fe3+[SiO4]Mon.
LiebenbergiteNi2SiO4Orth. mmm (2/m 2/m 2/m)
MonticelliteCaMgSiO4Orth.
Roepperite (of Brush)(Fe2+2,Mn,Zn)SiO4
TephroiteMn2+2SiO4Orth. mmm (2/m 2/m 2/m)

Common AssociatesHide

BrownmilleriteCa2(Al,Fe3+)2O5
ChlormayeniteCa12Al14O32[◻4Cl2]
GehleniteCa2Al(AlSiO7)
Grossular-Hibschite Series
KilchoaniteCa6(SiO4)(Si3O10)
Melilite GroupCa2M(XSiO7)
MerwiniteCa3Mg(SiO4)2
PerovskiteCaTiO3
RankiniteCa3Si2O7
ScawtiteCa7(Si3O9)2CO3 · 2H2O
SpurriteCa5(SiO4)2(CO3)
WollastoniteCaSiO3
Associated Minerals Based on Photo Data:
5 photos of Larnite associated with ShulamititeCa3TiFe3+AlO8
5 photos of Larnite associated with FluorkyuygeniteCa12Al14O32[(H2O)4F2]
5 photos of Larnite associated with Oldhamite(Ca,Mg)S
3 photos of Larnite associated with ChegemiteCa7(SiO4)3(OH)2
2 photos of Larnite associated with HillebranditeCa2(SiO3)(OH)2
1 photo of Larnite associated with Hydrogarnet
1 photo of Larnite associated with RondorfiteCa8Mg(SiO4)4Cl2
1 photo of Larnite associated with VapnikiteCa2CaUO6
1 photo of Larnite associated with Ye'elimiteCa4Al6(SO4)O12
1 photo of Larnite associated with BrownmilleriteCa2(Al,Fe3+)2O5

Related Minerals - Nickel-Strunz GroupingHide

9.AD.AdrianiteCa12(Al4Mg3Si7)O32Cl6Iso. 4 3m : I4 3d
9.AD.10Calcio-olivineCa2SiO4Orth. mmm (2/m 2/m 2/m)
9.AD.15MerwiniteCa3Mg(SiO4)2Mon. 2/m : P21/b
9.AD.20BredigiteCa7Mg(SiO4)4Orth.
9.AD.25AndraditeCa3Fe3+2(SiO4)3Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25AlmandineFe2+3Al2(SiO4)3Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25CalderiteMn2+3Fe3+2(SiO4)3Iso.
9.AD.25GoldmaniteCa3V3+2(SiO4)3Iso.
9.AD.25GrossularCa3Al2(SiO4)3Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25HenritermieriteCa3Mn3+2(SiO4)2[◻(OH)4]Tet. 4/mmm (4/m 2/m 2/m) : I41/acd
9.AD.25HibschiteCa3Al2(SiO4)3-x(OH)4xIso. m3m (4/m 3 2/m) : Ia3d
9.AD.25HydroandraditeCa3Fe3+2(SiO4)3-x(OH)4x
9.AD.25KatoiteCa3Al2[◻(OH)4]3Iso.
9.AD.25KimzeyiteCa3Zr2(SiO4)(AlO4)2Iso.
9.AD.25KnorringiteMg3Cr2(SiO4)3Iso.
9.AD.25MajoriteMg3(MgSi)(SiO4)3Iso.
9.AD.25MorimotoiteCa3(TiFe2+)(SiO4)3Iso.
9.AD.25PyropeMg3Al2(SiO4)3Iso.
9.AD.25SchorlomiteCa3Ti2(SiO4)(Fe3+O4)2Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25SpessartineMn2+3Al2(SiO4)3Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25UvaroviteCa3Cr2(SiO4)3Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25Wadalite(Ca,Mg)6(Al,Fe3+)4((Si,Al)O4)3O4Cl3Iso. 4 3m : I4 3d
9.AD.25HoltstamiteCa3Al2(SiO4)2[◻(OH)4]Tet. 4/mmm (4/m 2/m 2/m) : I41/acd
9.AD.25KerimasiteCa3Zr2(SiO4)(Fe3+O4)2Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25ToturiteCa3Sn2(SiO4)(Fe3+O4)2Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25MomoiiteMn2+3V3+2(SiO4)3Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25EringaiteCa3Sc2(SiO4)3Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.25EltyubyuiteCa12Fe3+10Si4O32Cl6Iso. 4 3m : I4 3d
9.AD.25HutcheoniteCa3Ti2(SiO4)(AlO4)2Iso. m3m (4/m 3 2/m) : Ia3d
9.AD.30CoffiniteU(SiO4) · nH2OTet.
9.AD.30HafnonHfSiO4Tet. 4/mmm (4/m 2/m 2/m) : I41/amd
9.AD.30ThoriteTh(SiO4)Tet. 4/mmm (4/m 2/m 2/m) : I41/amd
9.AD.30ZirconZr(SiO4)Tet. 4/mmm (4/m 2/m 2/m) : I41/amd
9.AD.30Stetindite-(Ce)Ce(SiO4)Tet. 4/mmm (4/m 2/m 2/m) : I41/amd
9.AD.35HuttoniteThSiO4Mon.
9.AD.35Tombarthite-(Y)Y4(Si,H4)4O12-x(OH)4+2xMon.
9.AD.40EulytineBi4(SiO4)3Iso. 4 3m : I4 3d
9.AD.45ReiditeZrSiO4Tet. 4/m : I41/a

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

14.5.1WollastoniteCaSiO3Tric. 1 : P1
14.5.2Wollastonite-7TCaSiO3
14.5.3Wollastonite-2MCaSiO3Mon. 2/m : P21/b
14.5.4RankiniteCa3Si2O7Mon. 2/m : P21/b
14.5.5KilchoaniteCa6(SiO4)(Si3O10)Orth.
14.5.7BredigiteCa7Mg(SiO4)4Orth.
14.5.8HatruriteCa3(SiO4)OTrig.
14.5.9RosenhahniteHCa3[Si3O9(OH)]Tric.
14.5.10DellaiteCa6Si3O11(OH)2Tric.
14.5.11AfwilliteCa3(HSiO4)2 · 2H2OMon. m : Bb
14.5.12XonotliteCa6(Si6O17)(OH)2Mon. 2/m
14.5.13FoshagiteCa4(Si3O9)(OH)2Tric.
14.5.14HillebranditeCa2(SiO3)(OH)2Orth. mmm (2/m 2/m 2/m) : Cmcm
14.5.15JaffeiteCa6(Si2O7)(OH)6Trig. 3 : P3
14.5.16SuoluniteCa2(H2Si2O7) · H2OOrth.
14.5.17KillalaiteCa6.4(H0.6Si2O7)2(OH)2Mon.
14.5.18OkeniteCa10Si18O46 · 18H2OTric. 1 : P1
14.5.19RiversideiteCa5(HSi3O9)2 · 2H2OOrth.
14.5.20TrabzoniteCa4(Si3O9)(OH)2Orth. mm2 : Ama2
14.5.21GyroliteNaCa16Si23AlO60(OH)8 · 14H2OTric. 1 : P1
14.5.22FoshallasiteCa3[Si2O7] · 3H2O(?)
14.5.23TobermoriteCa4Si6O17(H2O)2 · (Ca · 3H2O)Orth.
14.5.24Clinotobermorite[Ca4Si6O17 · 2H2O] · (Ca · 3H2O)Mon.
14.5.25NekoiteCa3Si6O15 · 7H2OTric. 1 : P1
14.5.26Plombièrite[Ca4Si6O16(OH)2 · 2H2O] · (Ca · 5H2O)Orth.
14.5.27JenniteCa9(Si3O9)2(OH)8 · 8H2OTric.

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for LarniteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Tilley, C.E. (1929) On larnite (calcium orthosilicate, a new mineral) and its associated minerals from the limestone contact-zone of Scawt Hill, Co. Antrim. Mineralogical Magazine: 22: 77-86.
Schairer, J.F. (1929) New mineral names. American Mineralogist: 14: 338-340.
Bridge, T.E. (1966) Bredigite, larnite and γ dicalcium silicates from Marble Canyon. American Mineralogist: 51: 1766-1774.
Moore, P.B. (1973) Bracelets and pinwheels: A topological-geometrical approach to the calcium orthosilicate and alkali sulfate structures. American Mineralogist: 58: 32-42.
Jost, K.H., Ziemer, B., Seydel, R. (1977) Redetermination of the structure of β-dicalcium silicate. Acta Crystallographica: B33: 1696-1700.
Deer, W.A., Howie, R.A., Zussman, J. (1986) Rock-forming minerals, (2nd edition), v. 1B, disilicates and ring silicates: 248-255.
Tsurumi, T., Hirano, Y., Kato, H., Kamiya, T., Daimon, M. (1994) Crystal structure and hydration of belite. Ceramic Transactions: 40: 19-25.
Martínez-Frías, J., Benito, R., Wilson, G., Delgado, A., Boyd, T., and Marti, K. (2004) Analysis and chemical composition of larnite-rich ultrarefractory materials. Journal of Materials Processing Technology: 147: 204–210.
Brenker, F.E., Vincze, L., Vekemans, B., Nasdala, L., Stachel, T., Vollmer, C., Kersten, M., Somogyi, A., Adams, F., Joswig, W., Harris, J.W. (2005) Detection of a Ca-rich lithology in the Earth's deep (>300 km) convecting mantle. Earth and Planetary Science Letters: 236(3-4): 579-587.
Yamnova, N.A., Zubkova, N.V., Eremin, N.N., Zadov, A.E., Gazeev, V.M. (2011) Crystal structure of larnite β-Ca2SiO4 and specific features of polymorphic transitions in dicalcium orthosilicate. Crystallography Reports: 56(2): 210-220.
Xiong, Z., Liu, X., Shieh, S.R., Wang, S., Chang, L., Tang, J., Hong, X., Zhang, Z., Wang, H. (2016) Some thermodynamic properties of larnite (β-Ca2SiO4) constrained by High T/P experiment and/or theoretical simulation. American Mineralogist: 101: 277-288.

Internet Links for LarniteHide

Localities for LarniteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Austria
 
  • Styria
    • Südoststeiermark District
      • Klöch
R. Exel: Die Mineralien und Erzlagerstätten Österreichs (1993)
Canada
 
  • Nunavut
    • Qikiqtaaluk Region
      • Bathurst Island
Mitchell, R.H., and Platt, R.G. (1984): Canadian Journal of Earth Sciences 21(4), 428–436.
Cape Verde
 
  • Sotavento Islands
M.M.S. Cabral Pinto, M.M.V. Silva,R. Hernandez and E.A. Ferreira Da Silva (2011) Mineralogy of stream sediments and soils of Santiago Island, Cape Verde. Goldschmidt Conference Abstracts. Mineralogical Magazine 75:610
Central African Republic
 
  • Nana-Mambéré
    • Lobaye River (Bali River)
Nazarov, M.A., Kurat, G., and Brandstätter, F. (1998): Proceedings of the 61st Annual Meteoritical Society Meeting, Dublin (Ireland), July 27-31, 1998, Abstract 5123.
France
 
  • Occitanie
    • Aveyron
      • Rodez
        • Sévérac-d'Aveyron
Kruszewski, Ł., Gatel, P., Thiéry, V., Moszumańska, I., and Kusy, D. (2018) Crystallochemical Behavior of Slag Minerals and the Occurrence of Potentially New Mineral Species from Lapanouse-de-Sévérac, France. In: Stracher, G.B. (Ed.) Coal and Peat Fires: A Global Perspective, Vol. 5: Case Studies - Advances in Field and Laboratory Research, xx-xx (in press; publication date: November 2018).
Germany
 
  • Hesse
    • Kassel Region
Harmon, R. S., Hoefs, J., & Wedepohl, K. H. (1987). Stable isotope (O, H, S) relationships in Tertiary basalts and their mantle xenoliths from the Northern Hessian Depression, W.-Germany. Contributions to Mineralogy and Petrology, 95(3), 350-369. Hartmann, G., & Wedepohl, K. H. (1990). Metasomatically altered peridotite xenoliths from the Hessian Depression (Northwest Germany). Geochimica et Cosmochimica Acta, 54(1), 71-86. Kramm, U., & Wedepohl, K. H. (1990). Tertiary basalts and peridotite xenoliths from the Hessian Depression (NW Germany), reflecting mantle compositions low in radiogenic Nd and Sr. Contributions to Mineralogy and Petrology, 106(1), 1-8. Mengel, K., Kramm, U., Wedepohl, K. H., & Gohn, E. (1984). Sr isotopes in peridotite xenoliths and their basaltic host rocks from the northern Hessian Depression (NW Germany). Contributions to mineralogy and petrology, 87(4), 369-375. Oehm, J., Schneider, A., & Wedepohl, K. H. (1983). Upper mantle rocks from basalts of the northern Hessian depression (NW Germany). Tschermaks mineralogische und petrographische Mitteilungen, 32(1), 25-48. Wedepohl, K. H. (1983). Die chemische Zusammensetzung der basaltischen Gesteine der nördlichen Hessischen Senke und ihrer Umgebung. Geologisches Jahrbuch Hessen, 111, 261-302. Wedepohl, K. H. (1985). Origin of the Tertiary basaltic volcanism in the northern Hessian Depression. Contributions to Mineralogy and Petrology, 89(2-3), 122-143.
  • Rhineland-Palatinate
    • Mayen-Koblenz District
      • Mayen
Hentschel, G. (1961): Seltene Mineralneubildungen in einem Kalksteineinschluß der Lava des Ettringer Bellerberges, Fortschritte Mineralogie, Vol. 39, 345
in the collection of Christof Schäfer
      • Vordereifel
        • Ettringen
Hentschel, G. (1987): Die Mineralien der Eifelvulkane, Weise (München), 2. Auflage
in the collection of Christof Schäfer
Sharygin, V. V. (2012). Mineralogy of metacarbonate xenolith from alkali basalt, E. Eifel, Germany. In Ore Potential of Alkaline, Kimberlite and Carbonatite Magmatism. Book of Abstracts, XXIX International Conference. Training Program: Alkaline Magmatism of the Earth, Sudak-Moscow, ONTI GEOCHI RAS (pp. 156-158).
    • Vulkaneifel District
      • Daun
        • Üdersdorf
Schüller, W. and Betz, V. (1986) Die Mineralien vom Emmelberg. Lapis, 11(12), 11-25.; Blaß, G. and Kruijen, F. (2015) Neuigkeiten aus der Vulkaneifel (II/2015). Mineralien-Welt, 26(5), 80-90.
Greenland
 
  • Sermersooq
    • Kangerlussuaq Fjord
Nielsen, T.F.D., Solovova, I.P. Veksler, I.V. (1997): Contributions to Mineralogy and Petrology 126–124, 331–344.
Israel
 
  • Southern District (HaDarom District)
    • Dead Sea
Gross S (1984) Occurrence of ye'elimite and ellestadite in an unusual cobble from the "pseudo-conglomerate" of the Hatrurim basin, Israel. Geological Survey of Israel Current Research, 1-4
    • Tamar Regional Council
Sharygin, V.V., Sokol, E.V. & Vapnik, Ye. (2008): Minerals of the pseudobinary perovskite-brownmillerite series from combustion metamorphic larnite rocks of the Hatrurim Formation (Israel). Russian Geology and Geophysics 49, 709-726.
Galuskina, I.O., Galuskin, E.V., Vapnik, Y., Prusik, K., Stasiak, M., Dzierżanowski, P., Murashko, M. (2017): Gurimite, Ba3(VO4)2, and hexacelsian, BaAl2Si2O8 – two new minerals from schorlomite-rich paralava of the Hatrurim Complex, Negev Desert, Israel. Mineralogical Magazine, 81, 1009-1019.
Galuskin, E.V., Galuskina, I.O., Gfeller, F., Krüger, B., Kusz, J., Vapnik, Y., Dulski, M., Dzierżanowski, P. (2016): Silicocarnotite, Ca5[(SiO4)(PO4)](PO4), a new ‘old’ mineral from the Negev Desert, Israel, and the ternesite-silicocarnotite solid solution: indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant. European Journal of Mineralogy: 28: 105-12.; Krzątała, Arkadiusz & Panikorovskii, Taras & Galuskina, Irina & Galuskin, Evgeny. (2018). Dynamic Disorder of Fe3+ Ions in the Crystal Structure of Natural Barioferrite. Minerals. 8. 340. 10.3390/min8080340.
Sharygin, Victor V.; Yakovlev, Grigory A.; Wirth, Richard; Seryotkin, Yurii V.; Sokol, Ellina V.; Nigmatulina, Elena N.; Karmanov, Nikolai S.; Pautov, Leonid A. (2019) Nataliakulikite, Ca4Ti2(Fe3+,Fe2+)(Si,Fe3+,Al)O11, a New Perovskite-Supergroup Mineral from Hatrurim Basin, Negev Desert, Israel. Minerals 9, no. 11: 700.
Sokol, E.V., Seryotkin, Y.V., Kokh, S.N., Vapnik, Ye., Nigmatulina, E.N., Goryainov, S.V., Belogub, E.V., Sharygin, V.V. (2015): Flamite, (Ca,Na,K)2(Si,P)O4, a new mineral from ultrahigh-temperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel. Mineralogical Magazine, 79, 583-596.
Galuskin, E.V., Galuskina, I.O., Gfeller, F., Krüger, B., Kusz, J., Vapnik, Y., Dulski, M., Dzierżanowski, P. (2016): Silicocarnotite, Ca5[(SiO4)(PO4)](PO4), a new ‘old’ mineral from the Negev Desert, Israel, and the ternesite-silicocarnotite solid solution: indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant. European Journal of Mineralogy: 28: 105-12.
Italy
 
  • Lazio
    • Metropolitan City of Rome Capital
Federico, M., Peccerillo, A., (2002): Mineral chemistry and petrogenesis of granular ejecta from the Alban Hills volcano, Mineralogy and Petrology, Vol 74, 223-252
Jordan
 
  • Amman Governorate
Pitty, A. F., & Alexander, W. R. (2010). A natural analogue study of cement buffered, hyperalkaline groundwaters and their interaction with a repository host rock IV: an examination of the Khushaym Matruk (central Jordan) and Maqarin (northern Jordan) sites. NDA-RWMD Technical Report, NDA, Moors Row, UK.
    • Hashem region
      • Lisdan-Siwaga Fault
        • Siwaga
          • Tulul al Hammam
Sokol, E.V.; Kokh, S.N.; Seryotkin, Y.V.; Deviatiiarova, A.S.; Goryainov, S.V.; Sharygin, V.V.; Khoury, H.N.; Karmanov, N.S.; Danilovsky, V.A.; Artemyev, D.A. Ultrahigh-Temperature Sphalerite from Zn-Cd-Se-Rich Combustion Metamorphic Marbles, Daba Complex, Central Jordan: Paragenesis, Chemistry, and Structure. Minerals 2020, 10, 822.
  • Irbid Governorate
    • Maqarin area
Pitty, A. F., & Alexander, W. R. (2010). A natural analogue study of cement buffered, hyperalkaline groundwaters and their interaction with a repository host rock IV: an examination of the Khushaym Matruk (central Jordan) and Maqarin (northern Jordan) sites. NDA-RWMD Technical Report, NDA, Moors Row, UK.
Kazakhstan
 
  • Karaganda Region
    • Zhanaarka
      • Atasu Mine
Krigman, L.D., Veksler, I.V., Ishbulatov, R.A., and Nielsen, T.F.D. (2001) in: Proceedings of the EUG XI, Strasbourg, France, 8–12 April, European Union of Geosciences, J. Conf. (Abstracts) 6, 578.
Middle East
 
Gross, S. (1977): The Mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel, Bulletin no. 70, 80 pp.
New Zealand
 
  • Northland Region
    • Kaipara District
Mason, B. (1957): Larnite, scawtite, and hydrogrossular from Tokatoka, New Zealand. American Mineralogist 42, 379-392.
Baker, C.K., Black, P.M. (1980) Assimilation and metamorphism at a basalt limestone contact, Tokatoka, New Zealand. Mineralogical Magazine, Vol. 43:330, 797-807.
Norway
 
  • Møre og Romsdal
    • Kristiansund
Bugge, T., Prestvik, T., & Rokoengen, K. (1980). Lower tertiary volcanic rocks off Kristiansund—mid Norway. Marine Geology, 35(4), 277-286. Prestvik, T., Torske, T., Sundvoll, B., & Karlsson, H. (1999). Petrology of early Tertiary nephelinites off mid-Norway. Additional evidence for an enriched endmember of the ancestral Iceland plume. Lithos, 46(2), 317-330.
Palestine
 
  • West Bank
    • Bethlehem Governorate
Galuskina, I. O., Gfeller, F., Galuskin, E. V., Armbruster, T., Vapnik, Y., Dulski, M., ... & Murashko, M. (2018). New minerals with modular structure derived from hatrurite from the pyrometamorphic rocks, part IV: Dargaite, BaCa 12 (SiO 4) 4 (SO 4) 2 O 3, from Nahal Darga, Palestinian Autonomy. Mineralogical Magazine, 1-22.
    • Jericho Governorate
Seryotkin Y.V., Sokol E.V. & Kokh S.N. 2012: Natural pseudowollastonite: Crystal structure, associated minerals, and geological context. Lithos, vol. 134-135, pp. 75-90; Seryotkin, Yu.V., Sokol, E.V., Kokh, S.N. (2012): Natural pseudowollastonite: Crystal structure, associated minerals, and geological context. Lithos, 134–135, 75-90; Sokol, E.V., Gaskova, O.L., Kokh, S.N., Kozmenko, O.A., Seryotkin, Y.V., Vapnik, Y., Murashko, M.N. (2011): Chromatite and its Cr3+- and Cr6+-bearing precursor minerals from the Nabi Musa Mottled Zone complex, Judean Desert. American Mineralogist 96, 659-674.
    • Quds Governorate
Galuskin, E., Galuskina, I., Kusz, J., Armbruster, T., Marzec, K., Dzierżanowski, P., Murashko, M. (2014): Vapnikite Ca3UO6 - a new double perovskite mineral from pyrometamorphic larnite rocks of the Jabel Harmun, Palestine Autonomy, Israel. Mineralogical Magazine, 78, 571-581; Galuskin, E. V., Galuskina, I. O., Widmer, R., & Armbruster, T. (2018). First natural hexaferrite with mixed β‴-ferrite (β-alumina) and magnetoplumbite structure from Jabel Harmun, Palestinian Autonomy. European Journal of Mineralogy, 30(3), 559-567.
Romania
 
  • Brașov
    • Racoş
Szakáll, S., Kristály, F., 2010. Mineralogy of Székelyland, Eastern Transylvania, Romania. Sfântu Gheorghe-Miercurea Ciuc-Târgu Mureş. 2010.
  • Harghita
    • Odorheiu Secuiesc (Székelyudvarhely; Oderhellen)
      • Racoş (Racoşu de Jos)
Szakáll, S. & Kristály, F., Eds. (2010): Mineralogy of Székelyland, Eastern Transylvania, Romania. Csík County Nature and Conservation Society, Miercurea-Ciuc, Romania, 321 pp.
Russia
 
  • Chelyabinsk Oblast
Sharygin, V. V. (2015). Mayenite-supergroup minerals from burned dump of the Chelyabinsk Coal Basin. Russian Geology and Geophysics, 56(11), 1603-1621.
Zateeva, S. N., Sokol, E. V., & Sharygin, V. V. (2007). Specificity of pyrometamorphic minerals of the ellestadite group. Geology of Ore Deposits, 49(8), 792-805.
Cesnokov, B., Kotrly, M. and Nisanbajev, T. (1998): Brennende Abraumhalden und Aufschlüsse im Tscheljabinsker Kohlenbecken - eine reiche Mineralienküche. Mineralien-Welt, 9 (3), 54-63 (in German).
    • Kopeysk
Pekov, I. (1998) Minerals First discovered on the territory of the former Soviet Union 369p. Ocean Pictures, Moscow
  • Irkutsk Oblast
    • Narin-Kunta
Armbruster, T., Lazic, B., Gfeller, F., Galuskin, E.V., Galuskina, I.O., Savelyeva, V.B., Zadov, A.E., Pertsev, N.N., Dzierżanowski, P. (2011): Chlorine content and crystal chemistry of dellaite from the Birkhin gabbro massif, Eastern Siberia, Russia. Mineralogical Magazine, 75, 379-394.
  • Kabardino-Balkaria
    • Baksan Valley
Galuskin, E.V., Galuskina, I.O., Kusz, J., Gfeller, F., Armbruster, T., Bailau, R., Dulski, M., Gazeev, V.M., Pertsev, N.N., Zadov, A.E., Dzieržanowski, P. (2015): Mayenite supergroup, part II: Chlorkyuygenite from Upper Chegem, northern Caucasus Kabardino-Balkaria, Russia, a new microporous mayenite supergroup mineral with “zeolitic” H2O. European Journal of Mineralogy. 27, 113-122; Bailau, R., Gałuskin, E. V., Gazeev, V. M., & Gałuskina, I. O. Raman investigation of potential new mineral-Fe 3-analogue of wadalite from calcareous-silicate xenoliths of the Upper Chegem caldera, Northern Caucasus, Russia.
        • Lakargi Mountain
Galuskina, I.O., Krüger, B., Galuskin, E.V. ,Armbruster, T., Gazeev, V.M., Włodyka, R., Dulski, M. & Dzierżanowski, P. (2015): Fluorchegemite, Ca7(SiO4)3F2, a new mineral from the edgrewitebearing endoskarn zone of an altered xenolith in ignimbrites from Upper Chegem Caldera, Northern Caucasus, Kabardina-balkaria, Russia; Occurrence, crystal structure, and new data on the mineral assemblages. Canadian Mineralogist. 53, 325-344.; Galuskina, I. O., Galuskin, E. V., Kusz, J., Dzierżanowski, P., Prusik, K., Gazeev, V. M., ... & Dubrovinsky, L. (2013). Dzhuluite, Ca3SbSnFe3+ 3O12, a new bitikleite-group garnet from the Upper Chegem Caldera, Northern Caucasus, Kabardino-Balkaria, Russia. European Journal of Mineralogy, 25(2), 231-239
Galuskina, I., Galuskin, E.V., Dzieržanowski, P., Gazeev, V., Prusik, K., Pertsev, N., Winiarski, A., Zadov, A., Wrzalik, R. (2010): Toturite Ca3Sn2Fe2SiO12 - a new mineral species of the garnet group. American Mineralogist, 95, 1305-1311
Galuskin, E. V.; Gazeev, V. M.; Lazic, B.; Armbruster, T.; Galuskina, I. O.; Zadov, A. E.; Pertsev, N. N.; Wrzalik, R.; Dzierzanowski, P.; Gurbanov, A. G. & Bzowska, G. (2009): Chegemite Ca7(SiO4)3(OH)2 - a new humite-group calcium mineral from the Northern Caucasus, Kabardino-Balkaria, Russia. European Journal of Mineralogy 21, 1045-1059.
  • Krasnoyarsk Krai
    • Maimecha and Kotui Rivers Basin
Henderson, C. M. B., Kogarko, L. N., & Plant, D. A. (1999). Extreme closed system fractionation of volatile-rich, ultrabasic peralkaline melt inclusions and the occurrence of djerfisherite in the Kugda alkaline complex, Siberia. Mineralogical Magazine, 63(3), 433-438.
South Ossetia
 
  • Greater Caucasus Mountain Range
    • Kel’ volcanic area
      • Shadil-Khokh volcano
Galuskina, I.O., Krüger, B., Galuskin, E.V. ,Armbruster, T., Gazeev, V.M., Włodyka, R., Dulski, M. & Dzierżanowski, P. (2015): Fluorchegemite, Ca7(SiO4)3F2, a new mineral from the edgrewitebearing endoskarn zone of an altered xenolith in ignimbrites from Upper Chegem Caldera, Northern Caucasus, Kabardina-balkaria, Russia; Occurrence, crystal structure, and new data on the mineral assemblages. Canadian Mineralogist. 53, 325-344.; Środek, D., Juroszek, R., Krüger, H., Krüger, B., Galuskina, I., & Gazeev, V. (2018). New Occurrence of Rusinovite, Ca10 (Si2O7) 3Cl2: Composition, Structure and Raman Data of Rusinovite from Shadil-Khokh Volcano, South Ossetia and Bellerberg Volcano, Germany. Minerals, 8(9), 399.
Tanzania
 
  • Arusha region
    • Ngorongoro District
Martínez-Frías, J., Benito, R., Wilson, G., Delgado, A., Boyd, T., and Marti, K. (2004): Journal of Materials Processing Technology 147, 204–210.; Henderson, C. M. B., Kogarko, L. N., & Plant, D. A. (1999). Extreme closed system fractionation of volatile-rich, ultrabasic peralkaline melt inclusions and the occurrence of djerfisherite in the Kugda alkaline complex, Siberia. Mineralogical Magazine, 63(3), 433-438.
Turkey
 
  • Trabzon Province
Sebastian Axt; Yücel, C., Temizel, R., Abdioğlu, E., Arslan, M., & Yağcıoğlu, U. C. (2014). Origin of analcimes in the Tertiary volcanic rocks from the Eastern Pontides (NE Turkey): a textural, mineralogical and geochemical approach. Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 191(3), 277-299.
UK
 
  • Northern Ireland
    • Co. Antrim
      • Glenoe
Henmi, C., Kusachi, I., Henmi, K., Sabine, P.A. and Young, B.R. (1973) A new mineral bicchulite, the natural analogue of gehlenite hydrate, from Fuka, Okayama Prefecture, Japan and Carneal, County Antrim, Northern Ireland, Mineralogical Journal, 7, 243-251; Nawaz, R. (1977) A second occurrence of killalaite. Mineralogical Magazine, 41, 546-548.; Sabine, P.A., Styles, M.T. and Young, B.R. (1985) The Nature and Paragenesis of Natural Bredigite and Associated Minerals from Carneal and Scawt Hill, Co. Antrim. Mineralogical Magazine 49:663-670.
      • Larne
McConnell, J.D.C. (1954) The hydrated calcium silicates riversideite, tobermorite, and plombierite. Mineralogical Magazine, 30(224), 293-304.; Harker, R.I. (1965) Scawtite and its synthesis. Mineralogical Magazine, vol. 34, n° 268, 232-236 (referring to McConnell, 1954).; Embrey, Peter G. (1978) Fourth supplementary list of British minerals. Mineralogical Magazine, 42, 169-177.;
Tilley, C.E. (1929) On larnite (calcium orthosilicate, a new mineral) and its associated minerals from the limestone contact-zone of Scawt Hill, Co. Antrim. Mineralogical Magazine: 22: 77-86.; American Mineralogist: 33: 786; Mineralogical Magazine 1942 26 : 190-196; Tilley, C.E., Alderman, A.R. (1934) Progressive metasomatism in the flint nodules of the Scawt Hill contact-zone. Mineralogical Magazine: 23: 513-518.; McConnell, J.D.C. (1955) The hydration of larnite (β−Ca2SiO4) and bredigite (α1−Ca2SiO4) and the properties of the resulting gelatinous mineral plombierite. Mineralogical Magazine: 30: 672-680.
  • Scotland
    • Argyll and Bute
      • Isle of Mull
Cann, J.R. (1965) The metamorphism of amygdales at 'S Airde Beinn, Northern Mull. Mineralogical Magazine, vol. 34, n° 268, 92-106.; http://jncc.defra.gov.uk/pdf/gcrdb/GCRsiteaccount21.pdf
    • Highland
      • Caol and Mallaig
        • Isle of Muck
Tilley, C.E. (1947) The gabbro-limestone contact zone of Camas Mor, Muck, Inverness-shire. Comptes Rendus de la Société geologique de Finlande, No. 140, 97–105.
      • Fort William and Ardnamurchan
        • Ardnamurchan
American Mineralogist 35:1080
Handbook of Mineralogy - Anthony, Bideaux, Bladh, Nichols; Agrell, S.O. (1965) Polythermal Metamorphism of Limestones at Kilchoan, Ardnamurchan. Mineralogical Magazine, vol. 34, n° 268, 1-15.; Embrey, P.G. (1978) Fourth supplementary list of British minerals. Mineralogical Magazine, vol. 42, n° 322, 169-177 (referring to Agrell);
Ukraine
 
  • Donetsk Oblast
    • Donetsk
      • Kalinin coal mine
Шарыгин, В. В. (2015). Минералогия метакарбонатной породы из горелого террикона угольной шахты им. Калинина, г. Донецк. Минералогия техногенеза–2015, Миасс, Имин УрО РАН, 13-40. (Mineralogy of a Metacarbonate Rock from a Burned Dump of the Kalinin Coal Mine, Donetsk)
USA
 
  • California
    • Inyo Co.
      • Darwin Hills
        • Darwin Mining District
          • Darwin
Am Min (1962) 47:1003-1005
  • Connecticut
    • Middlesex Co.
      • Portland
        • Collins Hill
          • Strickland pegmatite (Strickland-Cramer Quarry; Strickland-Cramer Mine; Strickland-Cramer Feldspar-Mica Quarries)
Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy.
  • Texas
    • Brewster Co.
      • Christmas Mountains
Rocks & Minerals (1991): 66:3: 196-224.
    • Culberson Co.
      • Apache Peak area
Rocks & Minerals: 66(3): 196-224.; Bridge, T.E. (1966) Bredigite, larnite and γ dicalcium silicates from Marble Canyon. American Mineralogist: 51: 1766-1774.
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2021, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us - Report a bug/vulnerability Current server date and time: January 28, 2021 03:11:37 Page generated: January 11, 2021 18:15:32
Go to top of page