Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery


This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About LawrenciteHide

John Lawrence Smith
White (unoxidized), green to brown (oxidized)
Specific Gravity:
Crystal System:
Named in 1845 by Charles Thomas Jackson in honor of John Lawrence Smith (17 December 1818, near Charleston, South Carolina, USA - 12 October 1883, Louisville, Kentucky, USA), chemist, mineralogist, and student of meteorites. He discovered the mineral. He also invented the inverted microscope.
Isostructural with:

Classification of LawrenciteHide

Approved, 'Grandfathered' (first described prior to 1959)

A : Simple halides, without H2O
B : M:X = 1:2

2 : AX2

8 : Halides - Fluorides, Chlorides, Bromides and Iodides; also Fluoborates and Fluosilicates
11 : Halides of Fe and Ni

Physical Properties of LawrenciteHide

White (unoxidized), green to brown (oxidized)
On {0001} ?
3.16 g/cm3 (Measured)    3.26 g/cm3 (Calculated)
Measured on synthetic material

Optical Data of LawrenciteHide

Uniaxial (-)
RI values:
nω = 1.576 nε = 1.576
Max Birefringence:
δ = 0.000
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:

Chemical Properties of LawrenciteHide

IMA Formula:

Crystallography of LawrenciteHide

Crystal System:
Class (H-M):
3m (3 2/m) - Hexagonal Scalenohedral
Space Group:
Cell Parameters:
a = 3.58 Å, c = 17.57 Å
a:c = 1 : 4.908
Unit Cell V:
195.02 ų (Calculated from Unit Cell)
Crystals are thin hexagonal plates {0001} (artificial). Massive only in natural material.

Type Occurrence of LawrenciteHide

Other Language Names for LawrenciteHide

Relationship of Lawrencite to other SpeciesHide

Other Members of this group:
ScacchiteMnCl2Trig. 3m (3 2/m) : R3m

Related Minerals - Nickel-Strunz GroupingHide

3.AB.FluorocronitePbF2Iso. m3m (4/m 3 2/m) : Fm3m
3.AB.15SellaiteMgF2Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
3.AB.20ScacchiteMnCl2Trig. 3m (3 2/m) : R3m
3.AB.25FluoriteCaF2Iso. m3m (4/m 3 2/m) : Fm3m
3.AB.25FrankdicksoniteBaF2Iso. m3m (4/m 3 2/m) : Fm3m
3.AB.25StrontiofluoriteSrF2Iso. m3m (4/m 3 2/m) : Fm3m
3.AB.30Tveitite-(Y)(Y, Na)6Ca6Ca6F42Trig. 3 : R3
3.AB.35Gagarinite-(Y)NaCaYF6Hex. 6/m : P63/m
3.AB.35Polezhaevaite-(Ce)NaSrCeF6Hex. 6/m : P63/m

Related Minerals - Dana Grouping (8th Ed.)Hide 3m (3 2/m) : R3m

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

8.11.2HydromolysiteFeCl3 · 6H2O
8.11.3RokühniteFeCl2 · 2H2OMon.
8.11.5ErythrosideriteK2[Fe3+Cl5(H2O)]Orth. mmm (2/m 2/m 2/m) : Pnma
8.11.6RinneiteK3Na[FeCl6]Trig. 3m (3 2/m) : R3c
8.11.7Kremersite(NH4,K)2[Fe3+Cl5(H2O)]Orth. mmm (2/m 2/m 2/m)
8.11.8IowaiteMg6Fe3+2(OH)16Cl2 · 4H2OTrig. 3m (3 2/m) : R3m
8.11.9NickelbischofiteNiCl2 · 6H2OMon.

Other InformationHide

Extremely hygroscopic; readily soluble in water.

Gains water and oxidizes to ferric chloride (molysite).
Special Storage/
Display Requirements:
Extremely hygroscopic
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Industrial Uses:

References for LawrenciteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Jackson, C.T. (1845) Remarks on the Alabama meteoric iron, with a chemical analysis of the drops of green liquid which exude from it. American Journal of Science: 48: 146.
Hayes, A.A. (1845) Letter from Mr A.A. Hayes on the same subject, with remarks on the origin of the chlorine found in the Alabama Iron, and a description of new methods employed in the analysis of meteoric irons. American Journal of Science: 48: 153.
Smith, J.L. (1855) Memoir on Meteorites - A description of five new meteoric irons, with some theoretical considerations on the origin of Meteorites based on their physical and chemical properties. American Journal of Science: 19: 153-163 (159).
Smith, J.L. (1877) Examination of the Waconda meteoric stone, Bates County meteoric iron and Rockingham County meteoric iron. American Journal of Science: 13: 211-214.
Daubrée, G.A. (1877) Observations sur la structure intérieure d'une des masses de fer natif d'Ovifak. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences: 84: 66-70.
Smith, J.L. (1877) Art. XXIV. Examination of the Waconda meteoric stone, Bates County meteoric iron and Rockingham County meteoric iron. American Journal of Science: 13: 211-214.
Biltz, Birk (1924) Zeitschrift für anorganische und allgemeine Chemie, Hamburg, Leipzig: 134: 125.
Ferrari, A., Celeri, Giorgio (1929) Rend., Reale accademia nazionale dei Lincei, Rome: 9: 782.
Pauling, L. (1929) Proceedings of the National Academy of Sciences, Washington: 15: 709.
Zambonini, Ferruccio (1935) Mineralogia Vesuviana. second edition with Quercigh, 463 pp., Naples: 84.
Palache, C., Berman, H., Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Volume II: Halides, Nitrates, Borates, Carbonates, Sulfates, Phosphates, Arsenates, Tungstates, Molybdates, Etc. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged: p. 40.
Herpin, A., Mériel, P. (1957) Étude par diffraction de neutrons à 4,2° K de la structure antiferromagnétique de Cl2 Fe. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences: 245: 650-653.
Wilkinson, M.K., Cable, J.W., Wollan, E.O., Koehler, W.C. (1959) Neutron diffraction investigations of the magnetic ordering in FeBr2, CoBr2, FeCl2, and CoCl2. Physical Review: 113: 497-507 .
Ferrari, A., Braibanti, A., Bigliardi, G. (1963) Refinement of the crystal structure of NiCl2 and of unit-cell parameters of some anhydrous chlorides of divalent metals. Acta Crystallographica: 16: 846-847.
Vettier, C., Yelon, W.B. (1975) The structure of FeCl2 at high pressures. Journal of Physics and Chemistry of Solids: 36: 401-405.

Internet Links for LawrenciteHide

Localities for LawrenciteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
  • Chaco Province
    • Doce de Octubre Department
      • Gran Chaco
Kurat, G., Zinner, E., Varela, M. E. & Ntaflos, T. (2009) SiGrMet05: A Silicate-Graphite-Metal Inclusion from the Campo del Cielo (IAB) Iron (abstract). Lunar and Planetary Science XL, id.1536. (March 2009)
  • Northern Territory
    • Central Desert Region
      • Dneiper Station
        • Boxhole Crater
Madigan, C.T. (1940) The Boxhole meteoritic iron, Central Australia, The Mineralogical Magazine and Journal of the Mineralogical Society, Vol. XXV, No. 168, March 1940.
      • Huckitta Station
Madigan, C.T. (1939), The Huckitta meteorite, Central Australia, Mineralogical Magazine, Vol. 25, No. 165, pp 353-371, June 1939
  • South Australia
    • Murray Basin
      • Murray Mallee
        • Pinnaroo
Alderman, A. R. (1940) A siderolite from Pinnaroo, South Australia. Transactions Royal Society South Australia. 64: 109-113.
  • Ontario
    • Sudbury District
      • Levack Township
Ames, D.E., Kjarsgaard, I. M. & Douma, S L. (2003) Sudbury Ni-Cu-PGE ore mineralogy compilation: Sudbury Targeted Geoscience Initiative (TGI). Geological Survey of Canada, Open File 1787.
  • Guangxi
    • Hechi
      • Nandan County
        • Lihu - Yaochai area
No reference listed
Czech Republic
  • Vysočina Region
    • Třebíč District
      • Námešť nad Oslavou
        • Vícenice
Skála R., Frýda J., Sekanina J.: Mineralogy of the Vícenice octahedrite. Journal of the Geological Society, 2000, 45, 1-2, 175-192.
  • Greenland
    • Qeqertalik
      • Disko Island
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 40.
  • Veszprém County
    • Veszprém
      • Nagyvázsony
Szakáll & Gatter: Hun. Min. Spec., 1993
  • Campania
    • Naples
      • Somma-Vesuvius Complex
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 40.
  • Tuscany
    • Massa-Carrara Province
      • Bagnone
D'Orazio, M., Folco, L., and Perchiazzi, N. (2004) The Bagnone iron meteorite (Tuscany, Italy): History, mineralogy, and chemical classification. Meteoritics & Planetary Science, 39(S8), A133-A138.
  • Tlaxcala
    • Nativitas
Buchwald, Vagn F. (1975) Handbook of Iron Meteorites. University of California Press, 1418 pp.
  • Luzon
    • Calabarzon Region
      • Quezon province
Hill Jr., L. C. (1974) Bondoc: An Unusual Brecciated Meteorite. Master's Thesis: Arizona State University. 109 pages.
  • Chelyabinsk Oblast
Cesnokov, B., Kotrly, M. and Nisanbajev, T. (1998): Brennende Abraumhalden und Aufschlüsse im Tscheljabinsker Kohlenbecken - eine reiche Mineralienküche. Mineralien-Welt, 9 (3), 54-63 (in German).
  • Kamchatka Krai
  • Žilina Region
    • Námestovo Co.
      • Námestovo
        • Slanica
Koděra, M. et al., 1986 a 1990 : Topografická mineralógia Slovenska, diel 1- 3, Veda – Vydavateľstvo SAV, Bratislava, 1990, 1 – 1590k
  • Alabama
    • Blount Co.
      • Summit
Mineralogy of Alabama Geol Surv Ala. Bull 120
    • Monroe Co.
Mineralogy of Alabama Geol Surv Ala. Bull 120
  • Arizona
    • Coconino Co.
      • Flagstaff
        • Elden Mountain
Galbraith, F.W. (1947), Minerals of AZ, AZ Bur. Mines Bull. 153: 10.
      • Meteor Crater and vicinity
Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 129, 273.
  • Georgia
    • Jenkins Co.
Minerals of Georgia: Their properties and occurrences. Robert Cook GGWRD Bull 92
    • Walton Co.
Henderson, E., & Perry, S. (1951). A Restudy of the Social Circle, Georgia, Meteorite. American Mineralogist, 36(7-8), 603-608.
    • Whitfield Co.
      • Dalton
Wirt Tassin (1902) Descriptive catalogue of the meteorite collection in the United States National Museum to January 1, 1902
  • Kentucky
    • Barren Co.
      • Glasgow
Buchwald, V. F. (1975) Handbook of Iron Meteorites. Volume 2. University of California Press.
    • Christian Co.
Tassin, W. (1905) The Mount Vernon meteorite. Proc. U. S. Natl.Mus.,vol.28,pp. 213-217.
Dana,E.S,1892,A System of Mineralogy,6th edition
      • Madison
        • Deep Springs Farm
Venable,F.P (1890) Two New Meteoric Irons: Elisha Mitchell Scientific Society,University of North Carolina,May 1890
  • Tennessee
    • Claiborne Co.
C. R. Acad. Sci. 84 (1877), 69
    • Cumberland Co.
Kunz, G.F. (1887) On some American Meteorites: American Journal of Arts and Science (3rd Series) 34: 467-477.; Farrington, O. C. (1915) Catalogue of the Meteorites of North America: Memoirs of the National Academy of Sciences, vol. XIII. Washington, DC. [Available as Google ebook]
    • DeKalb Co.
      • Smithville
Travis A. Paris (2011) Tennessee Mineral Locality Index. Rocks & Minerals 86:300-328
  • Texas
    • Ector Co.
      • Odessa
Beck, C. W. and La Paz, L. (1951), The Odessa, Texas, Siderite (ECN =+ 1025,318). Contributions of the Meteoritical Society, 5: 27–33
  • Virginia
    • Henry Co.
Minerals of Virginia 1990 by R. V. Dietrich
  • Wisconsin
    • Walworth Co.
      • Zenda
Berquist, Goodwin F., Jr. (ed.) / Transactions of the Wisconsin Academy of Sciences, Arts and Letters volume LII (1963) Read, William F. The Zenda meteorite, pp. 153-158
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: July 19, 2019 18:12:47 Page generated: July 13, 2019 02:06:20
Go to top of page