Majakite
This page is currently not sponsored. Click here to sponsor this page.
About Majakite
Formula:
PdNiAs
Colour:
Grayish white, but lilac-gray when intergrown with native silver, and distinctly rosy with a soft lilac tint with polarite, and grayish-white with a greenish tint with stannopalladinite
Hardness:
6
Specific Gravity:
9.33
Crystal System:
Hexagonal
This page provides mineralogical data about Majakite.
Classification of Majakite
Approved
First published:
1976
2/A.05-110
2.AC.25e
2 : SULFIDES and SULFOSALTS (sulfides, selenides, tellurides; arsenides, antimonides, bismuthides; sulfarsenites, sulfantimonites, sulfbismuthites, etc.)
A : Alloys
C : Alloys of metalloids with PGE
2 : SULFIDES and SULFOSALTS (sulfides, selenides, tellurides; arsenides, antimonides, bismuthides; sulfarsenites, sulfantimonites, sulfbismuthites, etc.)
A : Alloys
C : Alloys of metalloids with PGE
2.4.16.1
2 : SULFIDES
4 : AmBnXp, with (m+n):p = 2:1
2 : SULFIDES
4 : AmBnXp, with (m+n):p = 2:1
3.12.27
3 : Sulphides, Selenides, Tellurides, Arsenides and Bismuthides (except the arsenides, antimonides and bismuthides of Cu, Ag and Au, which are included in Section 1)
12 : Sulphides etc. of the platinum metals
3 : Sulphides, Selenides, Tellurides, Arsenides and Bismuthides (except the arsenides, antimonides and bismuthides of Cu, Ag and Au, which are included in Section 1)
12 : Sulphides etc. of the platinum metals
Physical Properties of Majakite
Transparency:
Opaque
Colour:
Grayish white, but lilac-gray when intergrown with native silver, and distinctly rosy with a soft lilac tint with polarite, and grayish-white with a greenish tint with stannopalladinite
Hardness:
6 on Mohs scale
Density:
9.33 g/cm3 (Measured) 10.5 g/cm3 (Calculated)
Comment:
Measured on synthetic material
Optical Data of Majakite
Anisotropism:
Weak, without color effects
Bireflectance:
None
Reflectivity:
440nm | R=47.4% |
480nm | R=50.5% |
520nm | R=52.3% |
560nm | R=54.4% |
600nm | R=55.8% |
640nm | R=56.7% |
680nm | R=57.9% |
720nm | R=59.0% |
Graph shows reflectance levels at different wavelengths (in nm). Top of box is 100%. Peak reflectance is 59.0%.
Colour in reflected light:
Grayish white, but lilac-gray when intergrown with native silver, distinctly rosy with a soft lilac tint with polarite, and grayish-white with a greenish tint with stannopalladinite
Chemical Properties of Majakite
Formula:
PdNiAs
Elements listed:
Crystallography of Majakite
Crystal System:
Hexagonal
Cell Parameters:
a = 6.06 Å, c = 7.2 Å
Ratio:
a:c = 1 : 1.188
Unit Cell V:
228.99 ų (Calculated from Unit Cell)
Crystal Structure
Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File Best | x | y | z | a | b | c
CIF File Best | x | y | z | a | b | c
Rotation
Stop | Start
Stop | Start
Labels
Console Off | On | Grey | Yellow
Console Off | On | Grey | Yellow
Data courtesy of the American Mineralogist Crystal Structure Database. Click on an AMCSD ID to view structure
ID | Species | Reference | Link | Year | Locality | Pressure (GPa) | Temp (K) |
---|---|---|---|---|---|---|---|
0014389 | Majakite | Evstigneeva T, Kabalov Y, Schneider J (2000) Crystal structure of PdNiAs, ordered member of isomorphous series Pd2As-Ni2As Materials Science Forum 321 700-705 | 2000 | synthetic | 0 | 293 |
CIF Raw Data - click here to close
X-Ray Powder Diffraction
Powder Diffraction Data:
d-spacing | Intensity |
---|---|
2.65 Å | (100) |
2.30 Å | (50) |
2.19 Å | (70) |
1.988 Å | (100) |
Type Occurrence of Majakite
General Appearance of Type Material:
Intergrowths with other platinum group minerals in chalcopyrite and talnakhite ores. Often occurs as rounded
or oval inclusions (0.001-0.1 mm) in polarite and also as intergrowths with stannopalladinite.
or oval inclusions (0.001-0.1 mm) in polarite and also as intergrowths with stannopalladinite.
Place of Conservation of Type Material:
1) A. E. Fersman Mineralogical Museum, Academy of Sciences,
Moscow, Russia.
2) Mineralographic Laboratory, IGEM, Academy of Sciences, Russia.
Moscow, Russia.
2) Mineralographic Laboratory, IGEM, Academy of Sciences, Russia.
Geological Setting of Type Material:
Copper-nickel sulfide deposit
Associated Minerals at Type Locality:
Reference:
Genkin, A.D., Evstigneeva, T.L., Troneva, N.V., Vyal´sov, L.N. (1976) Majakite, PdNiAs, a new mineral from copper-nickel sulfide ores. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva: 105(6): 698-703.
Synonyms of Majakite
Other Language Names for Majakite
Common Associates
Associated Minerals Based on Photo Data:
3 photos of Majakite associated with Plumbopolarite | Pd(Pb,Bi) |
3 photos of Majakite associated with Copper | Cu |
3 photos of Majakite associated with Tetraferroplatinum | PtFe |
2 photos of Majakite associated with Unnamed (Pd2Pb) | Pd2Pb |
2 photos of Majakite associated with Stannopalladinite | (Pd,Cu)3Sn2 |
2 photos of Majakite associated with Küstelite | Ag |
2 photos of Majakite associated with Polarite | Pd(Bi,Pb) |
1 photo of Majakite associated with Altaite | PbTe |
1 photo of Majakite associated with Mertieite-I | Pd11(Sb,As)4 |
1 photo of Majakite associated with Sobolevskite | PdBi |
Related Minerals - Nickel-Strunz Grouping
2.AC. | Törnroosite | Pd11As2Te2 | Iso. m3m (4/m 3 2/m) : Fd3m |
2.AC.05a | Atheneite | Pd2As0.75Hg0.25 | Hex. 6 m2 : P62m |
2.AC.05b | Vincentite | Pd3As | Tet. |
2.AC.10c | Arsenopalladinite | Pd8(As,Sb)3 | Tric. 1 : P1 |
2.AC.10b | Mertieite-II | Pd8Sb2.5As0.5 | Trig. 3m (3 2/m) : R3c |
2.AC.10a | Stillwaterite | Pd8As3 | Trig. |
2.AC.15a | Isomertieite | Pd11Sb2As2 | Iso. m3m (4/m 3 2/m) : Fd3m |
2.AC.15b | Mertieite-I | Pd11(Sb,As)4 | Hex. |
2.AC.15a | Miessiite | Pd11Te2Se2 | Iso. m3m (4/m 3 2/m) : Fd3m |
2.AC.20b | Palarstanide | Pd5(Sn,As)2 | Hex. |
2.AC.20a | Stibiopalladinite | Pd5Sb2 | Hex. |
2.AC.20c | Menshikovite | Pd3Ni2As3 | Hex. 6/m : P63/m |
2.AC.25a | Palladoarsenide | Pd2As | Mon. 2/m : P2/m |
2.AC.25f | Palladobismutharsenide | Pd2(As,Bi) | Orth. |
2.AC.25c | Palladodymite | (Pd,Rh)2As | Orth. |
2.AC.25b | Rhodarsenide | (Rh,Pd)2As | Orth. |
2.AC.25d | Naldrettite | Pd2Sb | Orth. mm2 : Cmc21 |
2.AC.30 | UM1999-02-As:NiRh | (Rh,Ni)7As4 | |
2.AC.30 | Polkanovite | Rh12As7 | Hex. |
2.AC.35a | Genkinite | (Pt,Pd,Rh)4Sb3 | Tet. 4 2 2 |
2.AC.35b | Ungavaite | Pd4Sb3 | Tet. 4 2 2 : P41 21 2 |
2.AC.40 | Polarite | Pd(Bi,Pb) | Orth. mm2 : Cmc21 |
2.AC.45c | Borishanskiite | Pd1+x(As,Pb)2 , x = 0-0.2 | Orth. mm2 |
2.AC.45a | Froodite | α-PdBi2 | Mon. 2/m : B2/m |
2.AC.45b | Iridarsenite | (Ir,Ru)As2 | Mon. |
Related Minerals - Hey's Chemical Index of Minerals Grouping
3.12.1 | Seinäjokite | (Fe,Ni)(Sb,As)2 | Orth. |
3.12.2 | Laurite | RuS2 | Iso. m3 (2/m 3) : Pa3 |
3.12.3 | Ruthenarsenite | (Ru,Ni)As | Orth. |
3.12.4 | Anduoite | (Ru,Os)As2 | Orth. |
3.12.5 | Ruarsite | (Ru,Os)AsS | Mon. |
3.12.6 | Xingzhongite | Pb2+Ir3+2S4 | Iso. |
3.12.7 | Rhodplumsite | Rh3Pb2S2 | Trig. |
3.12.8 | Cuprorhodsite | (Cu1+0.5Fe3+0.5)Rh3+2S4 | Iso. m3m (4/m 3 2/m) : Fd3m |
3.12.9 | Konderite | Cu3Pb(Rh,Pt,Ir)8S16 | Hex. 6/m : P6/m |
3.12.10 | Bowieite | (Rh,Ir,Pt)2S3 | Orth. mmm (2/m 2/m 2/m) |
3.12.11 | Cherepanovite | RhAs | Orth. mmm (2/m 2/m 2/m) : Pnma |
3.12.12 | Hollingworthite | (Rh,Pt,Pd)AsS | Iso. m3 (2/m 3) |
3.12.13 | Vysotskite | (Pd,Ni)S | Tet. |
3.12.14 | Vasilite | (Pd,Cu)16(S,Te)7 | Iso. |
3.12.15 | Palladseite | Pd17Se15 | Iso. m3m (4/m 3 2/m) |
3.12.16 | Oosterboschite | (Pd,Cu)7Se5 | Orth. |
3.12.17 | Telluropalladinite | Pd9Te4 | Mon. |
3.12.18 | Temagamite | Pd3HgTe3 | Trig. 3m : P3m1 |
3.12.19 | Sopcheite | Ag4Pd3Te4 | Orth. |
3.12.20 | Michenerite | PdBiTe | Iso. 2 3 : P21 3 |
3.12.21 | Kotulskite | Pd(Te,Bi)2-x (x ≈ 0.4) | Hex. |
3.12.22 | Telargpalite | (Pd,Ag)3(Te,Bi) | Iso. |
3.12.23 | Merenskyite | PdTe2 | Trig. 3m : P3m1 |
3.12.24 | Palladoarsenide | Pd2As | Mon. 2/m : P2/m |
3.12.25 | Stillwaterite | Pd8As3 | Trig. |
3.12.26 | Atheneite | Pd2As0.75Hg0.25 | Hex. 6 m2 : P62m |
3.12.28 | Palarstanide | Pd5(Sn,As)2 | Hex. |
3.12.29 | Arsenopalladinite | Pd8(As,Sb)3 | Tric. 1 : P1 |
3.12.30 | Vincentite | Pd3As | Tet. |
3.12.31 | Palladobismutharsenide | Pd2(As,Bi) | Orth. |
3.12.32 | Stibiopalladinite | Pd5Sb2 | Hex. |
3.12.33 | Hexatestibiopanickelite | (Pd,Ni)(Sb,Te) | Hex. |
3.12.34 | Sudburyite | PdSb | Hex. |
3.12.35 | Testibiopalladite | PdTe(Sb,Te) | Iso. |
3.12.36 | Borovskite | Pd3SbTe4 | Iso. |
3.12.37 | Isomertieite | Pd11Sb2As2 | Iso. m3m (4/m 3 2/m) : Fd3m |
3.12.38 | Mertieite-I | Pd11(Sb,As)4 | Hex. |
3.12.39 | Mertieite-II | Pd8Sb2.5As0.5 | Trig. 3m (3 2/m) : R3c |
3.12.40 | Sobolevskite | PdBi | Hex. |
3.12.41 | Froodite | α-PdBi2 | Mon. 2/m : B2/m |
3.12.42 | Polarite | Pd(Bi,Pb) | Orth. mm2 : Cmc21 |
3.12.43 | Urvantsevite | Pd(Bi,Pb)2 | Tet. |
3.12.44 | Cooperite | PtS | Tet. 4/mmm (4/m 2/m 2/m) : P42/mmc |
3.12.45 | Braggite | (Pt,Pd,Ni)S | Tet. |
3.12.46 | Kharaelakhite | (Cu,Pt,Pb,Fe,Ni)9S8 | Orth. mmm (2/m 2/m 2/m) : Pmmm |
3.12.47 | Malanite | Cu1+(Ir3+Pt4+)S4 | Iso. |
3.12.48 | Moncheite | (Pt,Pd)(Te,Bi)2 | Trig. |
3.12.49 | Maslovite | PtBiTe | Iso. 2 3 : P21 3 |
3.12.50 | Sperrylite | PtAs2 | Iso. m3 (2/m 3) : Pa3 |
3.12.51 | Platarsite | PtAsS | Iso. |
3.12.52 | Geversite | PtSb2 | Iso. m3 (2/m 3) : Pa3 |
3.12.53 | Daomanite | CuPtAsS2 | Orth. |
3.12.54 | Genkinite | (Pt,Pd,Rh)4Sb3 | Tet. 4 2 2 |
3.12.55 | Stumpflite | PtSb | Hex. |
3.12.56 | Insizwaite | Pt(Bi,Sb)2 | Iso. m3 (2/m 3) : Pa3 |
3.12.57 | Erlichmanite | OsS2 | Iso. m3 (2/m 3) : Pa3 |
3.12.58 | Omeiite | (Os,Ru)As2 | Orth. |
3.12.59 | Osarsite | (Os,Ru)AsS | Mon. |
3.12.60 | Kashinite | (Ir,Rh)2S3 | Orth. |
3.12.61 | Inaglyite | Cu3Pb(Ir,Pt)8S16 | Hex. |
3.12.62 | Cuproiridsite | (Cu,Fe)Ir2S4 | Iso. m3m (4/m 3 2/m) : Fd3m |
3.12.63 | Iridarsenite | (Ir,Ru)As2 | Mon. |
3.12.64 | Irarsite | (Ir,Ru,Rh,Pt)AsS | Iso. |
3.12.65 | Tolovkite | IrSbS | Iso. |
Other Information
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
References for Majakite
Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Proceedings EPDIC-6, 6th. European Powder Diffraction Conference: 117-122.
Genkin, A.D., Evstigneeva, T.L., Troneva, N.V., Vyal´sov, L.N. (1976) Majakite, PdNiAs, a new mineral from copper-nickel sulfide ores. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva: 105(6): 698-703.
Fleischer, M., Cabri, L.J., Pabst, A. (1977) New mineral names. American Mineralogist: 62: 1259-1262.
Evstigneeva, T., Kabalov, Y., Schneider, J. (2000) Crystal structure of PdNiAs, ordered member of isomorphous series Pd2As-Ni2As. Material Science Forum: 321-324: 700-705.
Internet Links for Majakite
mindat.org URL:
https://www.mindat.org/min-2545.html
Please feel free to link to this page.
Please feel free to link to this page.
Search Engines:
External Links:
Mineral Dealers:
Localities for Majakite
Locality List




All localities listed without proper references should be considered as questionable.
Australia | |
| 5th International Platinum Symposium Bulletin of The Geological Society of Finland Number 61, Part 1,1989,1-64 |
Austria | |
| Malitch, K. N., & Knauf, V. V. (2002). Diversity of PGM assemblages at Kraubath: a case study of mantle-derived chromitites from the Eastern Alps, Austria. In 9th International Platinum Symposium (Abstracts). |
Brazil | |
| Teixeira, A. S. (2014). Geologia, petrologia e geocronologia do complexo acamadado lago grande: evidência para uma suíte magmática mineralizada a egp na província mineral de Carajás, Brasil. |
Canada | |
| Econ Geol (1994) 89:1630-1639; Y. Chen, M. E. Fleet and Y. Pan (1993) Platinum-group minerals and gold in Arsenic-rich ore at the Thompson mine, Thompson Nickel Belt, Manitoba, Canada. Mineralogy and Petrology 49:127-146; Chen, Yuan, "Precious-metal Mineralization And Sulfide-silicate Relationships In Some Canadian Nickel-copper Sulfide Deposits: Thompson Mine, Manitoba; Sudbury, Ontario; Dundonald Beach, Ontario" (1993). Digitized Theses. Paper 2231. |
| N Farhangi,CM Lesher,and MG Houlé |
| Watkinson & Ohnenstetter (1992) |
Ames, D.E., Kjarsgaard, I.M., McDonald, A.M. & Good, D.J. (2017) Insights into the extreme PGE enrichment of the W Horizon, Marathon Cu-Pd deposit, Coldwell Alkaline Complex, Canada: Platinum-group mineralogy, compositions and genetic implications. Ore Geplogy Reviews 2017, xx-xx. | |
Good, D. J., Cabri, L. J., & Ames, D. E. (2017). PGM facies variations for Cu-PGE deposits in the Coldwell Alkaline Complex, Ontario, Canada. Ore Geology Reviews, 90, 748-771. | |
| American Mineralogist, Volume 76, pages 1694-1700, 199l; Canadian Mineralogist 30, 121 |
Finland | |
| Econ Geol (1986) 81:1126-1136 |
| Econ Geol (1986) 81:1236-1241 |
| Guice, G. L., Törmänen, T., Johanson, B., & Lahaye, Y. (2017). Offset-type PGE mineralisation in the Sotkavaara Intrusion, northern Finland: an association with zones of low-cr clinopyroxenite. Applied Earth Science, 126(2), 61-62.; Guice, G. L., Törmänen, T., Karykowski, B. T., Johanson, B., & Lahaye, Y. (2017). Precious metal mineralisation in the Sotkavaara Intrusion, northern Finland: Peak Pt, Pd, Au and Cu offsets in a small intrusion with poorly-developed magmatic layering. Ore Geology Reviews, 89, 701-718. |
Greece | |
| Tsoupas, G., & Economou-Eliopoulos, M. (2008). High PGE contents and extremely abundant PGE-minerals hosted in chromitites from the Veria ophiolite complex, northern Greece. Ore Geology Reviews, 33(1), 3-19. |
Ivory Coast | |
| Gouedji, F., Picard, C., Coulibaly, Y., Audet, M. A., Auge, T., Goncalves, P., ... & Ouattara, N. (2014). The Samapleu mafic-ultramafic intrusion and its Ni-Cu-PGE mineralization: an Eburnean (2.09 Ga) feeder dyke to the Yacouba layered complex (Man Archean craton, western Ivory Coast). Bulletin de la Société Géologique de France, 185(6), 393-411. |
Russia | |
| (2014) 12th International Platinum Symposium p320; Spiridonov, E. M., E. A. Kulagov, A. A. Serova, I. M. Kulikova, N. N. Korotaeva, E. V. Sereda, I. N. Tushentsova, S. N. Belyakov, and N. N. Zhukov. "Genetic Pd, Pt, Au, Ag, and Rh mineralogy in Noril’sk sulfide ores." Geology of Ore Deposits 57, no. 5 (2015): 402-432. |
| ZVMO,(1976) 105, 698-703; Pekov, I. (1998) Minerals First discovered on the territory of the former Soviet Union 369p. Ocean Pictures, Moscow |
| 2014 Ultramafic-mafic intrusions, volcanic rocks and PGE-Cu-Ni sulfide deposits of the Noril’sk Province, Polar Siberia . 12th International Platinum Symposium |
| 33 IGC excursion No 48, August 15 – 21, 2008 |
| Grishaenko, M. V. P., & Federation, R. (2007). Independent Report on the Shalozerskoe (Burakovsky), Lukkulaisvaara and Tsipringa Platinum, Palladium, Copper, Nickel Deposits in the Autonomous Republic of Karelia Russian Federation |
| Rudashevskiy N.S., Krecer D.A., Orsoev D.A., Kislov E.V. (2003) Palladium-platinum mineralization in vein Cu-Ni-ores of Yoko-Dovyrenskiy laiered massif, - DAN, 391(4), p. 519-522 (in Rus.); Spiridonov, E. M., Orsoev, D. A., Ariskin, A. A., Kislov, E. V., Korotaeva, N. N., Nikolaev, G. S., & Yapaskurt, V. O. (2019). Germanium-Rich Palladium Minerals Palladogermanide Pd 2 Ge, Paolovite Pd 2 (Sn, Ge), and Zvyagintsevite in Sulfide-Bearing Anorthosites of the Yoko-Dovyren Pluton, Baikal Area. Geochemistry International, 57(5), 600-603. |
Spiridonov, E. M., Orsoev, D. A., Ariskin, A. A., Kislov, E. V., Korotaeva, N. N., Nikolaev, G. S., & Yapaskurt, V. O. (2019, April). Palladogermanide PdGe 2 from Sulfidized Anorthosite of the Yoko-Dovyren Intrusion: First Finding in Russia. In Doklady Earth Sciences (Vol. 485, No. 2, pp. 458-460). Pleiades Publishing. | |
Kislov, E.V.; Khudyakova, L.I. (2020) Yoko–Dovyren Layered Massif: Composition, Mineralization, Overburden and Dump Rock Utilization. Minerals 10, 682. | |
| Can Min (2002) 40, (2), 679-692 |
South Africa | |
| Nikolay Rudashevsky et al (2001) Efficient Technology of Ore Minerals Investigation of PGE-Bearing Deposits – Case Study in (2001) European Union of Geosciences Conference XI (OS6) |
| Holwell, D. A., McDonald, I., & Armitage, P. E. B. (2006). Platinum-group mineral assemblages in the Platreef at the Sandsloot Mine, northern Bushveld Complex, South Africa. Mineralogical Magazine, 70(1), 83-101.; HOLWELL D.A., MCDONALD I. & ARMITAGE, P.E.B. (2006). Platinum-group mineral assemblages in the Platreef at the South Central Pit, Sandsloot Mine, northern Bushveld Complex, South Africa. Mineralogical Magazine, 70, 83-101. |
USA | |
| Mike Scott S106091 from Cureton 1992 ID by B Cannon |
| Smith and Barnes (2011) Pennsylvania Geology v. 41, no. 3/4. |
Oktyabrsky Mine, Talnakh Cu-Ni Deposit, Noril'sk, Putoran Plateau, Taimyr Peninsula, Taymyrskiy Autonomous Okrug, Krasnoyarsk Krai, Russia