Mallardite
This page is currently not sponsored. Click here to sponsor this page.
About Mallardite
Formula:
MnSO4 · 7H2O
Colour:
Light rose pink; colourless in transmitted light.
Lustre:
Vitreous
Hardness:
2
Specific Gravity:
1.846
Crystal System:
Monoclinic
Member of:
Name:
Named in 1926 by F Zambonini and G. Carrobbi in honor of François Ernest Mallard [February 4, 1833 Châteauneuf-sur-Cher, France - July 6, 1894 Paris, France], French crystallographer. Mallard was trained as a mining engineer as well as a mineralogist. In 1859, he was professor at the School of Mines (Saint Etienne) and, in 1872, professor at the School of mines in Paris in 1872. mallard made many contributions. Particularly, he solved important problems relating to minerals that had anomalous optical properties and discovered that minerals with low symmetry could appear to have higher symmetry due to stacking of small low-symmetry domains. This discovery led to solutions to the problems relating to pseudo-symmetry and optical effects relating to crystal clusters. Mallard wrote the important two volume, Traité de Cristallographie, in 1879 and 1884. Because of his practical nature as an engineer, Mallard's work with Henry Le Chatelier solve issues relating to gas explosions in mines. Mallard was also a field mapping geologist, as well.
Classification of Mallardite
Approved, 'Grandfathered' (first described prior to 1959)
6/C.06-20
7.CB.35
7 : SULFATES (selenates, tellurates, chromates, molybdates, wolframates)
C : Sulfates (selenates, etc.) without additional anions, with H2O
B : With only medium-sized cations
7 : SULFATES (selenates, tellurates, chromates, molybdates, wolframates)
C : Sulfates (selenates, etc.) without additional anions, with H2O
B : With only medium-sized cations
29.6.10.5
29 : HYDRATED ACID AND NORMAL SULFATES
6 : AXO4·xH2O
29 : HYDRATED ACID AND NORMAL SULFATES
6 : AXO4·xH2O
25.9.3
25 : Sulphates
9 : Sulphates of Mn
25 : Sulphates
9 : Sulphates of Mn
Physical Properties of Mallardite
Vitreous
Transparency:
Transparent, Translucent
Colour:
Light rose pink; colourless in transmitted light.
Streak:
White
Hardness:
2 on Mohs scale
Cleavage:
Distinct/Good
On {001} good; possibly also on {110}.
On {001} good; possibly also on {110}.
Density:
1.846 g/cm3 (Measured) 1.838 g/cm3 (Calculated)
Comment:
Density measured on artificial material.
Optical Data of Mallardite
Type:
Biaxial (+)
RI values:
nα = 1.462 nβ = 1.465 nγ = 1.474
Max Birefringence:
δ = 0.012

Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
and does not take into account mineral colouration.
Surface Relief:
Moderate
Dispersion:
r > v strong
Chemical Properties of Mallardite
Formula:
MnSO4 · 7H2O
IMA Formula:
Mn(SO4) · 7H2O
Elements listed:
Crystallography of Mallardite
Crystal System:
Monoclinic
Class (H-M):
2/m - Prismatic
Space Group:
P2/m
Cell Parameters:
a = 14.15 Å, b = 6.5 Å, c = 11.06 Å
β = 105.6°
β = 105.6°
Ratio:
a:b:c = 2.177 : 1 : 1.702
Unit Cell V:
979.77 ų (Calculated from Unit Cell)
Z:
4
Morphology:
Artificial crystals are tabular {001}. Fibrous masses and crusts.
Geological Environment
Geological Setting:
Oxidation of iron/manganese sulfides and carbonates in water saturated environments.
Type Occurrence of Mallardite
Place of Conservation of Type Material:
Natural History Museum, Paris 96132
Other Language Names for Mallardite
German:Mallardit
Spanish:Mallardita
Relationship of Mallardite to other Species
Member of:
Other Members of this group:
Alpersite | (Mg,Cu)(SO4) · 7H2O | Mon. 2/m : P21/b |
Bieberite | CoSO4 · 7H2O | Mon. 2/m : P2/m |
Boothite | CuSO4 · 7H2O | Mon. |
Melanterite | Fe2+(H2O)6SO4 · H2O | Mon. 2/m : P21/b |
Zincmelanterite | (Zn,Cu,Fe)SO4 · 7H2O | Mon. |
Related Minerals - Nickel-Strunz Grouping
7.CB.05 | Dwornikite | (Ni,Fe)SO4 · H2O | Mon. 2/m : B2/b |
7.CB.05 | Gunningite | ZnSO4 · H2O | Mon. 2/m : B2/b |
7.CB.05 | Kieserite | MgSO4 · H2O | Mon. 2/m |
7.CB.05 | Poitevinite | (Cu,Fe)SO4 · H2O | Tric. |
7.CB.05 | Szmikite | MnSO4 · H2O | Mon. |
7.CB.05 | Szomolnokite | FeSO4 · H2O | Mon. 2/m : B2/b |
7.CB.05 | Cobaltkieserite | CoSO4 · H2O | Mon. 2/m : B2/b |
7.CB.07 | Sanderite | MgSO4 · 2H2O | Orth. 2 2 2 : P21 21 21 |
7.CB.10 | Bonattite | CuSO4 · 3H2O | Mon. |
7.CB.15 | Aplowite | (Co,Mn,Ni)SO4 · 4H2O | Mon. 2/m |
7.CB.15 | Boyleite | (Zn,Mg)SO4 · 4H2O | Mon. 2/m : P21/b |
7.CB.15 | Ilesite | (Mn,Zn,Fe)SO4 · 4H2O | Mon. 2/m |
7.CB.15 | Rozenite | FeSO4 · 4H2O | Mon. 2/m : P21/b |
7.CB.15 | Starkeyite | MgSO4 · 4H2O | Mon. 2/m : P21/b |
7.CB.15 | Drobecite | CdSO4 · 4H2O | Mon. 2/m : P21/m |
7.CB.15 | Cranswickite | MgSO4 · 4H2O | Mon. m : Bb |
7.CB.20 | Chalcanthite | CuSO4 · 5H2O | Tric. 1 : P1 |
7.CB.20 | Jôkokuite | MnSO4 · 5H2O | Tric. |
7.CB.20 | Pentahydrite | MgSO4 · 5H2O | Tric. |
7.CB.20 | Siderotil | FeSO4 · 5H2O | Tric. |
7.CB.25 | Bianchite | (Zn,Fe)SO4 · 6H2O | Mon. 2/m : P2/m |
7.CB.25 | Chvaleticeite | (Mn,Mg)SO4 · 6H2O | Mon. 2/m : B2/b |
7.CB.25 | Ferrohexahydrite | FeSO4 · 6H2O | Mon. 2/m : B2/b |
7.CB.25 | Hexahydrite | MgSO4 · 6H2O | Mon. 2/m : P2/m |
7.CB.25 | Moorhouseite | (Co,Ni,Mn)SO4 · 6H2O | Mon. |
7.CB.25 | Nickelhexahydrite | (Ni,Mg,Fe)SO4 · 6H2O | Mon. |
7.CB.30 | Retgersite | NiSO4 · 6H2O | Tet. 4 2 2 : P41 21 2 |
7.CB.35 | Bieberite | CoSO4 · 7H2O | Mon. 2/m : P2/m |
7.CB.35 | Boothite | CuSO4 · 7H2O | Mon. |
7.CB.35 | Melanterite | Fe2+(H2O)6SO4 · H2O | Mon. 2/m : P21/b |
7.CB.35 | Zincmelanterite | (Zn,Cu,Fe)SO4 · 7H2O | Mon. |
7.CB.35 | Alpersite | (Mg,Cu)(SO4) · 7H2O | Mon. 2/m : P21/b |
7.CB.40 | Epsomite | MgSO4 · 7H2O | Orth. 2 2 2 : P21 21 21 |
7.CB.40 | Goslarite | ZnSO4 · 7H2O | Orth. 2 2 2 : P21 21 21 |
7.CB.40 | Morenosite | NiSO4 · 7H2O | Orth. 2 2 2 : P21 21 21 |
7.CB.45 | Alunogen | Al2(SO4)3 · 17H2O | Tric. 1 |
7.CB.45 | Meta-alunogen | Al2(SO4)3 · 12H2O | |
7.CB.50 | Aluminocoquimbite | Al2Fe2(SO4)6(H2O)12 · 6H2O | Trig. 3m (3 2/m) : P3 1c |
7.CB.55 | Coquimbite | AlFe3(SO4)6(H2O)12 · 6H2O | Trig. 3m (3 2/m) : P3 1c |
7.CB.55 | Paracoquimbite | Fe4(SO4)6(H2O)12 · 6H2O | Trig. 3 : R3 |
7.CB.55 | Rhomboclase | (H5O2)Fe3+(SO4)2 · 2H2O | Orth. mmm (2/m 2/m 2/m) : Pnma |
7.CB.60 | Kornelite | Fe2(SO4)3 · 7H2O | Mon. 2/m : P21/m |
7.CB.65 | Quenstedtite | Fe2(SO4)3 · 11H2O | Tric. 1 : P1 |
7.CB.70 | Lausenite | Fe2(SO4)3 · 5H2O | Mon. 2/m : P21/m |
7.CB.75 | Lishizhenite | ZnFe2(SO4)4 · 14H2O | Tric. 1 : P1 |
7.CB.75 | Römerite | Fe2+Fe3+2(SO4)4 · 14H2O | Tric. 1 : P1 |
7.CB.80 | Ransomite | CuFe2(SO4)4 · 6H2O | Mon. 2/m : P21/b |
7.CB.85 | Apjohnite | Mn2+Al2(SO4)4 · 22H2O | Mon. |
7.CB.85 | Bílinite | Fe2+Fe3+2(SO4)4 · 22H2O | Mon. 2/m : P21/b |
7.CB.85 | Dietrichite | (Zn,Fe2+,Mn2+)Al2(SO4)4 · 22H2O | Mon. 2/m : P21/b |
7.CB.85 | Halotrichite | FeAl2(SO4)4 · 22H2O | Mon. 2 : P2 |
7.CB.85 | Pickeringite | MgAl2(SO4)4 · 22H2O | Mon. 2/m : P21/b |
7.CB.85 | Redingtonite | (Fe2+,Mg,Ni)(Cr,Al)2(SO4)4 · 22H2O | Mon. |
7.CB.85 | Wupatkiite | (Co,Mg,Ni)Al2(SO4)4 · 22H2O | Mon. |
7.CB.90 | Meridianiite | MgSO4 · 11H2O | Tric. 1 : P1 |
Related Minerals - Dana Grouping (8th Ed.)
29.6.10.1 | Melanterite | Fe2+(H2O)6SO4 · H2O | Mon. 2/m : P21/b |
29.6.10.2 | Boothite | CuSO4 · 7H2O | Mon. |
29.6.10.3 | Zincmelanterite | (Zn,Cu,Fe)SO4 · 7H2O | Mon. |
29.6.10.4 | Bieberite | CoSO4 · 7H2O | Mon. 2/m : P2/m |
Related Minerals - Hey's Chemical Index of Minerals Grouping
25.9.1 | Szmikite | MnSO4 · H2O | Mon. |
25.9.2 | Jôkokuite | MnSO4 · 5H2O | Tric. |
25.9.4 | Manganolangbeinite | K2Mn2(SO4)3 | Iso. 2 3 : P21 3 |
25.9.5 | Chvaleticeite | (Mn,Mg)SO4 · 6H2O | Mon. 2/m : B2/b |
25.9.6 | Despujolsite | Ca3Mn4+(SO4)2(OH)6 · 3H2O | Hex. 6 m2 : P62c |
25.9.7 | Apjohnite | Mn2+Al2(SO4)4 · 22H2O | Mon. |
25.9.8 | Shigaite | Mn6Al3(OH)18[Na(H2O)6](SO4)2 · 6H2O | Trig. |
25.9.9 | Ilesite | (Mn,Zn,Fe)SO4 · 4H2O | Mon. 2/m |
25.9.10 | Mooreite | Mg9◻2Mn2Zn4(SO4)2(OH)26 · 8H2O | Mon. 2/m : P2/b |
25.9.11 | Torreyite | (Mg,Mn2+)7◻2Mn2+2Zn4(SO4)2(OH)22 · 8H2O | Mon. 2/m : P21/b |
25.9.12 | Lawsonbauerite | (Mn2+,Mg)9Zn4(SO4)2(OH)22 · 8H2O | Mon. 2/m : P21/b |
25.9.13 | Dietrichite | (Zn,Fe2+,Mn2+)Al2(SO4)4 · 22H2O | Mon. 2/m : P21/b |
Other Information
Special Storage/
Display Requirements:
Display Requirements:
Quickly dehydrates at room temperature
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
References for Mallardite
Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Carnot, A. (1879) Note sur un nouveau sulfate de manganèse naturel (mallardite). Bulletin de la Société Minéralogique de France: 2: 117-119.
Palache, C., Berman, H., Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged, 1124 pp.: 507-508.
Nambu, M., Tanida, K., Kitamura, T. (1979) Mallardite from the Jokoku mine, Hokkaido, Japan. Journal of Mineralogical and Petrological Sciences: 74: 406-412.
Pašava, J., Breiter, K., Huka, M., Korecký, J. (1986) Chvaleticeite, (Mn,Mg)SO4·6H2O, a new mineral. Neues Jahrbuch für Mineralogie, Monatshefte: 1986: 121-125 (123).
Serafimova, E.K., Semenova, T.F., Vergasova, L.P., Filatov, S.K., Epifanova, V.B., Ananiev, V.V. (1996) New data on mallardite(NA2SIF6) deposited around fumaroles of the great Tolbachikfissure eruption. Volcanology and Seismology: 18(1): 51-60.
Internet Links for Mallardite
mindat.org URL:
https://www.mindat.org/min-2555.html
Please feel free to link to this page.
Please feel free to link to this page.
Search Engines:
External Links:
Mineral Dealers:
Localities for Mallardite
Locality List




All localities listed without proper references should be considered as questionable.
Australia | |
| Lawrence, L. J., Stocksiek, C. M. and Williams, P. A. (1993): Mallardite from Broken Hill, New South Wales. Journal and Proceedings of the Royal Society of New South Wales, 126, 165-166. |
Czech Republic | |
| Lapis 2002(7/8), 63-65 |
| Pašava, J., Breiter, K., Huka, M., Korecký, J.: Parageneze druhotných železnatých, hořečnatých a manganatých síranů z Chvaletic. Věstník Ústředního ústavu geologického, 1986, roč. 61, č. 2, s. 73-82. |
France | |
| Wittern, Journée: "Mineralien finden in den Vogesen", von Loga (Cologne), 1997 |
Italy | |
| Russo, M., and Punzo, I. (2004) I Minerali del Somma-Vesuvio. AMI Associazione Micro-mineralogica Italiana, Tipografia Fantigrafica s.r.l., Cremona, 320 pp. |
| Exel, R. (1987): Guida mineralogica del Trentino e del Sudtirolo. Athesia, Bolzano, 204 pp. |
Japan | |
| Encyclopedia of Mins., 2nd Ed:519.; Nambu et al (1979) Ganseki-Koubutsu-Koshogaku Zasshi (JAMP), 74, 406-412. |
Peru | |
| Smuda, Jochen; Dold, Bernhard; Friese, Kurt; Morgenstern, Peter; Glaesser, Walter (2007): Mineralogical and geochemical study of element mobility at the sulfide-rich Excelsior waste rock dump from the polymetallic Zn-Pb-(Ag-Bi-Cu) ore deposit, Cerro de Pasco, Peru. Journal of Geochemical Exploration, 92, 97-110. |
Russia | |
| Vergasova, L. P., Filatov, S. K., & Dunin-Barkovskaya, V. V. (2007). Posteruptive activity on the First Cone of the Great Tolbachik Fissure Eruption and recent volcanogenic generation of bauxites. Journal of Volcanology and Seismology, 1(2), 119-139. |
Spain | |
| [MinRec 27:284] |
USA | |
| Min Rec 36:2 pp143-185 |
| Minerals of New Mexico 3rd ed. |
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 508. | |
| Northrop, Minerals of New Mexico, 3rd Rev. Ed., 1996 |
| North, Jerry (2010) Displays of Nature : History, Minerals & Crystals of Utah's Bingham Canyon Copper Mine. |
| UGMS Bull 117 Minerals and Mineral Localities of Utah |
Chvaletice, Pardubice District, Pardubice Region, Czech Republic