Help|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on Mindat
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralSearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery


This page kindly sponsored by Mike Richardson
White to colorless, silvery-white, and tinged various colors by impurities.
Vitreous, Silky, Pearly
Specific Gravity:
2.77 - 2.88
Crystal System:
Member of:
The earliest names attributable to muscovite include Muscovy Glass, Cat Silver, and Lapis Specularis (stone mirror); these names appearing in texts in the seventeenth century and before. The stand-alone name 'Muscovite' was used as early as 1794 by Johann Gottfried Schmeisser in his System of Mineralogy and is derived from the term "Muscovy glass," which was in common use by that time. Muscovy Province in Russia yielded sheet mica for a variety of uses. Muscovite and sometimes similar species were earlier called mica (Phillips and Kersey, 1706), glimmer (Phillips and Kersey, 1706), and isinglass (1747 according to OED) but all of these terms are still in use to some degree. It should be noted that mica, glimmer, and isinglass were also used for a variety of materials before these given dates and in those earlier times did not always indicate what would be a mineral, much less muscovite proper. Isinglass, for example, was originally used for a gelatinous bladder found in sturgeon.
Mica Group.

The most common of the Mica Group minerals, it is typically found as massively crystalline material in "books" or in flaky grains as a constituent of many rock types. It is clear with a pearly luster on cleavage faces, often having a sparkly look in rocks.
Several polytypes are known (see below); the most common one is the 2M1 polytype.

It can form a continuous series with celadonite and aluminoceladonite; intermediates are known as the variety phengite and K-deficient variants as illite.

Visit for gemological information about Muscovite.

Hide all sections | Show all sections

Classification of MuscoviteHide

Approved, 'Grandfathered' (first described prior to 1959)

9 : SILICATES (Germanates)
E : Phyllosilicates
C : Phyllosilicates with mica sheets, composed of tetrahedral and octahedral nets
Dana 7th ed.:

71 : PHYLLOSILICATES Sheets of Six-Membered Rings
2 : Sheets of 6-membered rings with 2:1 layers

16 : Silicates Containing Aluminum and other Metals
3 : Aluminosilicates of K

Pronounciation of MuscoviteHide

PlayRecorded byCountry
Jolyon & Katya RalphUnited Kingdom

Physical Properties of MuscoviteHide

Vitreous, Silky, Pearly
Transparent, Translucent
White to colorless, silvery-white, and tinged various colors by impurities.
2½ on Mohs scale
Hardness Data:
2.5 parallel to [001], 4 perpendicular to [001]
Perfect on {001}.
On {110} and {010}.
2.77 - 2.88 g/cm3 (Measured)    2.83 g/cm3 (Calculated)

Optical Data of MuscoviteHide

RI values:
nα = 1.552 - 1.576 nβ = 1.582 - 1.615 nγ = 1.587 - 1.618
Measured: 30° to 47°, Calculated: 38° to 42°
Max Birefringence:
δ = 0.035 - 0.042
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
r > v weak
Weak when colored

Chemical Properties of MuscoviteHide

IMA Formula:
Common Impurities:

Age informationHide

Age range:
Mesoarchean to Neogene : 2890 Ma to 13.4 Ma - based on data given below.
Sample ages:
Sample IDRecorded ageGeologic TimeDating method
115.2 to 13.4 MaMioceneK-Ar
259.8 ± 3.6 MaPaleoceneK-Ar
361.8 ± 2.5 MaPaleoceneK-Ar
468.7 ± 2.1 MaLate CretaceousK-Ar
577.9 ± 1.5 MaLate CretaceousK-Ar
680.2 ± 2.7 MaLate CretaceousK-Ar
787 ± 4 MaLate Cretaceous
892.1 ± 3.7 MaLate CretaceousK-Ar
9110 MaEarly CretaceousK-Ar
10137.5 ± 1.7 MaEarly CretaceousAr-Ar
11155.1 ± 1.1 MaJurassicAr-Ar
12199 to 195 MaEarly JurassicAr-Ar
13275 ± 6 MaCisuralianK/Ar
14292.8 ± 1 MaCisuralianAr-Ar
15311 ± 5 MaPennsylvanianAr-Ar
16365.7 ± 1.2 MaLate DevonianAr-Ar
17437 ± 13 MaLlandoveryK-Ar
18532 ± 1 MaTerreneuvianRb-Sr
191300 to 1120 MaMesoproterozoicRb, K
202629 ± 9 MaNeoarcheanAr-Ar
212890 MaMesoarcheanRb-Sr
Sample references:
1Jas Roux, La Chapelle-en-Valgaudemar, Hautes-Alpes, Provence-Alpes-Côte d'Azur, FranceGasquet D, Bertrand J, Paquette J, Lehmann J, Ratzov G, De Ascen?ão Guedes R, Tiepolo M, Boullier A, Scaillet S, Nomade S (2010) Miocene to Messinian deformation and hydrothermal activity in a pre-Alpine basement massif of the French western Alps: new U-Th-Pb and argon ages from the Lauzière massif, Bulletin de la Societe Geologique de France, 181, 227-241
2Hirase mine, Shirakawamura, Gifu Prefecture, Chubu Region, Honshu Island, JapanShibata K, Ishihara S (1974): K-Ar ages of the major tungsten and molybdenum deposits in Japan. Economic Geology 69(8) 1207-1214.
3Komaki mine, Komaki, Okuizumo-cho, Shimane Prefecture, Chugoku region, Honshu Island, Japan  "  "
4Takatori mine, Shirosato-machi, Higashi-Ibaraki-gun, Ibaraki Prefecture, Kanto Region, Honshu Island, Japan  "  "
5Round Mountain District, Toquima Range, Nye Co., Nevada, USAShawe, D. R., Marvin, R. F., Andriessen, P. A. M., Mehnert, H. H., Merritt, V. M. (1986) Ages of Igneous and Hydrothermal Events in the Round Mountain and Manhattan Gold Districts, Nye County, Nevada. Economic Geology 81. 388-407.
6  "  "  "  "
7Magurka, Partizánska Lupča, Liptovský Mikuláš Co., Žilina Region, SlovakiaKohút M, Stein H (2005) Re–Os molybdenite dating of granite-related Sn–W–Mo mineralisation at Hnilec, Gemeric Superunit, Slovakia, Mineralogy and Petrology, 85, 117-137
8Fujigatani mine, Iwakuni City, Yamaguchi Prefecture, Chugoku Region, Honshu Island, JapanShibata K, Ishihara S (1974): K-Ar ages of the major tungsten and molybdenum deposits in Japan. Economic Geology 69(8) 1207-1214.
9Weishan Mine, Weishan Co., Jining Prefecture, Shandong Province, ChinaOrris, G. J., Grauch, R. I. (2002) Rare Earth element mines, deposits, and occurenes. USGS Open-File Report 02-189, 1-174.
10Ryabinovskoe Cu-Au deposit, Aldan, Aldan Shield, Sakha Republic, Eastern-Siberian Region, RussiaBorisenko, A.S., Spiridonov, A.M., Izokh, A.E., Prokopiev, A.V., Lebedev, V.I., Gaskov, I.V., ... & Tretyakova, I. G. (2012). Highly productive stages of basite and granitoid magmatism in Northern Asia, an assessment of their resource potential, scientific substantiation of the forecast criteria, and the search for large deposits (Cu-Ni-Pt, Co, Au and rare metals). Minerageny problems of Russia, 237-252.
11Yaogangxian W-Sn ore field, Yizhang Co., Chenzhou Prefecture, Hunan Province, ChinaYuan, S., Peng, J., Hu, R., Li, H., Shen, N., & Zhang, D. (2008) A precise U–Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43(4), 375-382.
12Jiajika Mine, Kangding pegmatite field, Kangding Co., Garzê Autonomous Prefecture, Sichuan Province, ChinaLi J., Zou T., Liu X., Wang D. and Ding X. (2015). The Metallogenetic Regularities of Lithium Deposits in China. Acta Geologica Sinica (English Edition), 89(2), 652-670.
13Cligga Head, Perranporth, Perranzabuloe, St Agnes District, Cornwall, England, UKHalliday, A. N. (1980). The timing of early and main stage ore mineralization in Southwest Cornwall. Economic Geology, 75(5), 752-759.
14Duolanasayi Mine, Habahe Co., Aletai Prefecture, Yili Hasake Autonomous Prefecture, Xinjiang Autonomous Region, ChinaYan, S., Chen, W., Wang, Y., Zhang, Z., & Chen, B. (2004) (40) Ar-(39) Ar dating and its significance of the Ertix gold metallogenic belt in the Altay orogen, Xinjiang. Acta Geologica Sinica, 78(4).
15Eibenstock, Erzgebirge, Saxony, GermanyRomer, R. L., & Thomas, R. (2005, January) U-Pb dating of micro-inclusions: The age of the Ehrenfriedersdorf tin deposit (Erzgebirge, Germany). In Mineral Deposit Research: Meeting the Global Challenge (pp. 817-820). Springer Berlin Heidelberg.
16Lake Boga granite quarry, Lake Boga, Swan Hill Rural City, Victoria, AustraliaMills, S. J., Birch, W. D., Maas, R., Phillips, D., Plimer, I. R. (2008) Lake Boga Granite, northerwestern Victoria: mineralogy, geochemistry and geochronology. Australian Journal of Earth Sciences 55(3), 281-299.
17Bajo de la Alumbrera Mine, Agua de Dionisio mining district, Farallón Negro, Belén Department, Catamarca, ArgentinaMcBride, S. L., Caelles, J. C., Clark, A. H., & Farrar, E. (1976) Palaeozoic radiometric age provinces in the Andean basement, latitudes 25°–30° S. Earth and Planetary Science Letters, 29(2), 373-383.
18Chapada Cu deposit, Uruaçu, Goiás, BrazilRichardson S V, Jones L M, Kesler S E (1988) Strontium isotopic geochemistry of Pan-African/Brasiliano rocks, Chapada copper deposit, Goiás, Brazil, Geologische Rundschau, 77, 763-771
19Wickenburg, Maricopa Co., Arizona, USAGastil, R. G. (1960) The distribution of mineral dates in time and space. American Journal of Science, 258(1), 1-35.
20Golden Mile Mines, Kalgoorlie-Boulder, Kalgoorlie-Boulder Shire, Western Australia, AustraliaKent, A. J. R., & McDougall, I. (1995) 40 Ar-39 Ar and U-Pb age constraints on the timing of gold mineralization in the Kalgoorlie gold field, Western Australia.Economic Geology, 90(4), 845-859.
21Wodgina Tantalite Mine, Wodgina, Abydos Station, Port Hedland Shire, Western Australia, AustraliaSweetapple, M. T., & Collins, P. L. (2002) Genetic framework for the classification and distribution of Archean rare metal pegmatites in the North Pilbara Craton, Western Australia. Economic Geology, 97(4), 873-895.

Crystallography of MuscoviteHide

Crystal System:
Class (H-M)
Space Group:
Space Group Setting:
Cell Parameters:
Unit Cell Volume (calc):
Monoclinic  Monoclinic  Trigonal 
2 - Sphenoidal 2/m - Prismatic 3 2 - Trapezohedral
B2  B2/b  P31 1 2
C2  C2/c   
a = 5.186 Å, b = 8.952 Å, c = 10.12 Å
β = 101.8°

a = 5.19 Å, b = 9.04 Å, c = 20.08 Å
β = 95.5°

a = 5.1963(4) Å, c = 16 Å
a:b:c = 0.579 : 1 : 1.13 a:b:c = 0.574 : 1 : 2.221 a:c = 1 : 3.079
V 459.89 ų
(Calculated from Unit Cell)
 V 937.77 ų
(Calculated from Unit Cell)
 V 374.14 ų
(Calculated from Unit Cell)

Crystallographic forms of MuscoviteHide

Crystal Atlas:
Image Loading
Click on an icon to view
Muscovite no.7 - Goldschmidt (1913-1926)
Muscovite no.12 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by

Edge Lines | Miller Indicies | Axes

Opaque | Translucent | Transparent

Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

X-Ray Powder DiffractionHide

Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
Powder Diffraction Data:
10.01 (100)
5.02 (60)
4.48 (60)
4.46 (70)
3.35 (100)
3.21 (50)
2.59 (50)
2.56 (90)
Data given are for the -2M^1 polytype.

Type Occurrence of MuscoviteHide

Synonyms of MuscoviteHide

Other Language Names for MuscoviteHide

Varieties of MuscoviteHide

AdamsiteA variety of muscovite, classed as a margarodite.
Al-illite-hydromicaVariety of Illite very low in K and high in water.
AlurgiteName introduced by Breithaupt in 1865 and characterized by Penfield in 1893 (vide Knurr and Bailey, 1986). Placed by W. T. Schaller (1950) as an intermediate between leucophyllite (now a synonym of aluminoceladonite) and muscovite. Study of Knurr and Bail...
AmmersooiteA variety of Illite capable of fixing Potassium, from Dutch fields.
AstroliteSpherical aggregates composed of radiating tabular crystals.
AvaliteA chromian variety of Illite.
Originally described from Mt Avala, Belgrade, Serbia.
Barian MuscoviteA barium-rich variety of muscovite.
Barian-Chromian MuscoviteA barium- and chromium-bearing muscovite.
Barium-Vanadium-MuscoviteA barian vanadian variety of Muscovite.
BatcheloriteA green slaty mineral, originally described by W. F. Petterd (1910) from the Mt. Lyell mine, Tasmania. Re-analysis of visually identical material from the same locality by Bothwell & Moss (1957) showed it to be a slightly Cr-bearing muscovite, giving the ...
BrammalliteA sodium-rich illite. [AmMin 29:73]
ChacaltaîteA green chlorite-like varety of muscovite.
Chromian SericiteA chromium-bearing variety of Sericite.
DamouriteVery fine-grained, compact muscovite - with a greasy feel, "serpentine-like," and often a fibrous appearance when viewed from a certain direction.
Ferroan muscovite
FuchsiteGreenish variety of muscovite, high in chromium (trivalent Cr replaces Al in the crystal structure). Note that trivalent V can also cause a greenish colour in muscovite (cf. roscoelite).
GieseckitePseudomorphs of muscovite after an unknown mineral.
GilbertiteCompact variety of muscovite.
The original chemical analysis of material from Stenagwyn, Cornwall, indicated no potassium or sodium. There were major amounts of silica and alumina, and minor amounts of CaO, MgO, and FeO. Thomson seems to have doubted th...
IlliteMica Group .
Illite JadeA dense variety of illite with reddish banding (caused by microscopic inclusions of hematite), which is used for carving and as an ornamental stone. In addition to hematite, the material usually also contains small quantities of impurities such as quartz,...
LeverrieriteA kaolinite-group clay.
Originally reported from Saint-Etienne, Loire, Rhône-Alpes, France.
LiebeneriteMuscovite pseudomorphous after nepheline, possibly also after cordierite.
Lithium Muscovite (of Levinson)A lithian muscovite with 3-4% Li2O
OellacheriteA green to colorless, Ba-bearing variety of muscovite intermediate in chemical composition between true mica and brittle mica.
PersbergiteMuscovite pseudomorphous after nepheline.
Pig's EggA pseudomorph of fine-grained muscovite ("sericite") after orthoclase, found in kaolinized granite.
Rubidian MuscoviteRubidium-bearing muscovite with Rb2O contents of 1 and more mass%. Usual rock forming mineral in late stages of the evolution of many granitic rare-metal (Ta,Be,Cs) natro-lithian pegmatites.
SchernikiteA pink variety of muscovite, described by Bowman (1902).
SericiteA term for a fine-grained white, pale green to oily greenish mica, mainly Muscovite (rarely Paragonite).
Star muscoviteMuscovite forming star-shaped crystal aggregates.
Especially nice specimens come from pegmatites in the Jenipapo district, Minas Gerais, Brazil.
Vanadian MuscoviteA V-bearing variety of muscovite.
Intermediate member of muscovite-roscoelite solid solutions.
VerditeTrade name for a green ornamental stone, primarily an impure Fuchsite mica originally from North Kaap river, Kaap Station, South Africa.
WilsoniteDescribed as an Mn-bearing "sericite" or muscovite pseudomorph after scapolite. Hey lists it as an aluminosilicate of Mg and K.
Zincian MuscoviteZn-bearing variety from the "Mixed Series" formation, Nežilovo, Macedonia. Associates, i.a., with ferricoronadite.

Relationship of Muscovite to other SpeciesHide

Member of:
Other Members of this group:
Anandite(Ba,K)(Fe2+,Mg)3((Si,Al,Fe)4O10)(S,OH)2Mon. 2/m : B2/b
AnniteKFe2+3(AlSi3O10)(OH)2Mon. 2/m : B2/m
AspidoliteNaMg3(AlSi3O10)(OH)2Mon. 2/m : B2/m
BalestraiteKLi2V5+Si4O12Mon. 2 : B2
BiotiteA series or subgroup of the Mica Group.
BityiteLiCaAl2(AlBeSi2O10)(OH)2Mon. 2/m : B2/b
CeladoniteK(Mg,Fe2+)Fe3+(Si4O10)(OH)2Mon. 2/m : B2/m
ChromphylliteK(Cr,Al)2(AlSi3O10)(OH,F)2Mon. 2/m : B2/b
ClintoniteCa(Mg,Al)3(Al3SiO10)(OH)2Mon. 2/m : B2/m
FerroaluminoceladoniteK(Fe2+,Mg)(Al,Fe3+)(Si4O10)(OH)2Mon. 2/m : B2/m
FerroceladoniteK(Fe2+,Mg)(Fe3+,Al)(Si4O10)(OH)2Mon. 2/m : B2/m
FluorophlogopiteKMg3(AlSi3O10)(F,OH)2Mon. 2/m : B2/m
Glauconite(K,Na)(Mg,Fe2+,Fe3+)(Fe3+,Al)(Si,Al)4O10(OH)2Mon. 2/m : B2/m
HendricksiteK(Zn,Mg,Mn2+)3(AlSi3O10)(OH)2Mon. 2/m : B2/m
IlliteK0.65Al2.0[Al0.65Si3.35O10](OH)2Mon. 2/m : B2/m
LepidoliteA Li-rich mica in, or close to, the so-called Polylithionite-Trilithionite series.Mon.
LuanshiweiiteKLiAl1.50.5(Si3.5Al0.5)O10(OH,F)2 Mon. 2/m : B2/b
NorrishiteKLiMn3+2(Si4O10)O2Mon. 2/m : B2/m
Oxykinoshitalite(Ba,K)(Mg,Ti,Fe3+,Fe2+)3((Si,Al)4O10)(O,OH,F)2Mon. 2/m : B2/m
OxyphlogopiteK(Mg,Ti,Fe)3[(Si,Al)4O10](O,F)2Mon. 2/m : B2/m
PhlogopiteKMg3(AlSi3O10)(OH)2Mon. 2/m : B2/m
PolylithioniteKLi2Al(Si4O10)(F,OH)2Mon. 2/m : B2/b
RoscoeliteK(V3+,Al)2(AlSi3O10)(OH)2Mon. 2/m : B2/b
ShirokshiniteKNaMg2(Si4O10)F2Mon. 2/m : B2/m
ShirozuliteK(Mn2+,Mg)3(AlSi3O10)(OH)2Mon. 2/m : B2/m
Suhailite(NH4)Fe2+3(AlSi3O10)(OH)2Mon. 2/m : B2/m
TrilithioniteK(Li1.5Al1.5)(AlSi3O10)(F,OH)2Mon. 2/m : B2/b
VoloshiniteRb(LiAl1.51.5)(Al0.5Si3.5)O10F2Mon. 2/m : B2/b
Wonesite(Na,K)(Mg,Fe,Al)6((Al,Si)4O10)2(OH,F)4Mon. 2/m : B2/m
YangzhumingiteKMg2.5(Si4O10)F2Mon. 2/m : B2/m
Forms a series with:

Common AssociatesHide

Associated Minerals Based on Photo Data:
Quartz1,167 photos of Muscovite associated with Quartz on
Albite1,013 photos of Muscovite associated with Albite on
Aquamarine882 photos of Muscovite associated with Aquamarine on
Fluorite817 photos of Muscovite associated with Fluorite on
Fluorapatite652 photos of Muscovite associated with Fluorapatite on
Spessartine415 photos of Muscovite associated with Spessartine on
Schorl392 photos of Muscovite associated with Schorl on
Scheelite384 photos of Muscovite associated with Scheelite on
Microcline349 photos of Muscovite associated with Microcline on
Smoky Quartz307 photos of Muscovite associated with Smoky Quartz on

Related Minerals - Nickel-Strunz GroupingHide

9.EC.05MinnesotaiteFe2+3Si4O10(OH)2Tric. 1 : P1
9.EC.05TalcMg3Si4O10(OH)2Tric. 1 : P1
9.EC.10PyrophylliteAl2Si4O10(OH)2Tric. 1
9.EC.15CeladoniteK(Mg,Fe2+)Fe3+(Si4O10)(OH)2Mon. 2/m : B2/m
9.EC.15RoscoeliteK(V3+,Al)2(AlSi3O10)(OH)2Mon. 2/m : B2/b
9.EC.15ChromphylliteK(Cr,Al)2(AlSi3O10)(OH,F)2Mon. 2/m : B2/b
9.EC.15FerroaluminoceladoniteK(Fe2+,Mg)(Al,Fe3+)(Si4O10)(OH)2Mon. 2/m : B2/m
9.EC.15FerroceladoniteK(Fe2+,Mg)(Fe3+,Al)(Si4O10)(OH)2Mon. 2/m : B2/m
9.EC.20AnniteKFe2+3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20HendricksiteK(Zn,Mg,Mn2+)3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20NorrishiteKLiMn3+2(Si4O10)O2Mon. 2/m : B2/m
9.EC.20PhlogopiteKMg3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20PolylithioniteKLi2Al(Si4O10)(F,OH)2Mon. 2/m : B2/b
9.EC.20FluorotetraferriphlogopiteKMg3(Fe3+Si3O10)F2Mon. 2/m : B2/m
9.EC.20Wonesite(Na,K)(Mg,Fe,Al)6((Al,Si)4O10)2(OH,F)4Mon. 2/m : B2/m
9.EC.20TrilithioniteK(Li1.5Al1.5)(AlSi3O10)(F,OH)2Mon. 2/m : B2/b
9.EC.20ShirokshiniteKNaMg2(Si4O10)F2Mon. 2/m : B2/m
9.EC.20ShirozuliteK(Mn2+,Mg)3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20AspidoliteNaMg3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20FluorophlogopiteKMg3(AlSi3O10)(F,OH)2Mon. 2/m : B2/m
9.EC.20Suhailite(NH4)Fe2+3(AlSi3O10)(OH)2Mon. 2/m : B2/m
9.EC.20YangzhumingiteKMg2.5(Si4O10)F2Mon. 2/m : B2/m
9.EC.20OrloviteKLi2Ti(Si4O10)OFMon. 2 : B2
9.EC.20OxyphlogopiteK(Mg,Ti,Fe)3[(Si,Al)4O10](O,F)2Mon. 2/m : B2/m
9.EC.35Anandite(Ba,K)(Fe2+,Mg)3((Si,Al,Fe)4O10)(S,OH)2Mon. 2/m : B2/b
9.EC.35BityiteLiCaAl2(AlBeSi2O10)(OH)2Mon. 2/m : B2/b
9.EC.35ClintoniteCa(Mg,Al)3(Al3SiO10)(OH)2Mon. 2/m : B2/m
9.EC.35Oxykinoshitalite(Ba,K)(Mg,Ti,Fe3+,Fe2+)3((Si,Al)4O10)(O,OH,F)2Mon. 2/m : B2/m
9.EC.35FluorokinoshitaliteBaMg3(Al2Si2O10)F2Mon. 2/m : B2/m
9.EC.40Beidellite(Na,Ca0.5)0.3Al2((Si,Al)4O10)(OH)2 · nH2OMon.
9.EC.40Kurumsakite(Zn,Ni,Cu)8Al8V5+2Si5O35 · 27H2O (?)
9.EC.40Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2OMon. 2/m : B2/m
9.EC.40NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2OMon.
9.EC.40VolkonskoiteCa0.3(Cr,Mg,Fe)2((Si,Al)4O10)(OH)2 · 4H2OMon.
9.EC.40Yakhontovite(Ca,Na)0.5(Cu,Fe,Mg)2(Si4O10)(OH)2 · 3H2OMon.
9.EC.45SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2OMon.
9.EC.45SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2OMon.
9.EC.45SpadaiteMgSiO2(OH)2 · H2O (?)
9.EC.45SwineforditeLi(Al,Li,Mg)4((Si,Al)4O10)2(OH,F)4 · nH2OMon.
9.EC.45ZincsiliteZn3(Si4O10)(OH)2 · 4H2OMon.
9.EC.45FerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
9.EC.50VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2OMon. 2/m
9.EC.55ClinochloreMg5Al(AlSi3O10)(OH)8Mon. 2/m : B2/m
9.EC.55Cookeite(Al2Li)Al2(AlSi3O10)(OH)8Mon. 2/m
9.EC.55FranklinfurnaceiteCa2Fe3+Mn2+3Mn3+(Zn2Si2O10)(OH)8Mon. 2 : B2
9.EC.55DonbassiteAl4.33(AlSi3O10)(OH)8Mon. 2 : B2
9.EC.55GlagoleviteNa(Mg,Al)6(AlSi3O10)(OH,O)8Tric. 1 : P1
9.EC.60AliettiteCa0.2Mg6((Si,Al)8O20)(OH)4 · 4H2OMon.
9.EC.60Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2OOrth.
9.EC.60HydrobiotiteK(Mg,Fe2+)6((Si,Al)8O20)(OH)4 · nH2OMon.
9.EC.60Karpinskite(Ni,Mg)2Si2O5(OH)2 (?)
9.EC.60Rectorite(Na,Ca)Al4((Si,Al)8O20)(OH)4 · 2H2OMon.
9.EC.60TosuditeNa0.5(Al,Mg)6((Si,Al)8O18)(OH)12 · 5H2OMon. 2 : B2
9.EC.60BrinrobertsiteNa0.3Al4(Si4O10)2(OH)4 · 3.5 H2OMon.
9.EC.70BurckhardtitePb2(Fe3+Te6+)[AlSi3O8]O6Trig. 3m (3 2/m) : P3 1m
9.EC.75Ferrisurite(Pb,Ca)2.4Fe3+2(Si4O10)(CO3)1.7(OH)3 · nH2OMon.
9.EC.75Niksergievite(Ba,Ca)2Al3(AlSi3O10)(CO3)(OH)6 · nH2OMon.

Related Minerals - Dana Grouping (8th Ed.)Hide

71.2.2a.4RoscoeliteK(V3+,Al)2(AlSi3O10)(OH)2Mon. 2/m : B2/b
71.2.2a.5Glauconite(K,Na)(Mg,Fe2+,Fe3+)(Fe3+,Al)(Si,Al)4O10(OH)2Mon. 2/m : B2/m
71.2.2a.6CeladoniteK(Mg,Fe2+)Fe3+(Si4O10)(OH)2Mon. 2/m : B2/m

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

16.3.1LithositeK6Al4Si8O25 · 2H2OMon.
16.3.3KalsiliteKAlSiO4Hex. 6 2 2 : P63 2 2
16.3.4LeuciteK(AlSi2O6)Tet. 4/m : I41/a
16.3.5MicroclineK(AlSi3O8)Tric. 1
16.3.6OrthoclaseK(AlSi3O8)Mon. 2/m : B2/m
16.3.7SanidineK(AlSi3O8)Mon. 2/m : B2/m

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Muscovite in petrologyHide

References for MuscoviteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Woodard, H.H. (1951) The Geology and Paragenesis of the Lord Hill pegmatite, Stoneham, Maine. American Mineralogist: 36: 869-883.
Heinrich, E.W., Levinson, A.A. (1953) Studies in the mica group: mineralogy of the rose muscovites. American Mineralogist: 38: 25-49.
Yoder, H.S., Eugster, H.P. (1955) Synthetic and natural muscovites. Geochimica et Cosmochimica Acta: 8: 225-280.
Nicol, A.W. (1964) Topotactic transformation of muscovite under mild hydrothermal conditions. Clays and Clay Minerals: 12: 11-19.
Güven, N. (1967) The crystal structure of 2M1 phengite and 2M1 muscovite. Carnegie Inst. Washington Year Book: 66: 487-492.
Brearley, A.J. (1986) An electron optical study of muscovite breakdown in pelitic xenoliths during pyrometamorphism. Mineralogical Magazine: 50: 385-397.
Guggenheim, S., Chang, Y.-H., and Koster van Groos, A.F. (1987) Muscovite dehydroxylation: High-temperature studies. American Mineralogist: 72: 537-550.
Guidotti, C.V., Mazzoli, C., Sassi, F.P., Blencoe, J.G. (1992) Compositional controls on the cell dimensions of 2M1 muscovite and paragonite. European Journal of Mineralogy: 4: 283-292.
Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B., Rosenzweig, A. (1997) Dana's New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana: 1448.
Rieder, M., Cavazzani, G., D'Yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Müller, G., Neiva, A.M.R., Radaslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z., Wones, D.R. (1998) Nomenclature of the micas. The Canadian Mineralogist: 36: 905-912.
Busigny, V., Cartigny, P., Philippot, P., Javoy, M. (2003) Ammonium quantification in muscovite by infrared spectroscopy. Chemical Geology: 198: 21-31.

Internet Links for MuscoviteHide

Significant localities for MuscoviteHide

Showing 23 significant localities out of 25,787 recorded on

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
  • Québec
    • Abitibi-Témiscamingue
      • La Vallée-de-l'Or RCM
        • Réservoir-Dozois
Olivier Langelier Collection
  • Ancash Department
    • Pallasca Province
      • Pampas District
Mineralogical Record 28, No. 4 (1997); collections of Rock Currier, Jack Crowley, Jaroslav Hyrsl and Alfredo Petrov.
  • Wallis (Valais)
    • Martigny
      • Mont Chemin
  • Wales
    • Carmarthenshire
[Illite var: Brammallite] DAN Earth Sci. 208 (1973), 157; CM 36 (1998), 905
  • California
Bowen, O.E., Jr. & C.H. Gray, Jr. (1957), Mines and mineral deposits of Mariposa County, California: California Journal of Mines and Geology: 53(1&2): 34-343; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 425.
    • San Luis Obispo Co.
      • Santa Lucia Mts (Santa Lucia Range)
        • San Simeon
Ron Layton collection
  • Connecticut
    • Fairfield Co.
      • Redding (Reading)
        • Branchville
Cameron et al (1954) USGS Prof Paper 255; Shainin (1946); Rocks & Minerals (1995) 70:396-409
    • Hartford Co.
      • Glastonbury
        • South Glastonbury
Rocks & Min 74:121 (1999); Rocks and Minerals (1999) 74:110-121
    • Middlesex Co.
      • East Hampton (Chatham)
LMSCC Newsletter, Sept. 2005 Harold Moritz collection, 1991-2009
      • Haddam
        • Haddam Neck
Mineralogical Magazine 1902 13 : 97-121.; Scovil, Jeffrey A. (1992): Famous Mineral Localities: the Gillette Quarry, Haddam Neck, Connecticut. (Mineralogical Record, 23(1):19-28.); Cameron, Eugene N. and others. (1954) PEGMATITE INVESTIGATIONS 1942-45 NEW ENGLAND. U.S. Geological Survey, Professional Paper 255.
[var: Schernikite] Adam Berlutti collection
      • Portland
        • Collins Hill
          • Strickland pegmatite (Strickland-Cramer Quarry; Strickland-Cramer Mine; Strickland-Cramer Feldspar-Mica Quarries)
Cameron, Eugene N., Larrabee, David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255: 333-338.; Sterrett, Douglas B. (1923), Mica Deposits Of The United States, USGS Bulletin 740: 65-67.
Januzzi, Ronald. (1976), Mineral Localities of Connecticut and Southeastern New York State. Taylor Associates/Mineralogical Press, Danbury.
  • Illinois
    • Calhoun Co.
      • Gilead
[Illite] GSA Bulletin; August 2001; v. 113; no. 8; p. 1092-1104
  • Maine
    • Sagadahoc Co.
      • Topsham
[var: Schernikite] Cliff Trebilcock collection
  • North Carolina
    • Catawba Co.
      • Hickory
K. Wood collection
    • Mitchell Co.
      • Spruce Pine District
        • Spruce Pine
U.S. Geological Survey, 2005, Mineral Resources Data System: U.S. Geological Survey, Reston, Virginia.
  • Pennsylvania
    • Delaware Co.
      • Middletown Township
Gordon, Mineralogy of Pennsylvania, 1922 p. 190
  • South Dakota
    • Pennington Co.
      • Keystone District
        • Keystone
Dana 6: 1088; Rocks & Minerals: 10: 121-122,146-147.; USGS Bull 380D; U.S. Geological Survey, 2005, Mineral Resources Data System: U.S. Geological Survey, Reston, Virginia.; Norton, James J. (1964) Pegmatites and other Precambrian Rocks in the Southern Black Hills; Geology and mineral deposits of some pegmatites in the southern Black Hills, South Dakota. USGS Professional Paper 297E.
  • Texas
    • Burnet Co.
F Roberts, 2006
Mineral and/or Locality is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © and the Hudson Institute of Mineralogy 1993-2017, except where stated. relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: September 21, 2017 13:30:46 Page generated: September 17, 2017 09:11:00
Go to top of page