Donate now to keep mindat.org alive!Help mindat.org|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on Mindat
The most common minerals on earthMineral PhotographyThe Elements and their Minerals
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralSearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsMember ListBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Pyrochlore Supergroup

This page is currently not sponsored. Click here to sponsor this page.
Formula:
A2-mB2X6-wY1-n
A typically is a large [8]-coordinated cation with a radius of ~1.0 Å or a vacancy (□), but can also be H2O.

The A site, therefore, may host Na, Ca, Sr, Pb2+, Sn2+, Sb3+, Y, U, □, or H2O or, less frequently Ag, Mn, Ba, Fe2+, Bi3+, Ce (and other REE), Sc or Th.

B is a [6]-coordinated cation typically of high field-strength. This site thus may contain Ta, Nb, Ti, Sb5+ or W, but also V5+, Sn4+, Zr, Hf, Fe3+, Mg, Al and Si. DX6 edge-sharing octahedra form a framework, in which the cavities host the A cations.

X typically is O but can include subordinate OH and F.

Y typically is an anion, but can also be a vacancy, H2O, or a very large (>> 1.0 Å) monovalent cation (site 8b). Examples are OH, F, O, □, H2O, K, Cs, Rb.

The symbols m, w, and n represent parameters that indicate incomplete occupancy of the A, X and Y sites, respectively. Vacancies have not been found to occur at the B site (Atencio et al. 2010).
Name:
The supergroup has its name after the generic name pyrochlore. The name was first introduced by J. J. Berzelius for a cubic mineral found by N.O.Tank in the 1820s in a syenite pegmatite at Stavern (formerly Fredriksvärn), Norway (Wöhler 1826). It is derived from the Greek πΰρ, fire, and χλωρός, green in allusion to the fact that the mineral usually turns green on ignition.
In 1977 Hogarth introduced a new classification of the "pyrochlore group". This system did not entirely fit the current IMA rules for mineralogical nomenclature. The nomenclature was therefore revised by Atencio et al. (2010); see also Christy & Atencio (2013), and approved by IMA.
The pyrochlore supergroup is a group of chemically complex cubic oxides. The classification of the pyrochlore supergroup is based on the ions at the A, B and Y sites.
A correct identification of individual members is only possible using a combination of several analytical methods.
The pyrochlore supergroup is divided into five groups based on the atomic proportions of the B-site atoms, Nb, Ta, Sb, Ti and W: Pyrochlore Group, Microlite Group, Roméite Group, Betafite Group and Elsmoreite Group. Additional groups (Ralstonite Group, Coulsellite Group) were established subsequently (Atencio et al., 2017).

NB: The pyrochlore supergroup is broader and includes more minerals than the historically "pyrochlore group". The later is also not identical with the new subgroup, pyrochlore group.

Fluornatropyrochlore, Pyrochlore Group
Cuproroméite, Roméite Group
Oxyuranobetafite, Betafite Group
Hydrokenoelsmoreite, Elsmoreite Group
Fluornatropyrochlore, Pyrochlore Group
Cuproroméite, Roméite Group
Oxyuranobetafite, Betafite Group
Hydrokenoelsmoreite, Elsmoreite Group
Fluornatropyrochlore, Pyrochlore Group
Cuproroméite, Roméite Group
Oxyuranobetafite, Betafite Group
Hydrokenoelsmoreite, Elsmoreite Group


The names of each member of the pyrochlore supergroup are composed of the group name plus two prefixes:
1. The first prefix refers to the dominant cation or anion of the dominent valance or H2O or vacancy at the Y site: OH = hydroxy-, F = fluor-, O = oxy-, H2O = hydro- and vacancy = □.

2. The second prefix refers to the dominant cation of the dominant valance or H2O or vacancy at the A site. Examples: Sr = strontio, Na = natro, Pb = plumbo.
When the first and second prefixes are equal, only one prefix is applied (Atencio et al., 2010).


Hide all sections | Show all sections

Classification of Pyrochlore SupergroupHide

Approved
Notes:
Group Name

Chemical Properties of Pyrochlore SupergroupHide

Formula:
A2-mB2X6-wY1-n

A typically is a large [8]-coordinated cation with a radius of ~1.0 Å or a vacancy (□), but can also be H2O.

The A site, therefore, may host Na, Ca, Sr, Pb2+, Sn2+, Sb3+, Y, U, □, or H2O or, less frequently Ag, Mn, Ba, Fe2+, Bi3+, Ce (and other REE), Sc or Th.

B is a [6]-coordinated cation typically of high field-strength. This site thus may contain Ta, Nb, Ti, Sb5+ or W, but also V5+, Sn4+, Zr, Hf, Fe3+, Mg, Al and Si. DX6 edge-sharing octahedra form a framework, in which the cavities host the A cations.

X typically is O but can include subordinate OH and F.

Y typically is an anion, but can also be a vacancy, H2O, or a very large (>> 1.0 Å) monovalent cation (site 8b). Examples are OH, F, O, □, H2O, K, Cs, Rb.

The symbols m, w, and n represent parameters that indicate incomplete occupancy of the A, X and Y sites, respectively. Vacancies have not been found to occur at the B site (Atencio et al. 2010).

Synonyms of Pyrochlore SupergroupHide

Other Language Names for Pyrochlore SupergroupHide

Varieties of Pyrochlore SupergroupHide

Barian Betafite (of Mironov & Gofman)Claimed to be a variety of "betafite" with content of BaO 21 wt.% and more.
Betafite (of Hogarth 1977)True "Betafite" samples are structurally members of the pyrochlore group. Hogarth (1977) stated that the betafite subgroup has 2Ti ≥ Nb + Ta, however the formulas of betafites do not exactly correspond to pyrochlores and that difference has delayed thei...
Plumbobetafite (of Hogarth 1977)Plumbobetafite of Ganzeev et al. (1969) is a Zero valent dominant member of the Pyrochlore Group. Plumbobetafite of Voloshin et al. (1993) is a "plumbobetafite".
Stibiobetafite (of Černý et al.)Černý et al. (1979) defined stibiobetafite as the Sb3+ analogue of betafite; however, the type sample has Nb + Ta > Ti apfu, and Ca is the dominant species of the dominant-valence group at the A site. The type sample is now to be classified as oxycalcio...
TangeniteAn impure "betafite" (s.l.) enriched with TiO2. Probably a mixture of several phases.

Relationship of Pyrochlore Supergroup to other SpeciesHide

Group Members:
Betafite Group A2(Ti,Nb)2O6Z
  Oxycalciobetafite Ca2(Ti,Nb)2O6O
  Oxyuranobetafite (U,Ca,◻)2(Ti,Nb)2O6O
Coulsellite Group 
  Fluornatrocoulsellite CaNa3AlMg3F14Trig. 3m (3 2/m) : R3m
Elsmoreite Group 
  Hydrokenoelsmoreite 2W2O6(H2O)Iso. m3m (4/m 3 2/m) : Fd3m
  Hydroxykenoelsmoreite (□,Pb)2(W,Fe3+,Al)2(O,OH)6(OH)Trig. 3 : R3
Microlite Group Iso. m3m (4/m 3 2/m) : Fd3m
  Fluorcalciomicrolite (Ca,Na)2(Ta,Nb)2O6FIso. m3m (4/m 3 2/m) : Fd3m
  Fluornatromicrolite (Na1.5Bi0.5)Ta2O6FIso. m3m (4/m 3 2/m) : Fd3m
  Hydrokenomicrolite (◻,H2O)2Ta2(O,OH)6(H2O)Iso. m3m (4/m 3 2/m)
  Hydromicrolite (H2O,◻)2Ta2(O,OH)6(H2O)
  Hydroxycalciomicrolite Ca1.5Ta2O6(OH)Iso. 4 3 2 : P42 3 2
  Hydroxykenomicrolite (◻,Na,Sb3+)2Ta2O6(OH)Iso.
  Kenoplumbomicrolite (Pb,◻)2Ta2O6(◻,OH,O)Iso.
  Oxycalciomicrolite Ca2Ta2O6O
  Oxystannomicrolite Sn2Ta2O6O
  Oxystibiomicrolite (Sb3+,Ca)2Ta2O6O
  Yttromicrolite (of Hogarth) (Ca,Y3+,U,Na)2-x(Ta,Nb,Ti,Fe3+)2O7Iso. m3m (4/m 3 2/m) : Fd3m
Pyrochlore Group A2Nb2(O,OH)6Z
  Cesiokenopyrochlore □Nb2(O,OH)6Cs1−x (x ∼ 0.20)Iso. m3m (4/m 3 2/m) : Fd3m
  Fluorcalciopyrochlore (Ca,Na)2(Nb, Ti)2O6FIso.
  Fluorhydropyrochlore 
  Fluorkenopyrochlore (□,Sr,Ce,Ca,Na)2(Nb,Ti)2O6F
  Fluornatropyrochlore (Na,Pb,Ca,REE,U)2Nb2O6FIso. m3m (4/m 3 2/m)
  Fluorplumbopyrochlore (Pb,Y,Th,U,Na,Ca)2-x(Nb,Ti)2O6FIso.
  Fluorstrontiopyrochlore (Sr,□)2Nb2(O,OH)6F
  Hydrokenopyrochlore 2Nb2O4(OH)2(H2O)Iso. m3m (4/m 3 2/m) : Fd3m
  Hydropyrochlore (H2O,□)2Nb2(O,OH)6(H2O)Iso. m3m (4/m 3 2/m) : Fd3m
  Hydroxycalciopyrochlore (Ca,Na,U,□)2(Nb,Ti)2O6(OH)Iso. m3m (4/m 3 2/m) : Fd3m
  Hydroxykenopyrochlore (□,Ce,Ba)2(Nb,Ti)2O6(OH,F)Iso. m3m (4/m 3 2/m) : Fd3m
  Hydroxymanganopyrochlore (Mn2+,Th,Na,Ca,REE)2(Nb,Ti)2O6(OH) Iso. m3 (2/m 3)
  Hydroxyplumbopyrochlore (Pb,Ca)2-x(Nb,Ti,Ta)2O6(OH)
  Kenoplumbopyrochlore (Pb,□)Nb2O6(□,O)
  Oxycalciopyrochlore Ca2Nb2O6OIso. m3m (4/m 3 2/m) : Fd3m
  Oxynatropyrochlore (Na,Ca,U)2Nb2O6(O,OH)
  Oxyplumbopyrochlore Pb2Nb2O6O
  Oxyyttropyrochlore-(Y) (Y,◻)2Nb2O6O
Ralstonite Group 
  Hydrokenoralstonite  Na0.5(Al,Mg)2(F,OH)6•H2O Iso. m3m (4/m 3 2/m) : Fd3m
Roméite Group 
  Cuproroméite Cu2Sb2(O,OH)7Iso.
  Fluorcalcioroméite (Ca,Na,◻)2Sb5+2(O,OH)6FIso. m3m (4/m 3 2/m) : Fd3m
  Fluornatroroméite (Na,Ca)2Sb2(O,OH)6F
  Hydroxycalcioroméite (Ca,Sb3+)2(Sb5+,Ti)2O6(OH)Iso. m3m (4/m 3 2/m) : Fd3m
  Hydroxyferroroméite (Fe2+1.50.5)Sb5+2O6(OH)Iso. m3m (4/m 3 2/m) : Fd3m
  Oxycalcioroméite Ca2Sb2O6OIso. m3m (4/m 3 2/m) : Fd3m
  Oxyplumboroméite Pb2Sb2O6OIso. m3m (4/m 3 2/m) : Fd3m
  Roméite 

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Pyrochlore Supergroup in petrologyHide

Accessory component of (items highlighted in red)

References for Pyrochlore SupergroupHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Pyatenko, Y.A. (1959) Crystal chemistry and characteristics of minerals of pyrochlore group. Kristallografiya: 4: 204-208 (English abstract).
Hogarth, D.D. (1977) Classification and nomenclature of the pyrochlore group. American Mineralogist: 62: 403-410.
Chakoumakos, B.C. (1984) Systematics of the pyrochlore structure type, ideal A2B2X6Y. Journal of Solid State Chemistry: 53: 120-129.
Greegor, R.B., Lytle, F.W., Chakoumakos, B.C., Lumpkin, G.R., and Ewing, R.C. (1985) An investigation of metamict and annealed pyrochlores by X-ray absorption spectroscopy. In C.M. Jantzen, J.A. Stone, and R.C. Ewing, Eds., Scientific Basis for Nuclear Waste Management VIII: 655-662. Materials Research Society, Pittsburgh.
Lumpkin, G.R., Foltyn, E.M., and Ewing, R.C. (1986) Thermal recrystallization of alpha-recoil damaged minerals of the pyrochlore structure type. Journal of Nuclear Materials: 139: 113-120.
Lumpkin, G.R. and Ewing, R.C. (1988) Alpha-decay damage in minerals of the pyrochlore group. Physics and Chemistry of Minerals: 16: 220.
Lumpkin, G.R. and Ewing, R.C. (1992) Geochemical alteration of pyrochlore group minerals: Microlite subgroup. American Mineralogist: 77: 179-188.
Johan, V. and Johan, Z. (1994) Accessory minerals of the Cinovec (Zinnwald) granite cupola, Czech Republic Part 1: Nb-, Ta-, and Ti-bearing oxides. Mineralogy and Petrology: 51: 323-343.
Lumpkin, G.R. and Ewing, R.C. (1995) Geochemical alteration of pyrochlore group minerals: Pyrochlore subgroup. American Mineralogist: 80: 732-743.
Lumpkin, G.R. and Ewing, R.C. (1996) Geochemical alteration of pyrochlore group minerals: Betafite subgroup. American Mineralogist: 81: 1237-1248.
Hogarth, D.D., Williams, C.T., and Jones, P. (2000) Primary zoning in pyrochlore group minerals from carbonatites. Mineralogical Magazine: 64: 683-697.
Nasraoui, M. and Waerenborgh, J.C. (2001) Fe speciation in weathered pyrochlore-group minerals from the Lueshe and Araxá (Barreiro) carbonatites by 57Fe Mössbauer spectroscopy. The Canadian Mineralogist: 39: 1073-1080.
Chakhmouradian, A.R. and Mitchell, R.H. (2002) New data on pyrochlore- and perovskite-group minerals from the Lovozero alkaline complex, Russia. European Journal of Mineralogy: 14: 821-836.
Atencio, D., Andrade, M.B., Christy, A.G., Gieré, R., and Kartashov, P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. The Canadian Mineralogist: 48: 673-698.
Christy, A.G. and Atencio, D. (2013) Clarification of status of species in the pyrochlore supergroup. Mineralogical Magazine: 77: 13-20.
Atencio, D., Andrade, M.B., Bastos Neto, A.C., and Pereira, V.P. (2017) Ralstonite renamed hydrokenoralstonite, coulsellite renamed fluornatrocoulsellite, and their incorporation into the pyrochlore supergroup. Can. Mineral. 55, 115-120.

Internet Links for Pyrochlore SupergroupHide

Localities for Pyrochlore SupergroupHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListShow