IMPORTANT MESSAGE. We need your support now to keep mindat.org running. Click here to find out why.
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for Educators
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Poitevinite

This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About PoiteviniteHide

Formula:
(Cu,Fe)SO4 · H2O
Colour:
Salmon pink
Hardness:
Specific Gravity:
3.30
Crystal System:
Triclinic
Name:
The name honors Théophile Eugène Poitevin (1888-1978), Canadian mineralogist, Geological Survey of Canada (1913-1957), for his contributions to Canadian mineralogy.
Closely related to the (monoclinic) Kieserite Group.
End-member szomolnokite, FeSO4·H2O, is monoclinic, and synthetic CuSO4·H2O is triclinic. The cell-parameter refinements of (Fe,Cu)SO4·H2O compounds show a reduction in symmetry from monoclinic to triclinic beyond 20 mol% Cu. By Mössbauer spectroscopy significant ordering involving the cations can be observed only in members of the solid solution with more than 20 mol% Cu. Site ordering is characterized by a preference of ferrous iron for the less distorted site. The structure of the compounds with more than 20 mol% Cu agrees with the triclinic model for CuSO4·H2O. Poitevinite is a distinct mineral species because of cation site-ordering and of the triclinic distortion of the structure. (slightly modified from Giester et al. (1994)) Zn is a minor constituent at the type locality at Avoca claim, Hat Creek, Bonaparte River, Lillooet Mining Division, British Columbia, Canada (Cu0.50, Fe0.46, Zn0.04). It is not essential to the structure. (Branko Rieck)


Classification of PoiteviniteHide

Approved
7.CB.05

7 : SULFATES (selenates, tellurates, chromates, molybdates, wolframates)
C : Sulfates (selenates, etc.) without additional anions, with H2O
B : With only medium-sized cations
29.6.2.4

29 : HYDRATED ACID AND NORMAL SULFATES
6 : AXO4·xH2O
25.2.27

25 : Sulphates
2 : Sulphates of Cu and Ag

Physical Properties of PoiteviniteHide

Colour:
Salmon pink
Hardness:
3½ on Mohs scale
Density:
3.30 g/cm3 (Measured)    3.30 g/cm3 (Calculated)

Optical Data of PoiteviniteHide

Type:
Biaxial (+)
RI values:
nα = 1.626 nβ = 1.671 nγ = 1.699
2V:
Measured: 75° , Calculated: 74°
Max Birefringence:
δ = 0.073
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
High
Dispersion:
weak

Chemical Properties of PoiteviniteHide

Formula:
(Cu,Fe)SO4 · H2O
IMA Formula:
Cu(SO4) · H2O
Common Impurities:
Zn

Crystallography of PoiteviniteHide

Crystal System:
Triclinic
Cell Parameters:
a = 7.09 Å, b = 7.44 Å, c = 7.82 Å
α = 89.47°, β = 119.56°, γ = 90.45°
Ratio:
a:b:c = 0.953 : 1 : 1.051
Unit Cell V:
358.79 ų (Calculated from Unit Cell)

Type Occurrence of PoiteviniteHide

Synonyms of PoiteviniteHide

Other Language Names for PoiteviniteHide

Relationship of Poitevinite to other SpeciesHide

Structurally related to group(s):
Kieserite GroupM2+SO4 · H2O

Common AssociatesHide

Associated Minerals Based on Photo Data:
Chalcanthite1 photo of Poitevinite associated with Chalcanthite on mindat.org.
Bonattite1 photo of Poitevinite associated with Bonattite on mindat.org.

Related Minerals - Nickel-Strunz GroupingHide

7.CB.05Dwornikite(Ni,Fe)SO4 · H2OMon. 2/m : B2/b
7.CB.05GunningiteZnSO4 · H2OMon. 2/m : B2/b
7.CB.05KieseriteMgSO4 · H2OMon. 2/m
7.CB.05SzmikiteMnSO4 · H2OMon.
7.CB.05SzomolnokiteFeSO4 · H2OMon. 2/m : B2/b
7.CB.05CobaltkieseriteCoSO4 · H2OMon. 2/m : B2/b
7.CB.07SanderiteMgSO4 · 2H2OOrth. 2 2 2 : P21 21 21
7.CB.10BonattiteCuSO4 · 3H2OMon.
7.CB.15Aplowite(Co,Mn,Ni)SO4 · 4H2OMon. 2/m
7.CB.15Boyleite(Zn,Mg)SO4 · 4H2OMon. 2/m : P21/b
7.CB.15Ilesite(Mn,Zn,Fe)SO4 · 4H2OMon. 2/m
7.CB.15RozeniteFeSO4 · 4H2OMon. 2/m : P21/b
7.CB.15StarkeyiteMgSO4 · 4H2OMon. 2/m : P21/b
7.CB.15DrobeciteCdSO4 · 4H2OMon. 2/m : P21/m
7.CB.15CranswickiteMgSO4 · 4H2OMon. m : Bb
7.CB.20ChalcanthiteCuSO4 · 5H2OTric. 1 : P1
7.CB.20JôkokuiteMnSO4 · 5H2OTric.
7.CB.20PentahydriteMgSO4 · 5H2OTric.
7.CB.20SiderotilFeSO4 · 5H2OTric.
7.CB.25Bianchite(Zn,Fe)SO4 · 6H2OMon. 2/m : P2/m
7.CB.25Chvaleticeite(Mn,Mg)SO4 · 6H2OMon. 2/m : B2/b
7.CB.25FerrohexahydriteFeSO4 · 6H2OMon. 2/m : B2/b
7.CB.25HexahydriteMgSO4 · 6H2OMon. 2/m : P2/m
7.CB.25Moorhouseite(Co,Ni,Mn)SO4 · 6H2OMon.
7.CB.25Nickelhexahydrite(Ni,Mg,Fe)SO4 · 6H2OMon.
7.CB.30RetgersiteNiSO4 · 6H2OTet. 4 2 2 : P41 21 2
7.CB.35BieberiteCoSO4 · 7H2OMon. 2/m : P2/m
7.CB.35BoothiteCuSO4 · 7H2OMon.
7.CB.35MallarditeMnSO4 · 7H2OMon. 2/m : P2/m
7.CB.35MelanteriteFe2+(H2O)6SO4 · H2OMon. 2/m : P21/b
7.CB.35Zincmelanterite(Zn,Cu,Fe)SO4 · 7H2OMon.
7.CB.35Alpersite(Mg,Cu)[SO4] · 7H2OMon. 2/m : P21/b
7.CB.40EpsomiteMgSO4 · 7H2OOrth. 2 2 2 : P21 21 21
7.CB.40GoslariteZnSO4 · 7H2OOrth. 2 2 2 : P21 21 21
7.CB.40MorenositeNiSO4 · 7H2OOrth. 2 2 2 : P21 21 21
7.CB.45AlunogenAl2(SO4)3 · 17H2OTric. 1
7.CB.45Meta-alunogenAl2(SO4)3 · 12H2O
7.CB.50AluminocoquimbiteFeAl(SO4)3 · 9H2OTrig. 3m (3 2/m) : P3 1c
7.CB.55CoquimbiteFe2-xAlx(SO4)3 · 9H2O, x ~0.5Trig. 3m (3 2/m) : P3 1c
7.CB.55ParacoquimbiteFe2(SO4)3 · 9H2OTrig. 3 : R3
7.CB.55Rhomboclase(H5O2)Fe3+(SO4)2 · 2H2OOrth. mmm (2/m 2/m 2/m) : Pnma
7.CB.60KorneliteFe2(SO4)3 · 7H2OMon. 2/m : P21/m
7.CB.65QuenstedtiteFe2(SO4)3 · 11H2OTric. 1 : P1
7.CB.70LauseniteFe2(SO4)3·5H2OMon. 2/m : P21/m
7.CB.75LishizheniteZnFe2(SO4)4 · 14H2OTric. 1 : P1
7.CB.75RömeriteFe2+Fe3+2(SO4)4 · 14H2OTric. 1 : P1
7.CB.80RansomiteCuFe2(SO4)4 · 6H2OMon. 2/m : P21/b
7.CB.85ApjohniteMn2+Al2(SO4)4 · 22H2OMon.
7.CB.85BíliniteFe2+Fe3+2(SO4)4 · 22H2OMon. 2/m : P21/b
7.CB.85Dietrichite(Zn,Fe2+,Mn2+)Al2(SO4)4 · 22H2OMon. 2/m : P21/b
7.CB.85HalotrichiteFeAl2(SO4)4 · 22H2OMon. 2 : P2
7.CB.85PickeringiteMgAl2(SO4)4 · 22H2OMon. 2/m : P21/b
7.CB.85Redingtonite(Fe2+,Mg,Ni)(Cr,Al)2(SO4)4·22H2OMon.
7.CB.85Wupatkiite(Co,Mg,Ni)Al2(SO4)4·22H2OMon.
7.CB.90MeridianiiteMgSO4 · 11H2OTric. 1 : P1

Related Minerals - Dana Grouping (8th Ed.)Hide

29.6.2.1KieseriteMgSO4 · H2OMon. 2/m
29.6.2.2SzomolnokiteFeSO4 · H2OMon. 2/m : B2/b
29.6.2.3SzmikiteMnSO4 · H2OMon.
29.6.2.5GunningiteZnSO4 · H2OMon. 2/m : B2/b
29.6.2.6Dwornikite(Ni,Fe)SO4 · H2OMon. 2/m : B2/b

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

25.2.1ChalcocyaniteCuSO4Orth. mmm (2/m 2/m 2/m)
25.2.2BonattiteCuSO4 · 3H2OMon.
25.2.3ChalcanthiteCuSO4 · 5H2OTric. 1 : P1
25.2.4BoothiteCuSO4 · 7H2OMon.
25.2.5DolerophaniteCu2(SO4)OMon. 2/m : B2/m
25.2.6AntleriteCu3(SO4)(OH)4Orth. mmm (2/m 2/m 2/m)
25.2.7BrochantiteCu4(SO4)(OH)6Mon. 2/m : P21/b
25.2.8PosnjakiteCu4(SO4)(OH)6 · H2OMon. m : Pm
25.2.9LangiteCu4(SO4)(OH)6 · 2H2OMon. m
25.2.10WroewolfeiteCu4(SO4)(OH)6 · 2H2OMon. m : Pm
25.2.11KröhnkiteNa2Cu(SO4)2 · 2H2OMon. 2/m : P21/b
25.2.12NatrochalciteNaCu2(SO4)2(OH) · 2H2OMon. 2/m : B2/m
25.2.13PiypiteK4Cu4O2(SO4)4 · (Na,Cu)ClTet.
25.2.14FedotoviteK2Cu3(SO4)3OMon. 2/m : B2/b
25.2.15CyanochroiteK2Cu(SO4)2 · 6H2OMon. 2/m
25.2.16EuchlorineKNaCu3(SO4)3OMon.
25.2.17DevillineCaCu4(SO4)2(OH)6 · 3H2OMon. 2/m : P21/b
25.2.18LeightoniteK2Ca2Cu(SO4)4 · 2H2OTric.
25.2.19ChalcoalumiteCuAl4(SO4)(OH)12 · 3H2OMon. 2 : P21
25.2.20CyanotrichiteCu4Al2(SO4)(OH)12 · 2H2OOrth.
25.2.21WoodwarditeCu1-xAlx(OH)2(SO4)x/2 · nH2OTrig. 3m (3 2/m) : R3m
25.2.22CampigliaiteMn2+Cu4(SO4)2(OH)6 · 4H2OMon.
25.2.23GuilditeCuFe3+(SO4)2(OH) · 4H2OMon.
25.2.24RansomiteCuFe2(SO4)4 · 6H2OMon. 2/m : P21/b
25.2.26KlyuchevskiteK3Cu3(Fe3+,Al)(SO4)4O2Mon.
25.2.28ArgentojarositeAgFe3+3(SO4)2(OH)6Trig. 3m : R3m

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for PoiteviniteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Jambor, J.L., G.R. Lachance, and S. Courville (1964): Poitevinite, a new mineral. Canadian Mineralogist 8, 109–110.
Giester, G., C.L. Lengauer, and G. Redhammer (1994) Characterization of the FeSO4•H2O−CuSO4•H2O solid-solution series, and the nature of poitevinite, (Cu,Fe)SO4•H2O. Canadian Mineralogist 32, 873-884.

Internet Links for PoiteviniteHide

Localities for PoiteviniteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Australia
 
  • New South Wales
    • Sandon Co.
B. G. Lottermoser: P. M. Ashley, M. Muller and B. D. Whistler (1997) Metal contamination at the abandoned Halls Peak massive sulfide deposits, New South Wales. Tectonics and Metallogenesis o/the New England Orogen. Geological Society of Australia Special Publication 19, 290-299.
B. G. Lottermoser: P. M. Ashley, M. Muller and B. D. Whistler (1997) Metal contamination at the abandoned Halls Peak massive sulfide deposits, New South Wales. Tectonics and Metallogenesis o/the New England Orogen. Geological Society of Australia Special Publication 19, 290-299.
  • Queensland
    • Mount Isa City Shire
      • Mount Isa
Forsyth, B., Edraki, M., & Baumgartl, T. (2015). The Evolution of Tailings Seepage Chemistry at One of Australia’s Largest and Longest Operating Mines. In 10th International Conference on AcidRock Drainage and Annual IMWA Conference (pp. 1-11). Gecamin Digital Publications.
Bulgaria
 
  • Plovdiv Oblast
    • Plovdiv
Atanassova, R. & Kerestedjian, T. (2009): Efflorescent minerals from the metallurgical waste heaps of the KCM non-ferrous metal smelter, Plovdiv, Bulgaria. Geochemistry, Mineralogy and Petrology, 47, 51-63.
Canada (TL)
 
  • British Columbia
    • Lillooet Mining Division
      • Bonaparte River
        • Hat Creek
JAMBOR, J.L., LACHANCE, G.R. & COURVILLE, S. (1964): Poitevinite, a new mineral. Canadian Mineralogist 8, 109-110. GIESTER,G., LENGAUER, C.L. & REDHAMMER, G.J. (1994): Characterization of the FeSO4$H2O-CuSO4$H2O solid-solution series, and the nature of poitevinite, (Cu,Fe)SO4$H2O. Canadian Mineralogist 32, 873-884.
Germany
 
  • Thuringia
    • Gera
      • Ronneburg U deposit
EDX and XRD confirmed , ex Rüger-collection
Iran
 
  • Kerman Province
    • Rafsanjan County
      • Pariz
Khorasanipour, M. (2015). Environmental mineralogy of Cu-porphyry mine tailings, a case study of semi-arid climate conditions, Sarcheshmeh mine, SE Iran. Journal of Geochemical Exploration, 153, 40-52.
Portugal
 
  • Beja District
    • Mértola
      • Corte do Pinto
Álvarez-Valero, A. M., Pérez-López, R., Matos, J., Capitán, M. A., Nieto, J. M., Sáez, R., ... & Caraballo, M. (2008). Potential environmental impact at São Domingos mining district (Iberian Pyrite Belt, SW Iberian Peninsula): evidence from a chemical and mineralogical characterization. Environmental Geology, 55(8), 1797-1809.
Russia
 
  • Eastern-Siberian Region
    • Sakha Republic (Yakutia)
      • Verkhoyansk Fold Belt
        • Verkhoyansk Silver Province
          • Deputatsky ore cluster
Zhdanov Yu.Ya., Solov'ev L.I. (1998): Geology and mineralogical composition of the oxidized zone in the Deputatsk tin ore deposit. Otechestvennaya Geol. (6), 77-79 (in Russian).
  • Urals Region
    • Southern Urals
      • Bashkortostan Republic (Bashkiria Republic)
        • Uchaly
Blinov, I. A., Belogub, E. V., Novoselov, K. A., & Philippova, K. A. (2011). Antropogenic Supergenic Mineral of Verhne Arshinskoe Lead Zinc Deposit (Bashkortostan). Башкирский химический журнал, 18(4).
Slovakia
 
  • Banská Bystrica Region
    • Banská Bystrica Co.
      • Poniky (Poinik)
Pauliš, P., Ďuďa, R.: Nejzajímavější mineralogická naleziště Slovenska. Kutná Hora: Kuttna, 2002, s. 50 - 51.
Ukraine
 
  • Crimea
    • Simferopol area
      • Petropavlovka Village area
A. Tischenko. Minerals of the Crimea - World of stones, 1996, #9, p. 9-18
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2018, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: October 16, 2018 16:05:12 Page generated: October 15, 2018 01:12:21
Go to top of page