Help mindat.org|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Pyrite

This page kindly sponsored by Ruth Debicki (2)
Formula:
FeS2
System:
Isometric
Colour:
Pale brass-yellow
Lustre:
Metallic
Hardness:
6 - 6½
Member of:
Name:
Named in antiquity from the Greek "pyr" for "fire", because sparks flew from it when hit with another mineral or metal. Known to Dioscorides (~50 CE) as περι υληζ ιατρικηζ and include both pyrite and chalcopyrite.
Pyrite Group.

Pyrite is a very common mineral, found in a wide variety of geological formations from sedimentary deposits to hydrothermal veins and as a constituent of metamorphic rocks. The brassy-yellow metallic colour of pyrite has in many cases lead to people mistaking it for Gold, hence the common nickname 'Fool's gold'. Pyrite is quite easy to distinguish from gold: pyrite is much lighter, but harder than gold and cannot be scratched with a fingernail or pocket knife.

Pyrite is commonly found to contain minor nickel, and forms a series with Vaesite; Bravoite is a nickeloan variety of pyrite.
It usually contains minor cobalt too and forms a series with Cattierite. Many pyrites contain minor As, see Arsenian Pyrite. Pb-bearing pyrite has been described by Cabral et al. (2011). It can also contain traces of other metals, including gold. Most of the foreign metal contents in pyrite can be traced back to metal nanoparticles (Deditius et al., 2011).

Pyrite cubes in limestone, Navajún, Spain
Pyrite dodecahedron, also known as "pyritohedron", Elba, Italy
Pyrite octahedra, Huánuco, Peru
Pyrite "Iron Cross" twin, Lemgo, Germany
Pyrite cubes in limestone, Navajún, Spain
Pyrite dodecahedron, also known as "pyritohedron", Elba, Italy
Pyrite octahedra, Huánuco, Peru
Pyrite "Iron Cross" twin, Lemgo, Germany
Pyrite cubes in limestone, Navajún, Spain
Pyrite dodecahedron, also known as "pyritohedron", Elba, Italy
Pyrite octahedra, Huánuco, Peru
Pyrite "Iron Cross" twin, Lemgo, Germany
Pyrite dollar, Sparta, Illinois
Pyritized ammonite, Aveyron, France
Pyrite concretion, Pilbara, Australia
Elongated pyrite crystals, Lucca, Italy
Pyrite dollar, Sparta, Illinois
Pyritized ammonite, Aveyron, France
Pyrite concretion, Pilbara, Australia
Elongated pyrite crystals, Lucca, Italy
Pyrite dollar, Sparta, Illinois
Pyritized ammonite, Aveyron, France
Pyrite concretion, Pilbara, Australia
Elongated pyrite crystals, Lucca, Italy


Decomposed pyrite concretion
Decomposed pyrite concretion
Decomposed pyrite concretion

Pyrite will slowly oxidize in a moist environment, and release sulfuric acid that is formed during the process. Well-crystallized specimens are generally relatively stable, while pyrite formed as sedimentary concretions has a tendency to decompose quickly.

Visit gemdat.org for gemological information about Pyrite.


Classification of Pyrite

Approved, 'Grandfathered' (first described prior to 1959)
2.EB.05a

2 : SULFIDES and SULFOSALTS (sulfides, selenides, tellurides; arsenides, antimonides, bismuthides; sulfarsenites, sulfantimonites, sulfbismuthites, etc.)
E : Metal Sulfides, M: S <= 1:2
B : M:S = 1:2, with Fe, Co, Ni, PGE, etc.
Dana 7th ed.:
2.12.1.1
2.12.1.1

2 : SULFIDES
12 : AmBnXp, with (m+n):p = 1:2
3.9.3

3 : Sulphides, Selenides, Tellurides, Arsenides and Bismuthides (except the arsenides, antimonides and bismuthides of Cu, Ag and Au, which are included in Section 1)
9 : Sulphides etc. of Fe

Physical Properties of Pyrite

Metallic
Diaphaneity (Transparency):
Opaque
Colour:
Pale brass-yellow
Streak:
Greenish-black
Hardness (Mohs):
6 - 6½
Hardness (Vickers):
VHN100=1505 - 1520 kg/mm2
Hardness Data:
Measured
Tenacity:
Brittle
Cleavage:
Poor/Indistinct
Indistinct on {001}.
Fracture:
Irregular/Uneven, Conchoidal
Density:
4.8 - 5 g/cm3 (Measured)    5.01 g/cm3 (Calculated)

Optical Data of Pyrite

Type:
Isotropic

Chemical Properties of Pyrite

Formula:
FeS2
Elements listed in formula:
Common Impurities:
Ni,Co,As,Cu,Zn,Ag,Au,Tl,Se,V

Crystallography of Pyrite

Crystal System:
Isometric
Class (H-M):
m3 (2/m 3) - Diploidal
Space Group:
Pa3
Cell Parameters:
a = 5.417 Å
Unit Cell Volume:
V 158.96 ų (Calculated from Unit Cell)
Z:
4
Morphology:
Typically cubic or pyritohedral (pentagonal dodecahedral), and combinations are common, resulting in striated faces. Less frequently octahedral, most commonly massive, granular, and sometimes radiating, reniform, discoidal or globular.
Twinning:
On [110], interpenetrating ('Iron Cross Law'). Twin axis [001] and twin plane {011}, penetration and contact twins. Twinning on (111) was described by Nicol (1904), Goldschmidt and Nicol (1904) and Gaubert (1928), all of whom considered it rare.

Crystallographic forms of Pyrite

Crystal Atlas:
Image Loading
Click on an icon to view
Pyrite no.1 - Goldschmidt (1913-1926)
Pyrite no.2 - Goldschmidt (1913-1926)
Pyrite no.3 - Goldschmidt (1913-1926)
Pyrite no.7 - Goldschmidt (1913-1926)
Pyrite no.8 - Goldschmidt (1913-1926)
Pyrite no.14 - Goldschmidt (1913-1926)
Pyrite no.59 - Goldschmidt (1913-1926)
Pyrite no.86 - Goldschmidt (1913-1926)
Pyrite no.92 - Goldschmidt (1913-1926)
Pyrite no.251 - Goldschmidt (1913-1926)
Pyrite no.565 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by www.smorf.nl.

Toggle
Edge Lines | Miller Indicies | Axes

Transparency
Opaque | Translucent | Transparent

View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

Epitaxial Relationships of Pyrite

Epitaxial Minerals:
X-Ray Powder Diffraction:
Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
X-Ray Powder Diffraction Data:
d-spacingIntensity
3.13(40)
2.71(90)
2.43(70)
2.21(50)
1.92(40)
1.63(100)
1.45(30)
1.04(30)

Occurrences of Pyrite

Relationship of Pyrite to other Species

Series:
Forms a series with Cattierite (see here)
Member of:
Other Members of Group:
2.EB.05aAurostibiteAuSb2
2.EB.05bBambollaiteCu(Se,Te)2
2.EB.05aCattieriteCoS2
2.EB.05aErlichmaniteOsS2
2.EB.05aFukuchiliteCu3FeS8
2.EB.05aGeversitePtSb2
2.EB.05aHaueriteMnS2
2.EB.05aInsizwaitePtBi2
2.EB.05aKrut'aiteCuSe2
2.EB.05aLauriteRuS2
2.EB.05aPenroseiteNiSe2
2.EB.05aSperrylitePtAs2
2.EB.05aTrogtaliteCoSe2
2.EB.05aVaesiteNiS2
2.EB.05aVillamaniniteCuS2
2.EB.05aDzharkeniteFeSe2
2.EB.05aGaotaiiteIr3Te8
2.EB.10bAlloclasiteCoAsS
2.EB.10dCostibiteCoSbS
2.EB.10aFerroseliteCoSe2
2.EB.10aFrohbergiteFeTe2
2.EB.10cGlaucodotCo0.5Fe0.5AsS
2.EB.10aKulleruditeNiSe2
2.EB.10aMarcasiteFeS2
2.EB.10aMattagamiteCoTe2
2.EB.10eParacostibiteCoSbS
2.EB.10ePararammelsbergiteNiAs2
2.EB.10fOeniteCoSbAs
2.EB.15aAnduoiteRuAs2
2.EB.15aClinosaffloriteCoAs2
2.EB.15aLöllingiteFeAs2
2.EB.15aNisbiteNiSb2
2.EB.15aOmeiiteOsAs2
2.EB.15cPaxiteCuAs2
2.EB.15aRammelsbergiteNiAs2
2.EB.15aSaffloriteCoAs2
2.EB.15bSeinäjokiteFeSb2
2.EB.20ArsenopyriteFeAsS
2.EB.20GudmunditeFeSbS
2.EB.20OsarsiteOsAsS
2.EB.20RuarsiteRuAsS
2.EB.25CobaltiteCoAsS
2.EB.25GersdorffiteNiAsS
2.EB.25HollingworthiteRhAsS
2.EB.25IrarsiteIrAsS
2.EB.25JolliffeiteNiAsSe
2.EB.25KrutoviteNiAs2
2.EB.25MaslovitePtBiTe
2.EB.25MicheneritePdBiTe
2.EB.25PadmaitePdBiSe
2.EB.25PlatarsitePtAsS
2.EB.25TestibiopalladitePdTe(Sb,Te)
2.EB.25TolovkiteIrSbS
2.EB.25UllmanniteNiSbS
2.EB.25WillyamiteCoSbS
2.EB.25ChangchengiteIrBiS
2.EB.25MayingiteIrBiTe
2.EB.25Hollingsworthite(Rh,Pt,Pd)AsS
2.EB.25KalungaitePdAsSe
2.EB.25MilotaitePdSbSe
2.EB.30UrvantsevitePd(Bi,Pb)2
2.EB.35RheniiteReS2
3.9.1PyrrhotiteFe7S8
3.9.4MarcasiteFeS2
3.9.5GreigiteFe2+Fe23+S4
3.9.6Mackinawite(Fe,Ni)1+xS (x = 0-0.07)
3.9.7Smythite(Fe,Ni)3+xS4 (x = 0 to 0.3)
3.9.8AchávaliteFeSe
3.9.9FerroseliteCoSe2
3.9.10FrohbergiteFeTe2
3.9.11LöllingiteFeAs2
3.9.12ArsenopyriteFeAsS
3.9.13GudmunditeFeSbS

Other Names for Pyrite

Name in Other Languages:
Basque:Pirita
Bosnian (Latin Script):Pirit
Catalan:Pirita
Czech:Pyrit
Danish:Pyrit
Dutch:Pyriet
Esperanto:Pirito
Estonian:Püriit
Finnish:Rikkikiisu
French:Pyrite
Galician:Pirita
Hebrew:פיריט
Hungarian:Pirit
Italian:Pirite
Japanese:黄鉄鉱
Lithuanian:Piritas
Norwegian (Bokmål):Svovelkis
Vasskis
Norwegian (Nynorsk):Svovelkis
Polish:Piryt
Portuguese:Pirita
Romanian:Pirită
Russian:Пирит
Sicilian:Petra fucali
Simplified Chinese:黄铁矿
Slovak:Pyrit
Slovenian:Pirit
Traditional Chinese:黃鐵礦
Turkish:Pirit
Ukrainian:Пірит

Other Information

Special Storage/
Display Requirements:
Many pyrites will tarnish over time, and some will even break down due to hydrous iron sulphates and other phases. This can be mitigated somewhat by storage in low-humidity environments but is hard to stop once started. See: http://www.mindat.org/mesg-19-170458.html
Health Risks:
Some fine-grained pyrite is metastable and may alter to melanterite, which contains sulphuric acid. Always wash hands after handling, especially decrepitated material. Avoid inhaling dust when handling or breaking. Never lick or ingest.

Pyrite in petrology

An essential component of (items highlighted in red)
Common component of (items highlighted in red)
Accessory component of (items highlighted in red)

References for Pyrite

Reference List:
Henckel, J.F. (1725) Pyritologia, oder Kieß Historie. Verlegts Johann Christian Martini (Leipzig), 114-115.

Goldschmidt, V., Nicol, W. (1904) Spinellgesetz beim Pyrit und über Rangordnung der Zwillingsgesetze. Neues Jahrbuch für Mineralogie: 2: 93-113.

Nicol, W. (1904) Spinel twins of pyrite. American Journal of Science: 167: 93.

Gaubert, P. (1928) Sur un cristal de pyrite, maclé suivant la loi des spinelles. Bulletin de la Société Française de Minéralogie: 51: 211-212.

Bannister, F.A. (1932) The distinction of pyrite from marcasite in nodular growths. Mineralogical Magazine, 23, 179-187.

Onorato E. (1931) Determinazione delle forme dirette ed inverse nella pirite. Periodico di Mineralogia: 13-16.

Grillo E. (1932) Distinzione tra pirite e marcasite con H2O2. Periodico di Mineralogia: 84-86.

Palache, C., Berman, H., Frondel, C. (1944) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Volume I: Elements, Sulfides, Sulfosalts, Oxides. John Wiley and Sons, Inc., New York. 7th edition, revised and enlarged: 282-290.

Love, L.G., Amstutz, G.C. (1966) Framboidal pyrite in two andesites. Neues Jahrbuch für Mineralogie, Monatshefte: 3: 97-108.

Love, L.G. (1971) Early diagenetic polyframboidal pyrite, primary and redeposited, from the Wenlockian Denbigh Grit Group, Conway, North Wales, U.K. Journal of Sedimentary Petrology: 41: 1038-1044.

Berner, R.A. (1970) Sedimentary pyrite formation. American Journal of Science: 268: 1-23.

Yund, R.A., Hall, H.T. (1970) Kinetics and mechanism of pyrite exsolution from pyrrhotite. Journal of Petrology: 11: 381-404.

Sweeney, R.E., Kaplan, I.R. (1973) Pyrite framboid formation: laboratory synthesis and marine sediments. Economic Geology: 68: 618-634.

Fleet, M.E. (1975) Structural chemistry of marcasite and pyrite type phases. Zeitschrift für Kristallographie: 142: 332-346.

Bayliss, P. (1977) Crystal structure refinement of a weakly anisotropic pyrite. American Mineralogist: 62: 1168-1172.

Gait, R.I. (1978) The Crystals Forms of Pyrite, Mineralogical Record, 9: 219-229.

Ostwald, J., England, B.M. (1979) The relationship between euhedral and framboidal pyrite in base metal sulfide ores. Mineralogical Magazine: 43: 297-300.

Raiswell, R. (1982) Pyrite texture, isotopic composition and availabilities of Fe. American Journal of Science: 282: 1244-1263.

Bayliss, P. (1989) Crystal chemistry and crystallography of some minerals within the pyrite group. American Mineralogist: 74: 1168-1176.

Schoonen, M.A.A., Barnes, H.L. (1991) Reaction forming pyrite and marcasite from solution I. Nucleation of FeS2 below 100° C. Geochimica et Cosmochimica Acta: 55: 1495-1504.

Schoonen, M.A.A., Barnes, H.L. (1991) Reaction forming pyrite and marcasite from solution II. Via FeS precursors below 100° C. Geochimica et Cosmochimica Acta: 55: 1505-1514.

Weise, C., publisher (1996) Pyrit und Markasit, extraLapis No. 11: Das eiserne Überall-Mineral. Weise-Verlag, München.

Wilkin, R.T., Barnes, H.L. (1996) Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta: 60: 4167-4179.

Wilkin, R.T., Barnes, H.L., Brantly, S.L. (1996) The size distribution of framboidal pyrite: an indicator of redox conditions. Geochimica et Cosmochimica Acta: 60: 3897-3912.

Fleet, M.E., Mumin, A.H. (1997) Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. American Mineralogist: 82: 182-193.

Gaines, R.V., Skinner, C.W.H., Foord, E.E., Mason, B., Rosenzweig, A. (1997) Dana's New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana: 114.

Wilkin, R.T., Barnes, H.L. (1997) Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta: 61: 323-339.

Nesbitt, H.W., Bancroft, G.M., Pratt, A.R., Scaini, M.J. (1998) Sulfur and iron surface states on fractured pyrite surfaces. American Mineralogist: 83: 1067-1076.

Schaufuss, A.G., Nesbitt, H.W., Kartio, I., Laajalehto, K., Bancroft, G.M., Szargan, R. (1998) Reactivity of surface chemical states on fractured pyrite. Surface Science: 411: 321-328.

Schaufuss, A.G., Nesbitt, H.W., Kartio, I., Laajalehto, K., Bancroft, G.M., Szargan, R. (1998) Incipient oxidation of fractured pyrite surface in air. Journal of Electron Spectroscopy and Related Phenomena: 96: 69-82.

Nesbitt, H.W., Scaini, M., Höchst, H., Bancroft, G.M., Schaufuss, A.G., Szargan, R. (2000) Synchrotron XPS evidence for Fe2+S and Fe3+S surface species on pyrite fracture-surfaces, and their 3D electronic states. American Mineralogist: 85: 850-857.

Uhlig, I., Szargan, R., Nesbitt, H.W., Laajalehto, K. (2001) Surface states and reactivity of pyrite and marcasite. Applied Surface Science: 179: 223-230.

Abraitis, P.K., Pattrick, R.A.D., Vaughan, D.J. (2004) Variations in the compositional, textural and electrical properties of natural pyrite: a review. International Journal of Mineralogy Process: 74: 41–59.

Chouinard, A., Paquette, J., Williams-Jones, A.E. (2005) Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile-Argentina. The Canadian Mineralogist: 43: 951–963.

Bonev, I.K., Garcia-Ruiz, J.M., Atanassova, R., Otalora, F., Petrussenko, S. (2005) Genesis of filamentary pyrite associated with calcite crystals. European Journal of Mineralogy: 17: 905-913.

Ohfuji. H., Rickard, D. (2005) Experimental synthesis of framboids – a review. Earth-Science Reviews: 71: 147-170. [on framboidal pyrite].

Paktunic, D. (2005) Speciation of arsenic in pyrite (FeS2) by micro-XAFS. Advanced Photon Source, User Activity Report.

Blanchard, M., Alfredsson, M., Brodholt, J., Wright, K., Catlow, C.R.A. (2007) Arsenic incorporation into FeS2 pyrite and its influence on dissolution: A DFT study. Geochimica et Cosmochimica Acta: 71: 624-630.

Deditius, A. P., Utsunomiya, S., Reich, M., Kesler, S. E., Ewing, R. C., Hough, R., Walshe, J. (2011) Trace metal nanoparticles in pyrite. Ore Geology Reviews: 42: 32-46.

Cabral, A.R., Beaudoin, G., Munnik, F. (2011) Lead in diagenetic pyrite: evidence for Pb-tolerant bacteria in a red-bed Cu deposit, Quebec Appalachians, Canada. Mineralogical Magazine: 75: 295-302.

Rickard, D. (2015): Pyrite. A Natural History of Fool's Gold. Oxford University Press, 297 pp.

Internet Links for Pyrite

mindat.org URL:
https://www.mindat.org/min-3314.html
Please feel free to link to this page.
Specimens:
The following Pyrite specimens are currently listed for sale on minfind.com.

Significant localities for Pyrite

Showing 51 significant localities out of 38,653 recorded on mindat.org.

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.
(TL) indicates type locality for a valid mineral species. (FRL) indicates first recorded locality for everything else. ? indicates mineral may be doubtful at this locality. All other localities listed without reference should be considered as uncertain and unproven until references can be found.
Austria
 
  • Carinthia
    • Friesach - Hüttenberg area
      • Hüttenberg
        • Hüttenberger Erzberg
H. Meixner: Carinthia II 158./78.:96-101 (1968)
    • Hohe Tauern
      • Ankogel group
        • Ankogel area
G. Niedermayr: Carinthia II 176./96.:523 (1986)
R. Hasler Collection
  • Styria
    • Bruck an der Mur
      • Laming valley
        • Oberdorf an der Laming
collection Landesmuseum Joanneum - Graz; Kolitsch, U. (2015): Akanthit, Arsenopyrit, Chrysokoll, Cinnabarit und Imiterit(?) vom Magnesitbergbau bei Oberdorf an der Laming, Steiermark. Der Steirische Mineralog 29, 40.
Canada
 
  • Nunavut
    • Baffin Island
      • Nanisivik
Symons, D.T.A., Symons, T.B., and Sangster, T.F. (2000): Mineralium Deposita 35, 672-682.
          • Main Level
Rod Tyson Personal Communication (RWMW)
  • Ontario
    • Leeds and Grenville Co.
      • Elizabethtown Township
R.J Traill 1983; Mr. Allen Steinburg; Ontario Ministry of Northern Development and Mines MDI Number: MDI31B12SE00014
  • Yukon
    • Mayo Mining District
      • Galena Hill
        • Elsa
J. V. Gregory Lynch (1989) Large-scale hydrothermal zoning reflected in the tetrahedrite-freibergite solid solution, Keno Hill Ag-Pb-Zn district, Yukon Can Mineral 27:383-400; Oscar Jose Tessari (1979) Model Ages and Applied Whole Rock Geochemistry of Ag-Pb-Zn veins, Keno Hill - Galena Hill Mining Camp, Yukon Territory. MSc Thesis, University of British Columbia.
China
 
  • Hubei Province
    • Huangshi Prefecture
      • Daye Co.
Jingye Jiang, Dafang Tan, Guojun Hu, and Lichun Zhang (1998): Geology and Prospecting 34(6), 5-9; Ottens, B. (2003): Lapis 28(9), 41-47
France
 
  • Brittany
    • Morbihan
      • Plumelin
Le Roc'h P., Bocianowski M. ((2001), La carrière de la Lande, Plumelin (Morbihan), Le Cahier des Micromonteurs, n°72, pp: 7-10
  • Grand Est
    • Bas-Rhin
      • Bruche valley (Breuch valley)
        • Schirmeck
Alain Steinmetz and Thierry Brunsperger Collection
  • Provence-Alpes-Côte d'Azur
    • Var
      • Saint Raphael
Le regne mineral n° 26
Germany
 
  • Saxony-Anhalt
    • Harz
      • Gernrode
        • Hagental
Lapis 15(7/8), 38-40 (1990)
Greece
 
  • Macedonia Department
    • Chalkidiki Prefecture
      • Cassandra Mines
        • Stratoni operations
Zeschke, G. (1963): Das Mineralvorkommen von Kassandra und Laurion, Griechenland. Der Aufschluss, 14 (5), 125-129 (in German).; Nebel, M. L., Hutchinson, R. W., & Zartman, R. E. (1991). Metamorphism and polygenesis of the Madem Lakkos polymetallic sulfide deposit, Chalkidiki, Greece. Economic Geology, 86(1), 81-105.
Ireland
 
  • Co. Tipperary
    • Silvermines District
Barry Flannery Collection; Mineralogical Magazine 1959 32 : 128-139.
Stephen Moreton (Pers. Comm.)
Econ Geol (1984) 79:529-548
Italy
 
  • Tuscany
    • Livorno Province
      • Elba Island
        • Rio Marina
          • Rio Mine (Rio Marina Mine)
Orlandi, P., & Pezzotta, A., 1997. I minerali dell'Isola d'Elba. I minerali dei Giacimenti metalliferi dell'Elba orientale e delle Pegmatiti del Monte Capanne. Ed. Novecento Grafico, Bergamo, 245 pp.
    • Lucca Province
      • Apuan Alps
        • Stazzema
          • Ponte Stazzemese
Orlandi P., Dini A., 2004. Die Mineralien der Buca della Vena-Mine, Apuaner Berge, Toskana (Italien). Lapis, 1: 11-24
Kosovo
 
  • District of Kosovska Mitrovica
    • Kosovska Mitrovica
      • Trepča valley
        • Trepča complex
Féraud J. (1979) - La mine " Stari-Trg " (Trepca, Yougoslavie) et ses richesses minéralogiques. Avec la collaboration de Mari D. et G. (1979) Minéraux et Fossiles, n° 59-60, p. 19-28
Peru
 
  • Ancash Department
    • Bolognesi Province
      • Huallanca District
        • Huallanca
Fluorite: The Collector's Choice. Extra Lapis English No. 9; Econ Geol (1985) 80:416-478
Mineralogical Record 28, no. 4 (1997); Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.; Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.
    • Pallasca Province
      • Pampas District
Mineralogical Record 28, No. 4 (1997); collections of Rock Currier, Jack Crowley, Jaroslav Hyrsl and Alfredo Petrov.
    • Recuay Province
      • Ticapampa District
Mi.Rec. 28, no.4 (1997)
  • Huancavelica Department
    • Angaraes Province
Crowley, Jack A., Currier, Rock H., & Szenics, Terry (1997) Mines and Minerals of Peru. Mineralogical Record, Vol.28, No.4. 98p. Scherkenbach, D.A. and Noble, D.C. (1984) Potassium and rubidium metasomatism at the Julcani District, Peru. Economic Geology 1984 Vol. 79 No.3: 565-572.
Russia
 
  • Far-Eastern Region
    • Primorskiy Kray
      • Kavalerovo Mining District
        • Dal'negorsk (Dalnegorsk; Tetyukhe; Tjetjuche; Tetjuche)
Min Rec vol 32, pp 7-30 (2001); Rogulina, L.I., and Sveshnikova, O.L. (2008): Geology of Ore Deposits 50(1), 60-74.
Spain
 
  • Castile and Leon
    • Soria
      • San Pedro Manrique
Calvo, M. and Sevillano, E. (1989). Pyrite crystals from Soria and La Rioja provinces, Spain. The Mineralogical Record 20, 451-456.
  • La Rioja
No reference listed
    • Muro de Aguas
[www.johnbetts-fineminerals.com]; Jordi Fabre; - Calvo, M., Sevillano, E. 1989. Famous mineral localities: Pyrite crystals from Soria and La Rioja provinces, Spain. The Mineralogical Record. 20( 6): 451-456. ; - García, Gonzalo (2003). Piritas de Ambasaguas. Bocamina. p: 14-45. Madrid
The Canadian Mineralogist Vol.36, pp. 137-145 (1998) J. Alonso-Azcárate, M. Rodas, S.H. Bottrell, J.R. Mas (2002) Los yacimientos de pirita de la Cuenca de Cameros. Zubía monográfico #14, pp 173-190, ISSN 1131-5423
No reference listed
Turkey
 
  • Black Sea Region
    • Artvin Province
      • Murgul
        • Murgul Cu-Zn-Pb deposit
Econ Geol (1993) 88:606-621
USA
 
  • Colorado
    • Eagle Co.
      • Gilman District (Battle Mountain District; Red Cliff District)
        • Gilman
Minerals of Colorado (1997) Eckel, E. B.
  • Connecticut
    • Litchfield Co.
      • Roxbury
        • Mine Hill (Ore Hill)
Rocks & Minerals (1995) 70:396-409; Schooner (1961)
      • Thomaston
        • Thomaston Dam
Segeler, Curt and Molon, Joseph. (1985), The Thomaston Dam Site, Thomaston, Connecticut; Rocks & Minerals: 60(3): 119-124.; Vogt, Wolfgang. (1991), Rediscovering Thomaston Dam. Lapidary Journal: April.; Zodac, Peter. (1959), Minerals at Thomaston Dam, Connecticut; Rocks & Minerals: 34: 3.
    • Middlesex Co.
      • Haddam
Davis, James W. (1901): The Minerals of Haddam, Conn. Mineral Collector, v. 8, no. 4, pp. 50-54, and no. 5, pp. 65-70.; Williams, Horace S. (circa 1945): Article For New York Society Of Mineralogists. Brainerd Public Library, Haddam, Connecticut.
      • Portland
        • Collins Hill
          • Strickland pegmatite (Strickland-Cramer Quarry; Strickland-Cramer Mine; Strickland-Cramer Feldspar-Mica Quarries)
Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy.
    • New Haven Co.
      • Waterbury
        • Municipal Stadium
J. Zolan/M. Polletta observation
    • Tolland Co.
      • Willington
        • West Willington
P Cristofono collection, 2008; Ague, J. J. (1995): Deep Crustal Growth of Quartz, Kyanite and Garnet into Large-Aperature, fluid-filled fractures, northeastern Connecticut, USA. Journal of Metamorphic Geology: 13: 299-314.
  • Massachusetts
    • Suffolk Co.
      • Boston
        • West Roxbury
Harvard Museum of Natural History, no.99813
  • New Jersey
    • Sussex Co.
      • Sparta Township
Jaszczak, John A. (1997), Unusual graphite crystals from the Lime Crest quarry, Sparta, New Jersey: Rocks & Minerals: 72(5): 330-334
  • North Carolina
    • Caldwell Co.
Mike polletta collected pyrite with his hands in june 2009.
  • Pennsylvania
    • Lancaster Co.
      • Earl Township
        • Blue Ball
Mineral collecting in Pennsylvania - 1965, Lapham, Geyer Pgs. 88-89
    • York Co.
      • Leaders Heights
"Arthur Koch - collection"
  • Texas
    • Ellis Co.
      • Midlothian
Cement Industry Technical Conference, 2002. IEEE-IAS/PCA 44th Volume , Issue , 2002 Page(s):125 - 137
  • Vermont
    • Windham Co.
Johannes Swarts collection
  • Washington
    • King Co.
      • Goldmyer Hot Springs
Cannon, B. (1975): Minerals of Washington, p.71
Cannon, B. (1975): Minerals of Washington, p.45,54; Ream, L. (1994): Gems and Minerals of Washington; Lasmanis, R. Geology of Spruce 16 claim, Rocks & Minerals, 1985
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2017, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: May 24, 2017 07:13:56 Page generated: May 21, 2017 10:12:10
Go to top of page