SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography


This page kindly sponsored by Frank Ruehlicke
Hide all sections | Show all sections

About PyriteHide

As a Commodity:
Pale brass-yellow
6 - 6½
Specific Gravity:
4.8 - 5
Crystal System:
Member of:
Named in antiquity from the Greek "pyr" for "fire", because sparks flew from it when struck with another mineral or metal. Known to Dioscorides (~50 CE) under the name "περι υληζ ιατρικηζ" which included both pyrite and chalcopyrite.
Pyrite Group.

The isometric (cubic) polymorph of orthorhombic marcasite. Compare UM1997-43-S:Fe.

Pyrite is a very common mineral (also one of the most common natural sulfides, and the most common disulfide), found in a wide variety of geological formations from sedimentary deposits to hydrothermal veins and as a constituent of metamorphic rocks. The brassy-yellow metallic colour of pyrite has in many cases lead to people mistaking it for Gold, hence the common nickname 'Fool's gold'. Pyrite is quite easy to distinguish from gold: pyrite is much lighter, but harder than gold and cannot be scratched with a fingernail or pocket knife.

Pyrite is commonly found to contain minor nickel, and forms a series with Vaesite; Bravoite is a nickeloan variety of pyrite.
It usually contains minor cobalt too and forms a series with Cattierite. Many pyrites contain minor As, see Arsenian Pyrite. Pb-bearing pyrite has been described by Cabral et al. (2011). It can also contain traces of other metals, including gold. Most of the foreign metal contents in pyrite can be traced back to metal nanoparticles (Deditius et al., 2011).

Pyrite cubes in limestone, Navajún, Spain
Pyrite dodecahedron, also known as "pyritohedron", Elba, Italy
Pyrite octahedra, Huánuco, Peru
Pyrite "Iron Cross" twin, Lemgo, Germany
Pyrite cubes in limestone, Navajún, Spain
Pyrite dodecahedron, also known as "pyritohedron", Elba, Italy
Pyrite octahedra, Huánuco, Peru
Pyrite "Iron Cross" twin, Lemgo, Germany
Pyrite cubes in limestone, Navajún, Spain
Pyrite dodecahedron, also known as "pyritohedron", Elba, Italy
Pyrite octahedra, Huánuco, Peru
Pyrite "Iron Cross" twin, Lemgo, Germany
Pyrite dollar, Sparta, Illinois
Pyritized ammonite, Aveyron, France
Pyrite concretion, Pilbara, Australia
Elongated pyrite crystals, Lucca, Italy
Pyrite dollar, Sparta, Illinois
Pyritized ammonite, Aveyron, France
Pyrite concretion, Pilbara, Australia
Elongated pyrite crystals, Lucca, Italy
Pyrite dollar, Sparta, Illinois
Pyritized ammonite, Aveyron, France
Pyrite concretion, Pilbara, Australia
Elongated pyrite crystals, Lucca, Italy

Decomposed pyrite concretion
Decomposed pyrite concretion
Decomposed pyrite concretion

Pyrite will slowly oxidize in a moist environment, and release sulfuric acid that is formed during the process. Well-crystallized specimens are generally relatively stable, while pyrite formed as sedimentary concretions has a tendency to decompose quickly.

According to Schmøkel et al. (2014), effective charges on sulfur and iron are ca. -1/3 and ca. +2/3, respectively. This is in opposition to -1 and +2 charges as would be suggested by purely ionic bonding.

Visit for gemological information about Pyrite.

Classification of PyriteHide

Approved, 'Grandfathered' (first described prior to 1959)

2 : SULFIDES and SULFOSALTS (sulfides, selenides, tellurides; arsenides, antimonides, bismuthides; sulfarsenites, sulfantimonites, sulfbismuthites, etc.)
E : Metal Sulfides, M: S <= 1:2
B : M:S = 1:2, with Fe, Co, Ni, PGE, etc.
Dana 7th ed.:

12 : AmBnXp, with (m+n):p = 1:2

3 : Sulphides, Selenides, Tellurides, Arsenides and Bismuthides (except the arsenides, antimonides and bismuthides of Cu, Ag and Au, which are included in Section 1)
9 : Sulphides etc. of Fe

Pronounciation of PyriteHide

PlayRecorded byCountry
Jolyon & Katya RalphUnited Kingdom

Physical Properties of PyriteHide

Pale brass-yellow
6 - 6½ on Mohs scale
VHN100=1505 - 1520 kg/mm2 - Vickers
Hardness Data:
Indistinct on {001}.
Irregular/Uneven, Conchoidal
4.8 - 5 g/cm3 (Measured)    5.01 g/cm3 (Calculated)

Optical Data of PyriteHide

Rarely anisotropic
Colour in reflected light:
Creamy white

Chemical Properties of PyriteHide

Common Impurities:

Age distributionHide

Recorded ages:
Mesoarchean to Quaternary : 2858 Ma to 0 Ma - based on 17 recorded ages.

Crystallography of PyriteHide

Crystal System:
Class (H-M):
m3 (2/m 3) - Diploidal
Space Group:
Cell Parameters:
a = 5.417 Å
Unit Cell V:
158.96 ų (Calculated from Unit Cell)
Typically cubic or pyritohedral (pentagonal dodecahedral), sometimes octahedral and combinations are common, resulting in striated faces. Less frequently octahedral, most commonly massive, granular, and sometimes radiating, reniform, discoidal or globular.
On [110], interpenetrating ('Iron Cross Law'). Twin axis [001] and twin plane {011}, penetration and contact twins. Twinning on (111) was described by Nicol (1904), Goldschmidt and Nicol (1904) and Gaubert (1928), all of whom considered it rare.

Crystallographic forms of PyriteHide

Crystal Atlas:
Image Loading
Click on an icon to view
Pyrite no.1 - Goldschmidt (1913-1926)
Pyrite no.2 - Goldschmidt (1913-1926)
Pyrite no.3 - Goldschmidt (1913-1926)
Pyrite no.7 - Goldschmidt (1913-1926)
Pyrite no.8 - Goldschmidt (1913-1926)
Pyrite no.14 - Goldschmidt (1913-1926)
Pyrite no.59 - Goldschmidt (1913-1926)
Pyrite no.86 - Goldschmidt (1913-1926)
Pyrite no.92 - Goldschmidt (1913-1926)
Pyrite no.251 - Goldschmidt (1913-1926)
Pyrite no.565 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by

Edge Lines | Miller Indices | Axes

Opaque | Translucent | Transparent

Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

Crystal StructureHide

Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
CIF File    Best | x | y | z | a | b | c
Stop | Start
Console Off | On | Grey | Yellow
IDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0000006PyriteRamsdell L S (1925) The crystal structures of some metallic sulfides American Mineralogist 10 281-3041925natural, unknown0293
0000605PyriteBayliss P (1977) Crystal structure refinement of a weakly anisotropic pyrite cubic model American Mineralogist 62 1168-117219770293
0000606PyriteBayliss P (1977) Crystal structure refinement of a weakly anisotropic pyrite American Mineralogist 62 1168-117219770293
0007752PyriteSchmid-Beurmann P, Lottermoser W (1993) 57Fe-Moessbauer spectra, electronic and crystal structure of members of the CuS2-FeS2 solid solution series Physics and Chemistry of Minerals 19 571-57719930293
0007753PyriteSchmid-Beurmann P, Lottermoser W (1993) 57Fe-Moessbauer spectra, electronic and crystal structure of members of the CuS2-FeS2 solid solution series Physics and Chemistry of Minerals 19 571-57719930293
0012728PyriteRieder M, Crelling J C, Sustai O, Drabek M, Weiss Z, Klementova M (2007) Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic International Journal of Coal Geology 71 115-1212007synthetic0293
0012729PyriteRieder M, Crelling J C, Sustai O, Drabek M, Weiss Z, Klementova M (2007) Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic International Journal of Coal Geology 71 115-1212007synthetic0293
0012730PyriteRieder M, Crelling J C, Sustai O, Drabek M, Weiss Z, Klementova M (2007) Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic International Journal of Coal Geology 71 115-1212007Dul CSA mine, North Bohemian Basin, Czech Republic0293
0017728PyriteOftedal I (1928) Uber die Kristallstrukturen der verbindungen RuS2, OsS2, MnTe2 und AuSb2. Mit einem Anhang uber die Gitterkonstant von Pyrit Zeitschrift fur Physikalische Chemie 135 291-29919280293
CIF Raw Data - click here to close

Epitaxial Relationships of PyriteHide

Epitaxial Minerals:

X-Ray Powder DiffractionHide

Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
Powder Diffraction Data:
3.128 Å(35)
2.7088 Å(85)
2.4281 Å(65)
2.2118 Å(50)
1.9155 Å(40)
1.6332 Å(100)
1.5640 Å(14)
1.5025 Å(20)
1.4479 Å(25)
1.2427 Å(12)
1.2113 Å(14)
1.1823 Å(8)
1.1548 Å(6)
1.1057 Å(6)
1.0427 Å(25)
1.0060 Å(8)
0.9892 Å(6)
0.9577 Å(12)
0.9030 Å(16)
0.8788 Å(8)
0.8565 Å(8)
0.8261 Å(4)
0.8166 Å(4)
0.7981 Å(6)
ICDD 6-710

Geological EnvironmentHide

Geological Setting:
Common in many rock types, igneous, metamorphic and sedimentary.

Synonyms of PyriteHide

Other Language Names for PyriteHide

Norwegian (Nynorsk):Svovelkis
Sicilian:Petra fucali
Simplified Chinese:黄铁矿
Traditional Chinese:黃鐵礦

Varieties of PyriteHide

Argentian PyriteA silver-rich pyrite, perhaps a mixture.
Arsenian PyriteAn arsenic-bearing variety of pyrite. Not uncommon; often zoned.
Cobalt-bearing PyriteA cobalt-bearing variety of pyrite.
Cobalt-nickel-pyrite (of Vernadsky)A nickeloan cobaltoan pyrite.
Copper-bearing PyriteA copper-bearing variety of pyrite.
The substitution of Cu for Fe results in changes in unit-cell parameter and Raman spectra (Pačevski et al., 2008).
Cupriferous PyriteA variety of pyrite containing some copper.
Feather pyriteFeather-shaped pseudomorphs of fine-grained pyrite after thin tabular pyrrhotite.
Not uncommon in some sulphide ore deposits.
GelpyritA arsenic-bearing gel form of iron disulphide
Gold-bearing PyriteA gold-bearing variety of pyrite. Possibly a mixture of Pyrite with native gold inclusions.
Hepatic pyriteLiver-coloured pyrite or marcasite.
Nickelian PyriteA nickel-bearing variety of pyrite.
Incorrect name; the term Nickeloan Pyrite (or better simply "Ni-bearing pyrite") is correct.
TelaspyrineOnce considered a tellurium-bearing variety of pyrite, but probably a mixture.
Thallian Arsenian PyriteA variety of pyrite rich in As and Tl.

Relationship of Pyrite to other SpeciesHide

Member of:
Other Members of this group:
AurostibiteAuSb2Iso. m3 (2/m 3) : Pa3
CattieriteCoS2Iso. m3 (2/m 3) : Pa3
DzharkeniteFeSe2Iso. m3 (2/m 3) : Pa3
ErlichmaniteOsS2Iso. m3 (2/m 3) : Pa3
FukuchiliteCu3FeS8Iso. m3 (2/m 3) : Pa3
GeversitePtSb2Iso. m3 (2/m 3) : Pa3
HaueriteMnS2Iso. m3 (2/m 3) : Pa3
InsizwaitePt(Bi,Sb)2Iso. m3 (2/m 3) : Pa3
Krut'aiteCuSe2Iso. m3 (2/m 3) : Pa3
LauriteRuS2Iso. m3 (2/m 3) : Pa3
Penroseite(Ni,Co,Cu)Se2Iso. m3 (2/m 3) : Pa3
SperrylitePtAs2Iso. m3 (2/m 3) : Pa3
TrogtaliteCoSe2Iso. m3 (2/m 3) : Pa3
VaesiteNiS2Iso. m3 (2/m 3) : Pa3
Forms a series with:

Common AssociatesHide

Associated Minerals Based on Photo Data:
5,989 photos of Pyrite associated with QuartzSiO2
4,441 photos of Pyrite associated with CalciteCaCO3
2,437 photos of Pyrite associated with SphaleriteZnS
1,470 photos of Pyrite associated with DolomiteCaMg(CO3)2
1,355 photos of Pyrite associated with SideriteFeCO3
1,345 photos of Pyrite associated with GalenaPbS
1,289 photos of Pyrite associated with FluoriteCaF2
1,023 photos of Pyrite associated with ChalcopyriteCuFeS2
608 photos of Pyrite associated with BaryteBaSO4
477 photos of Pyrite associated with RhodochrositeMnCO3

Related Minerals - Nickel-Strunz GroupingHide

2.EB.05aAurostibiteAuSb2Iso. m3 (2/m 3) : Pa3
2.EB.05aCattieriteCoS2Iso. m3 (2/m 3) : Pa3
2.EB.05aErlichmaniteOsS2Iso. m3 (2/m 3) : Pa3
2.EB.05aFukuchiliteCu3FeS8Iso. m3 (2/m 3) : Pa3
2.EB.05aGeversitePtSb2Iso. m3 (2/m 3) : Pa3
2.EB.05aHaueriteMnS2Iso. m3 (2/m 3) : Pa3
2.EB.05aInsizwaitePt(Bi,Sb)2Iso. m3 (2/m 3) : Pa3
2.EB.05aKrut'aiteCuSe2Iso. m3 (2/m 3) : Pa3
2.EB.05aLauriteRuS2Iso. m3 (2/m 3) : Pa3
2.EB.05aPenroseite(Ni,Co,Cu)Se2Iso. m3 (2/m 3) : Pa3
2.EB.05aSperrylitePtAs2Iso. m3 (2/m 3) : Pa3
2.EB.05aTrogtaliteCoSe2Iso. m3 (2/m 3) : Pa3
2.EB.05aVaesiteNiS2Iso. m3 (2/m 3) : Pa3
2.EB.05aDzharkeniteFeSe2Iso. m3 (2/m 3) : Pa3
2.EB.10bAlloclasiteCo1-xFexAsSMon. 2 : P21
2.EB.10dCostibiteCoSbSOrth. mm2 : Pmn21
2.EB.10aFerroseliteFeSe2Orth. mmm (2/m 2/m 2/m) : Pnnm
2.EB.10aFrohbergiteFeTe2Orth. mmm (2/m 2/m 2/m) : Pnnm
2.EB.10cGlaucodot(Co0.50Fe0.50)AsSOrth. mm2 : Pmn21
2.EB.10aKulleruditeNiSe2Orth. mmm (2/m 2/m 2/m) : Pnnm
2.EB.10aMarcasiteFeS2Orth. mmm (2/m 2/m 2/m) : Pnnm
2.EB.10ePararammelsbergiteNiAs2Orth. mmm (2/m 2/m 2/m) : Pbca
2.EB.15aClinosaffloriteCoAs2Mon. 2/m : P21/m
2.EB.15aLöllingiteFeAs2Orth. mmm (2/m 2/m 2/m) : Pnnm
2.EB.15aRammelsbergiteNiAs2Orth. mmm (2/m 2/m 2/m) : Pnnm
2.EB.15aSafflorite(Co,Ni,Fe)As2Orth. mmm (2/m 2/m 2/m) : Pnnm
2.EB.20ArsenopyriteFeAsSMon. 2/m : P21/b
2.EB.20GudmunditeFeSbSMon. 2/m : P21/b
2.EB.25CobaltiteCoAsSOrth. mm2 : Pca21
2.EB.25GersdorffiteNiAsSIso. m3 (2/m 3) : Pa3
2.EB.25Hollingworthite(Rh,Pt,Pd)AsSIso. m3 (2/m 3)
2.EB.25JolliffeiteNiAsSeIso. m3 (2/m 3) : Pa3
2.EB.25MaslovitePtBiTeIso. 2 3 : P21 3
2.EB.25MicheneritePdBiTeIso. 2 3 : P21 3
2.EB.25UllmanniteNiSbSIso. 2 3 : P21 3
2.EB.25MayingiteIrBiTeIso. m3 (2/m 3) : Pa3
2.EB.25KalungaitePdAsSeIso. m3 (2/m 3) : Pa3
2.EB.25MilotaitePdSbSeIso. 2 3 : P21 3

Related Minerals - Dana Grouping (8th Ed.)Hide m3 (2/m 3) : Pa3 m3 (2/m 3) : Pa3,Co,Cu)Se2Iso. m3 (2/m 3) : Pa3 m3 (2/m 3) : Pa3,Ni,Co,Fe)S2Tric. m3 (2/m 3) : Pa3'aiteCuSe2Iso. m3 (2/m 3) : Pa3 m3 (2/m 3) : Pa3 m3 (2/m 3) : Pa3 m3 (2/m 3) : Pa3 m3 (2/m 3) : Pa3 m3 (2/m 3) : Pa3,Sb)2Iso. m3 (2/m 3) : Pa3 m3 (2/m 3) : Pa3 m3 (2/m 3) : Pa3 m3 (2/m 3) : Pa3

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

3.9.4MarcasiteFeS2Orth. mmm (2/m 2/m 2/m) : Pnnm
3.9.5GreigiteFe2+Fe3+2S4Iso. m3m (4/m 3 2/m) : Fd3m
3.9.6Mackinawite(Fe,Ni)9S8Tet. 4/mmm (4/m 2/m 2/m) : P4/nmm
3.9.7Smythite(Fe,Ni)3+xS4 (x=0-0.3)Trig. 3m (3 2/m) : R3m
3.9.8AchávaliteFeSeHex. 6/mmm (6/m 2/m 2/m) : P63/mmc
3.9.9FerroseliteFeSe2Orth. mmm (2/m 2/m 2/m) : Pnnm
3.9.10FrohbergiteFeTe2Orth. mmm (2/m 2/m 2/m) : Pnnm
3.9.11LöllingiteFeAs2Orth. mmm (2/m 2/m 2/m) : Pnnm
3.9.12ArsenopyriteFeAsSMon. 2/m : P21/b
3.9.13GudmunditeFeSbSMon. 2/m : P21/b

Fluorescence of PyriteHide

Not fluorescent in UV

Other InformationHide

Special Storage/
Display Requirements:
Many pyrites will tarnish over time, and some will even break down due to hydrous iron sulphates and other phases. This can be mitigated somewhat by storage in low-humidity environments but is hard to stop once started. See:
Health Risks:
Some fine-grained pyrite is metastable and may alter to melanterite, which contains sulphuric acid. Always wash hands after handling, especially decrepitated material. Avoid inhaling dust when handling or breaking. Never lick or ingest.

Pyrite in petrologyHide

References for PyriteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Henckel, J.F. (1725) Pyritologia, oder Kieß Historie. Verlegts Johann Christian Martini (Leipzig): 114-115.
Stainier, X. (1893) Nodules de pyrite oolithique dans les couches de charbon. Bulletin de la Société belge de Géologie, 7, 179.
Stainier, X. (1895) Note sur les cristaux de pyrite des charbonnages. Bulletin de la Société belge de Géologie, 9, 40.
Stainier, X. (1895) Curieux état moléculaire d'un cristal de pyrite. Bulletin de la Société belge de Géologie, 9, 43.
de Dorlodot, L. (1904) Quelques observations sur les cubes de pyrite des quartzites reviniens. Annales de la Société géologique de Belgique, 31, M501.
Goldschmidt, V., Nicol, W. (1904) Spinellgesetz beim Pyrit und über Rangordnung der Zwillingsgesetze. Neues Jahrbuch für Mineralogie: 2: 93-113.
Nicol, W. (1904) Spinel twins of pyrite. American Journal of Science: 167: 93.
Ayres, V.L. (1924) Pyrite from Tucson, Arizona. American Mineralogist: 9: 91-92.
Gaubert, P. (1928) Sur un cristal de pyrite, maclé suivant la loi des spinelles. Bulletin de la Société Française de Minéralogie: 51: 211-212.
Onorato, E. (1931) Determinazione delle forme dirette ed inverse nella pirite. Periodico di Mineralogia: 13-16.
Bannister, F.A. (1932) The distinction of pyrite from marcasite in nodular growths. Mineralogical Magazine: 23: 179-187.
Grillo, E. (1932) Distinzione tra pirite e marcasite con H2O2. Periodico di Mineralogia: 84-86.
Donnay, J.D.H., Mélon, J. (1935) Faciès remarquable de cristaux de pyrite. Annales de la Société géologique de Belgique, LIX, B29.
Palache, C., Berman, H., Frondel, C. (1944) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Volume I: Elements, Sulfides, Sulfosalts, Oxides. John Wiley and Sons, Inc., New York. 7th edition, revised and enlarged: 282-290.
Love, L.G., Amstutz, G.C. (1966) Framboidal pyrite in two andesites. Neues Jahrbuch für Mineralogie, Monatshefte: 3: 97-108.
Frenzel, G., Bloss, F.D. (1967) Cleavage in pyrite. American Mineralogist: 52: 994-1002.
Love, L.G. (1971) Early diagenetic polyframboidal pyrite, primary and redeposited, from the Wenlockian Denbigh Grit Group, Conway, North Wales, U.K. Journal of Sedimentary Petrology: 41: 1038-1044.
Berner, R.A. (1970) Sedimentary pyrite formation. American Journal of Science: 268: 1-23.
Yund, R.A., Hall, H.T. (1970) Kinetics and mechanism of pyrite exsolution from pyrrhotite. Journal of Petrology: 11: 381-404.
Sweeney, R.E., Kaplan, I.R. (1973) Pyrite framboid formation: laboratory synthesis and marine sediments. Economic Geology: 68: 618-634.
Fleet, M.E. (1975) Structural chemistry of marcasite and pyrite type phases. Zeitschrift für Kristallographie: 142: 332-346.
Bayliss, P. (1977) Crystal structure refinement of a weakly anisotropic pyrite. American Mineralogist: 62: 1168-1172.
Gait, R.I. (1978) The Crystals Forms of Pyrite, Mineralogical Record: 9: 219-229.
Ostwald, J., England, B.M. (1979) The relationship between euhedral and framboidal pyrite in base metal sulfide ores. Mineralogical Magazine: 43: 297-300.
Raiswell, R. (1982) Pyrite texture, isotopic composition and availabilities of Fe. American Journal of Science: 282: 1244-1263.
Bayliss, P. (1989) Crystal chemistry and crystallography of some minerals within the pyrite group. American Mineralogist: 74: 1168-1176.
Schoonen, M.A.A., Barnes, H.L. (1991) Reaction forming pyrite and marcasite from solution I. Nucleation of FeS2 below 100° C. Geochimica et Cosmochimica Acta: 55: 1495-1504.
Schoonen, M.A.A., Barnes, H.L. (1991) Reaction forming pyrite and marcasite from solution II. Via FeS precursors below 100° C. Geochimica et Cosmochimica Acta: 55: 1505-1514.
Weise, C., publisher (1996) Pyrit und Markasit, extraLapis No. 11: Das eiserne Überall-Mineral. Weise-Verlag, München.
Wilkin, R.T., Barnes, H.L. (1996) Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta: 60: 4167-4179.
Wilkin, R.T., Barnes, H.L., Brantly, S.L. (1996) The size distribution of framboidal pyrite: an indicator of redox conditions. Geochimica et Cosmochimica Acta: 60: 3897-3912.
Fleet, M.E., Mumin, A.H. (1997) Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. American Mineralogist: 82: 182-193.
Gaines, R.V., Skinner, C.W.H., Foord, E.E., Mason, B., Rosenzweig, A. (1997) Dana's New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana: 114.
Wilkin, R.T., Barnes, H.L. (1997) Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta: 61: 323-339.
Maddox, L.M. et al. (1998) Invisible gold: Comparison of Au deposition on pyrite and arsenopyrite. American Mineralogist: 83: 1240-1245.
Nesbitt, H.W., Bancroft, G.M., Pratt, A.R., Scaini, M.J. (1998) Sulfur and iron surface states on fractured pyrite surfaces. American Mineralogist: 83: 1067-1076.
Schaufuss, A.G., Nesbitt, H.W., Kartio, I., Laajalehto, K., Bancroft, G.M., Szargan, R. (1998) Reactivity of surface chemical states on fractured pyrite. Surface Science: 411: 321-328.
Schaufuss, A.G., Nesbitt, H.W., Kartio, I., Laajalehto, K., Bancroft, G.M., Szargan, R. (1998) Incipient oxidation of fractured pyrite surface in air. Journal of Electron Spectroscopy and Related Phenomena: 96: 69-82.
Nesbitt, H.W., Scaini, M., Höchst, H., Bancroft, G.M., Schaufuss, A.G., Szargan, R. (2000) Synchrotron XPS evidence for Fe2+S and Fe3+S surface species on pyrite fracture-surfaces, and their 3D electronic states. American Mineralogist: 85: 850-857.
Uhlig, I., Szargan, R., Nesbitt, H.W., Laajalehto, K. (2001) Surface states and reactivity of pyrite and marcasite. Applied Surface Science: 179: 223-230.
Abraitis, P.K., Pattrick, R.A.D., Vaughan, D.J. (2004) Variations in the compositional, textural and electrical properties of natural pyrite: a review. International Journal of Mineralogy Process: 74: 41–59.
Chouinard, A., Paquette, J., Williams-Jones, A.E. (2005) Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile-Argentina. The Canadian Mineralogist: 43: 951–963.
Bonev, I.K., Garcia-Ruiz, J.M., Atanassova, R., Otalora, F., Petrussenko, S. (2005) Genesis of filamentary pyrite associated with calcite crystals. European Journal of Mineralogy: 17: 905-913.
Ohfuji, H., Rickard, D. (2005) Experimental synthesis of framboids – a review. Earth-Science Reviews: 71: 147-170. [on framboidal pyrite].
Paktunic, D. (2005) Speciation of arsenic in pyrite (FeS2) by micro-XAFS. Advanced Photon Source, User Activity Report.
Breitbach, A. (2006) Nanoparticles in the Environment: A Study of Surface Reactivity of Pyrite and Arsenopyrite. The 2006 National Nanotechnology Infrastructure Network Research Experience for Undergraduates Research Accomplishments: 54-55.
Blanchard, M., Alfredsson, M., Brodholt, J., Wright, K., Catlow, C.R.A. (2007) Arsenic incorporation into FeS2 pyrite and its influence on dissolution: A DFT study. Geochimica et Cosmochimica Acta: 71: 624-630.
Cordua, W.S. (2008) Marcasite - pyrite's evil twin. Leaverite News: 33(10): 6-7.
Deditius, A.P., Utsunomiya, S., Reich, M., Kesler, S.E., Ewing, R.C., Hough, R., Walshe, J. (2011) Trace metal nanoparticles in pyrite. Ore Geology Reviews: 42: 32-46.
Cabral, A.R., Beaudoin, G., Munnik, F. (2011) Lead in diagenetic pyrite: evidence for Pb-tolerant bacteria in a red-bed Cu deposit, Quebec Appalachians, Canada. Mineralogical Magazine: 75: 295-302.
Schmøkel, M.S., Bjerg, L., Cenedese, S., Jørgensen, M.R.V., Chen, Y.-S., Overgaard, J., Iversen, B.B. (2014) Atomic properties and chemical bonding in the pyrite and marcasite polymorphs of FeS2: a combined experimental and theoretical electron density study. Chemical Science: 4: 1408-1421;!divAbstract
Rickard, D. (2015) Pyrite. A Natural History of Fool's Gold. Oxford University Press, 297 pp.
Gregory, D.D., Kohn, M.J. (2020) Pyrite: fool's gold records starvation of bacteria. American Mineralogist 105, 282-283. [, open access]

Internet Links for PyriteHide

Significant localities for PyriteHide

Showing 53 significant localities out of 43,037 recorded on

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
  • Carinthia
    • Sankt Veit an der Glan District
      • Hüttenberg
        • Hüttenberger Erzberg
H. Meixner: Carinthia II 158./78.:96-101 (1968)
    • Spittal an der Drau District
      • Mallnitz
G. Niedermayr: Carinthia II 176./96.:523 (1986)
  • Salzburg
    • St. Johann im Pongau District
      • Bad Gastein
R. Hasler Collection
  • Nunavut
    • Qikiqtaaluk Region
      • Baffin Island
        • Nanisivik
Symons, D.T.A., Symons, T.B., and Sangster, T.F. (2000): Mineralium Deposita 35, 672-682.; Dennis C. Arne, L. W. Curtis, S. A. Kissin (1991) Internal zonation in a carbonate-hosted Zn-Pb-Ag deposit, Nanisivik, Baffin Island, Canada. Economic Geology ; 86 (4): 699–717.
            • Main Level
Rod Tyson Personal Communication (RWMW)
  • Ontario
    • Leeds and Grenville Counties
      • Elizabethtown Township
R.J Traill 1983; Mr. Allen Steinburg; Ontario Ministry of Northern Development and Mines MDI Number: MDI31B12SE00014
  • Yukon
    • Mayo mining district
      • Galena Hill
        • Elsa
J. V. Gregory Lynch (1989) Large-scale hydrothermal zoning reflected in the tetrahedrite-freibergite solid solution, Keno Hill Ag-Pb-Zn district, Yukon Can Mineral 27:383-400; Oscar Jose Tessari (1979) Model Ages and Applied Whole Rock Geochemistry of Ag-Pb-Zn veins, Keno Hill - Galena Hill Mining Camp, Yukon Territory. MSc Thesis, University of British Columbia.
  • Hubei
    • Huangshi
      • Daye Co.
Jingye Jiang, Dafang Tan, Guojun Hu, and Lichun Zhang (1998): Geology and Prospecting 34(6), 5-9; Ottens, B. (2003): Lapis 28(9), 41-47
  • Brittany
    • Morbihan
      • Pontivy
        • Plumelin
Le Roc'h P., Bocianowski M. ((2001), La carrière de la Lande, Plumelin (Morbihan), Le Cahier des Micromonteurs, n°72, pp: 7-10
  • Grand Est
    • Bas-Rhin
      • Molsheim
        • Schirmeck
Alain Steinmetz and Thierry Brunsperger Collection
  • Provence-Alpes-Côte d'Azur
    • Var
      • Saint Raphael
Le regne mineral n° 26
  • Saxony-Anhalt
    • Harz
      • Quedlinburg
        • Gernrode
          • Hagental
Lapis 15(7/8), 38-40 (1990)
  • Central Macedonia
    • Chalkidiki
      • Aristotelis
        • Cassandra Mines
          • Stratoni operations
Zeschke, G. (1963): Das Mineralvorkommen von Kassandra und Laurion, Griechenland. Der Aufschluss, 14 (5), 125-129 (in German).; Nebel, M. L., Hutchinson, R. W., & Zartman, R. E. (1991). Metamorphism and polygenesis of the Madem Lakkos polymetallic sulfide deposit, Chalkidiki, Greece. Economic Geology, 86(1), 81-105.
  • Munster
    • Tipperary County
      • Silvermines District
Barry Flannery Collection; Mineralogical Magazine 1959 32 : 128-139.
Stephen Moreton (Pers. Comm.)
Gasparrini, C. (1978) unpubl. report, Minmet Scientific, Toronto, Canada; Taylor, S. and Andrew, C.J. (1979) Trans. Inst. Mining Metall., sect. B, 88, 125.; Economic Geology (1984) 79, 529-548.; Andrew, C.J. (1987) pers. comm.; Ryback, G., Nawaz, R. and Farley, E. (1988) Seventh Supplementary List of British Isles Minerals (Irish). Mineralogical Magazine, vol. 52, n° 365, pp. 267-274.;
  • Tuscany
    • Livorno Province
      • Rio
        • Rio Marina
          • Rio Mine (Rio Marina Mine)
Orlandi, P., & Pezzotta, A., 1997. I minerali dell'Isola d'Elba. I minerali dei Giacimenti metalliferi dell'Elba orientale e delle Pegmatiti del Monte Capanne. Ed. Novecento Grafico, Bergamo, 245 pp.
    • Lucca Province
      • Stazzema
        • Ponte Stazzemese
Orlandi P., Dini A., 2004. Die Mineralien der Buca della Vena-Mine, Apuaner Berge, Toskana (Italien). Lapis, 1: 11-24
  • Mitrovica District
    • Mitrovica
      • Trepča valley
        • Trepča complex
Féraud J. (1979) - La mine " Stari-Trg " (Trepca, Yougoslavie) et ses richesses minéralogiques. Avec la collaboration de Mari D. et G. (1979) Minéraux et Fossiles, n° 59-60, p. 19-28; Kołodziejczyk, J., Pršek, J., Melfos, V., Voudouris, P. C., Maliqi, F., & Kozub-Budzyń, G. (2015). Bismuth minerals from the Stan Terg deposit (Trepça, Kosovo). Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 192(3), 317-333.; Kołodziejczyk, J., Pršek, J., Voudouris, P. C., & Melfos, V. (2017). Bi-sulphotellurides associated with Pb–Bi–(Sb±Ag, Cu, Fe) sulphosalts: an example from the Stan Terg deposit in Kosovo. Geologica Carpathica, 68(4), 366-381.
  • Agder
    • Evje og Hornnes
      • Landsverk
Revheim, O. (2006): Landsverk 1, Jokeli-bruddet i Evje. Norsk Bergverksmuseum Skrift. 33: 41-50
  • Áncash
    • Bolognesi Province
      • Huallanca District
        • Huallanca
Fluorite: The Collector's Choice. Extra Lapis English No. 9; Econ Geol (1985) 80:416-478
Mineralogical Record 28, no. 4 (1997); Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.; Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.
    • Pallasca Province
      • Pampas District
Mineralogical Record 28, No. 4 (1997); collections of Rock Currier, Jack Crowley, Jaroslav Hyrsl and Alfredo Petrov.
    • Recuay Province
      • Ticapampa District
Mi.Rec. 28, no.4 (1997)
  • Huancavelica
    • Angaraes Province
Crowley, Jack A., Currier, Rock H., & Szenics, Terry (1997) Mines and Minerals of Peru. Mineralogical Record, Vol.28, No.4. 98p. Scherkenbach, D.A. and Noble, D.C. (1984) Potassium and rubidium metasomatism at the Julcani District, Peru. Economic Geology 1984 Vol. 79 No.3: 565-572.
  • La Libertad
    • Santiago de Chuco Province
      • Quiruvilca District
Burkart-Baumann, I.; Ottemann, J. (1972): Low temperature sulfides from Quiruvilca, Peru. Neues Jahrbuch für Mineralogie, Monatshefte 1972, 541-551 (in German).; Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.
  • Primorsky Krai
    • Dalnegorsk Urban District
      • Dalnegorsk
Min Rec vol 32, pp 7-30 (2001); Rogulina, L.I., and Sveshnikova, O.L. (2008): Geology of Ore Deposits 50(1), 60-74.; Vasilenko, G.P. (2001) The Dalnegorsk Ore District. pp98-124 in Khanchuk, A.I., Gonevchuk, G.A. & Seltmann, R. (Eds) Metallogeny of the Pacific Northwest (Russian Far East): Tectonics, Magmatism and Metallogeny of Active Continental Margins. IAGOD Guidebook series 11, Dalnauka Publishing House, Vladivostok 2004, 176 p
  • Castile and Leon
    • Soria
      • San Pedro Manrique
Calvo, M. and Sevillano, E. (1989). Pyrite crystals from Soria and La Rioja provinces, Spain. The Mineralogical Record 20, 451-456.
  • La Rioja
    • Muro de Aguas
Calvo, M., Sevillano, E. 1989. Famous mineral localities: Pyrite crystals from Soria and La Rioja provinces, Spain. The Mineralogical Record. 20( 6): 451-456. ; - García, Gonzalo (2003). Piritas de Ambasaguas. Bocamina. p: 14-45. Madrid
Calvo, M. y Sevillano, E. (1989). Pyrite crystals from Soria and La Rioja provinces, Spain. The Mineralogical Record, 20, 451-456.
Calvo, M. and Sevillano, E. (1989) Pyrite crystals from Soria and la Rioja provinces, Spain. The Mineralogical Record, 20, 451-456. Calvo, Miguel. (2003) Minerales y Minas de España. Vol. II. Sulfuros y sulfosales. Museo de Ciencias Naturales de Alava. Vitoria. 705 págs.
  • Artvin Province
    • Murgul District
      • Murgul Cu-Zn-Pb deposit
Econ Geol (1993) 88:606-621
  • Colorado
    • Eagle Co.
      • Gilman Mining District (Battle Mountain Mining District; Red Cliff Mining District)
        • Gilman
Minerals of Colorado (1997) Eckel, E. B.
  • Connecticut
    • Litchfield Co.
      • Roxbury
        • Mine Hill (Ore Hill)
Rocks & Minerals (1995) 70:396-409; Schooner (1961)
      • Thomaston
        • Thomaston Dam
Segeler, Curt and Molon, Joseph. (1985), The Thomaston Dam Site, Thomaston, Connecticut; Rocks & Minerals: 60(3): 119-124.; Vogt, Wolfgang. (1991), Rediscovering Thomaston Dam. Lapidary Journal: April.; Zodac, Peter. (1959), Minerals at Thomaston Dam, Connecticut; Rocks & Minerals: 34: 3.
    • Middlesex Co.
      • Haddam
Davis, James W. (1901): The Minerals of Haddam, Conn. Mineral Collector, v. 8, no. 4, pp. 50-54, and no. 5, pp. 65-70.; Williams, Horace S. (circa 1945): Article For New York Society Of Mineralogists. Brainerd Public Library, Haddam, Connecticut.
      • Portland
        • Collins Hill
          • Strickland pegmatite (Strickland-Cramer Quarry; Strickland-Cramer Mine; Strickland-Cramer Feldspar-Mica Quarries)
Schooner, Richard. (1955): 90 Minerals from 1 Connecticut Hill. Rocks & Minerals: 30(7-8): 351-8.; Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.; Schooner, Richard. (circa 1985), Untitled manuscript on central Connecticut mineralogy.
    • New Haven Co.
      • Waterbury
        • Municipal Stadium
J. Zolan/M. Polletta observation
    • Tolland Co.
      • Willington
        • West Willington
P Cristofono collection, 2008; Ague, J. J. (1995): Deep Crustal Growth of Quartz, Kyanite and Garnet into Large-Aperature, fluid-filled fractures, northeastern Connecticut, USA. Journal of Metamorphic Geology: 13: 299-314.
  • Massachusetts
    • Norfolk Co.
S Pavadore collection
    • Suffolk Co.
      • Boston
        • West Roxbury
Harvard Museum of Natural History, no.99813
  • New Jersey
    • Sussex County
      • Sparta Township
        • Franklin Marble
Jaszczak, John A. (1997), Unusual graphite crystals from the Lime Crest quarry, Sparta, New Jersey: Rocks & Minerals: 72(5): 330-334
  • North Carolina
    • Caldwell Co.
Mike polletta collected pyrite with his hands in june 2009.
  • Pennsylvania
    • Lancaster Co.
      • Earl Township
        • Blue Ball
Mineral collecting in Pennsylvania - 1965, Lapham, Geyer Pgs. 88-89
    • York Co.
      • Leaders Heights
"Arthur Koch - collection"
  • Texas
    • Ellis Co.
      • Midlothian
Cement Industry Technical Conference, 2002. IEEE-IAS/PCA 44th Volume , Issue , 2002 Page(s):125 - 137
  • Vermont
    • Windham Co.
Johannes Swarts collection
  • Washington
    • King Co.
      • Goldmyer Hot Springs
Cannon, B. (1975): Minerals of Washington, p.71
Cannon, B. (1975): Minerals of Washington, p.45,54; Ream, L. (1994): Gems and Minerals of Washington; Lasmanis, R. Geology of Spruce 16 claim, Rocks & Minerals, 1985
      • North Bend
        • Hansen Creek
Eric He's Collection; Ray Claude (1995) Mineral Sites of King County, Washington: 27
Mineral and/or Locality is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © and the Hudson Institute of Mineralogy 1993-2020, except where stated. Most political location boundaries are © OpenStreetMap contributors. relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: August 4, 2020 03:21:48 Page generated: August 4, 2020 00:40:34
Go to top of page