Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery


This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About ArmalcoliteHide

Armstong, Aldrin & Collins
Specific Gravity:
Crystal System:
Named in 1970 by A. T. Andersen, T. E. Bunch, Eugene N. Cameron, S. E. Haggery, F. R. Boyd, O. B. James, K. Keil, Marun Prinz, Paul Ramdohr, and A. El Goresy. This name is in honor of the first three astronauts who traveled to Earth's Moon. The name is an acronym derived from the last names of Neil Alden ARMstrong (b. 1930, d. 2012), Edwin Eugene ALdrin (b. 1930) and Michael COLlins (b. 1930), the Apollo 11 astronauts who collected the type samples.

Classification of ArmalcoliteHide


4 : OXIDES (Hydroxides, V[5,6] vanadates, arsenites, antimonites, bismuthites, sulfites, selenites, tellurites, iodates)
C : Metal: Oxygen = 2: 3,3: 5, and similar
B : With medium-sized cations

7 : AB2X5

7 : Oxides and Hydroxides
9 : Oxides of Ti

Physical Properties of ArmalcoliteHide

4.94 g/cm3 (Measured)    4.64 g/cm3 (Calculated)

Optical Data of ArmalcoliteHide

Strong, pale grey to dark bluish gray
450 nmR1=14.1%R2= 15.2%
470 nmR1=14.0%R2= 15.0%
500 nmR1=13.8%R2= 14.7%
520 nmR1=13.7%R2= 14.5%
546 nmR1=13.4%R2= 14.4%
586 nmR1=13.3%R2= 14.3%
620 nmR1=13.2%R2= 14.2%
640 nmR1=13.0%R2= 14.1%

Reflectance graph
Graph shows reflectance levels at different wavelengths (in nm). Top of box is 100%. Peak reflectance is 15.2%.
R1 shown in black, R2 shown in red
Colour in reflected light:
Grey to tan

Chemical Properties of ArmalcoliteHide


Crystallography of ArmalcoliteHide

Crystal System:
Class (H-M):
mmm (2/m 2/m 2/m) - Dipyramidal
Cell Parameters:
a = 9.743 Å, b = 10.023 Å, c = 3.738 Å
a:b:c = 0.972 : 1 : 0.373
Unit Cell V:
365.03 ų (Calculated from Unit Cell)

X-Ray Powder DiffractionHide

Powder Diffraction Data:
3.468 (100)
1.958 (80)
2.763 (25)
2.454 (25)
2.235 (15)
2.199 (15)
2.414 (10)
Recorded on type material

Type Occurrence of ArmalcoliteHide

General Appearance of Type Material:
subhedral to anhedral grains to 300 µm across
Place of Conservation of Type Material:
Lunar Science Institute, Houston, Texas, USA
Geological Setting of Type Material:
in Ti-rich basalt and microbreccias of lunar samples, formed at low pressures and high temperatures

Other Language Names for ArmalcoliteHide

Relationship of Armalcolite to other SpeciesHide

Common AssociatesHide

Associated Minerals Based on Photo Data:
Tetraferriphlogopite2 photos of Armalcolite associated with Tetraferriphlogopite on mindat.org.
Sanidine2 photos of Armalcolite associated with Sanidine on mindat.org.
Pseudobrookite1 photo of Armalcolite associated with Pseudobrookite on mindat.org.

Related Minerals - Nickel-Strunz GroupingHide

4.CB.05BrizziiteNaSb5+O3Trig. 3 : R3
4.CB.05CorundumAl2O3Trig. 3m (3 2/m) : R3c
4.CB.05Ecandrewsite(Zn,Fe2+,Mn2+)TiO3Trig. 3 : R3
4.CB.05GeikieliteMgTiO3Trig. 3 : R3
4.CB.05HematiteFe2O3Trig. 3m (3 2/m) : R3c
4.CB.05IlmeniteFe2+TiO3Trig. 3 : R3
4.CB.05PyrophaniteMn2+TiO3Trig. 3 : R3
4.CB.05Unnamed (Auroantimonate)AuSbO3
4.CB.05TistariteTi3+2O3Trig. 3m (3 2/m) : R3c
4.CB.10AvicenniteTl2O3Iso. m3 (2/m 3) : Ia3
4.CB.10BixbyiteMn3+2O3Iso. m3 (2/m 3) : Ia3
4.CB.15PseudobrookiteFe2TiO5Orth. mmm (2/m 2/m 2/m)
4.CB.20Zincohögbomite-2N2S[(Zn,Al,Fe2+)3(Al,Fe3+,Ti)8O15(OH)]2Hex. 6mm : P63mc
4.CB.20Zincohögbomite-2N6S[(Zn,Mg)7(Al,Fe3+,Ti)16O31(OH)]2Hex. 6mm : P63mc
4.CB.20Magnesiohögbomite-6N6S[(Mg,Fe2+)3(Al,Ti,Fe3+)8O15(OH)]6Trig. 3m (3 2/m) : R3m
4.CB.20Magnesiohögbomite-2N3S[(Mg,Fe2+,Zn)4(Al,Ti,Fe3+)10O19(OH)]2Trig. 3m (3 2/m) : P3 1m
4.CB.20Magnesiohögbomite-2N2S[(Mg,Fe2+)3[Al7(Ti,Fe3+)]O15(OH)]2Hex. 6mm : P63mc
4.CB.20Ferrohögbomite-6N12S[(Fe2+,Mg,Zn)5(Al,Ti,Fe3+)12O23(OH)]6Trig. 3m (3 2/m) : R3m
4.CB.25KleberiteFeTi6O11(OH)5Mon. 2/m : P21/b
4.CB.30OxyvaniteV3+2V4+O5Mon. 2/m : B2/b
4.CB.40RinmaniteZn2Sb2Mg2Fe4O14(OH)2Hex. 6 : P63
4.CB.40IseiteMn2Mo3O8Hex. 6mm : P63mc
4.CB.40MajindeiteMg2Mo3O8Hex. 6mm : P63mc
4.CB.45ClaudetiteAs2O3Mon. 2/m
4.CB.45StibioclaudetiteAsSbO3Mon. 2/m : P21/m
4.CB.50ArsenoliteAs2O3Iso. m3m (4/m 3 2/m) : Fd3m
4.CB.50SenarmontiteSb2O3Iso. m3m (4/m 3 2/m) : Fd3m
4.CB.55ValentiniteSb2O3Orth. mmm (2/m 2/m 2/m) : Pccn
4.CB.60BismiteBi2O3Mon. 2/m : P21/b
4.CB.70SilléniteBi12SiO20Iso. 2 3 : I2 3
4.CB.75KyzylkumiteV3+Ti2O5(OH)Mon. 2/m : P21/b

Related Minerals - Dana Grouping (8th Ed.)Hide mmm (2/m 2/m 2/m)

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

7.9.2RutileTiO2Tet. 4/mmm (4/m 2/m 2/m) : P42/mnm
7.9.3AnataseTiO2Tet. 4/mmm (4/m 2/m 2/m) : I41/amd
7.9.4BrookiteTiO2Orth. mmm (2/m 2/m 2/m)
7.9.5GeikieliteMgTiO3Trig. 3 : R3
7.9.6PerovskiteCaTiO3Orth. mmm (2/m 2/m 2/m) : Pnma
7.9.8TausoniteSrTiO3Iso. 4 3m
7.9.9CrichtoniteSr(Mn,Y,U)Fe2(Ti,Fe,Cr,V)18(O,OH)38Trig. 3 : R3
7.9.13PyrophaniteMn2+TiO3Trig. 3 : R3
7.9.14Jacobsite-QT(Mn2+)M(Fe3+2)O4Tet. 4/mmm (4/m 2/m 2/m) : I41/amd
7.9.15IlmeniteFe2+TiO3Trig. 3 : R3
7.9.16PseudobrookiteFe2TiO5Orth. mmm (2/m 2/m 2/m)
7.9.17UlvöspinelTiFe2O4Iso. m3m (4/m 3 2/m) : Fd3m
7.9.24CafetiteCaTi2O5 · H2OMon. 2/m : P21/b
7.9.29AnkangiteBa(Ti,V3+,Cr)8O16Tet. 4/m : I4/m
7.9.30Ecandrewsite(Zn,Fe2+,Mn2+)TiO3Trig. 3 : R3
7.9.31LandauiteNaMnZn2(Ti,Fe)6Ti12O38Trig. 3 : R3

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Armalcolite in petrologyHide

An essential component of rock names highlighted in red, an accessory component in rock names highlighted in green.

References for ArmalcoliteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Anderson A.T., Bunch T.E, Cameron E.N, Haggerty S.E., Boyd F.R., Finger L.W., James O.B., Keil K., Prinz M., Ramdohr P., El Goresy A. (1970) Armalcolite, a new mineral from the Apollo 11 samples. Geochimica et Cosmochimica Acta: 34: Supplement 1: 55-63.
Fleischer, M. (1970) New mineral names. American Mineralogist: 55: 2135-2139.
Lind, M.D., Houseley, R.M. (1972) Crystallization studies of lunar igneous rocks: Crystal structure of synthetic armalcolite. Science: 175: 521-523.
Haggerty, S.E. (1973) Ortho and para-armalcolite samples in Apollo 17. Nature: 242: 123-125.
Lindsley, D.H., Kesson, S.E., Hartzman, M.J., and Cushman, M.K. (1974) The stability of armalcolite: Experimental studies in the system MgO-Fe-Ti-O. Proceedings of the 5th. Lunar Science Conference, Geochimica et Cosmochimica Acta 61, Supplement 1, 521-534.
Smyth, J.R. (1974) The crystal chemistry of armalcolite from Apollo 17. Earth and Planetary Science Letters: 24: 262-270.
Wechsler, B.A. (1977) Cation distribution and high-temperature crystal chemistry of armalcolite. American Mineralogist: 62: 913-920.
Hauck, J. (1981) Crystallography and phase relations of MeO-M2O3-titanium dioxide systems (Me = Fe, Mg, Ni; M = Al, Cr, Fe). Journal of Solid State Chemistry: 36: 52-65.
Pedersen, A.K. (1981) Armalcolite-bearing Fe-Ti oxide assemblages in graphite-equilibrated salic volcanic rocks with native iron from Disko, central west Greenland. Contributions to Mineralogy and Petrology: 77: 307-324.
Bowles, J.F.W. (1988) Definition and range of composition of naturally occurring minerals with the pseudobrookite structure. American Mineralogist: 73: 1377-1383.
Grey, I.E., Li, C., Madsen, I.C. (1994) Phase equilibria and structural studies on the solid solution MgTi2O5-Ti3O5. Journal of Solid State Chemistry: 113: 62-73.
Hayob, J.L., Essene, E.J. (1995) Armalcolite in crustal paragneiss xenoliths, central Mexico. American Mineralogist: 80: 810-822.
Anthony, J.W. et al. (1997) Handbook of Mineralogy, Vol. 3, 22.
Yang, H., Hazen, R.M. (1998) Crystal chemistry of cation order-disorder in pseudobrookite-type MgTi2O5. Journal of Solid State Chemistry: 138: 238-244.

Internet Links for ArmalcoliteHide

Localities for ArmalcoliteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
  • Eastern Antarctica
    • Victoria Land
      • Allan Hills
Makoto Kimura & Ahmed El Goresy (1989). Discovery of E-Chondrite Assemblages and Silica-Bearing Objects in ALH85085:- Link Between E- and C-Chondrites (Abstract). Abstracts and Program for the 52nd Annual Meeting of the Meteoritical Society. LPI Contribution 712, p. 112.
  • Santa Cruz Province
    • Magallanes department
      • Deseado massif
Tassara, S., González-Jiménez, J. M., Reich, M., Schilling, M. E., Morata, D., Begg, G., ... & Barra, F. (2017). Plume-subduction interaction forms large auriferous provinces. Nature Communications, 8(1), 843.
  • Queensland
    • Western Downs Region
      • Moonie
Ikeda, Y. & Prinz, M. (1996) Petrology of silicate inclusions in the Miles IIE iron: Antarctic Meteorite Research. Twentieth Symposium on Antarctic Meteorites, NIPR Symposium No. 9: Editor, Kojima, H. & others: 143-173.; Ebihara, M., Ikeda, Y., & Prinz, M. (1997) Petrology and chemistry of the Miles IIE iron. II: Chemical characteristics of the Miles silicate inclusions. Antarctic Meteorite Research. Twenty first Symposium on Antarctic Meteorites, NIPR Symposium No. 10: Editor, Hirasawa, T. : 373-388.
  • Styria
    • Bad Radkersburg
      • Klöch
Taucher, J. & Hollerer, C. E. (1998): Minerale eines Si- und Al-reichen Xenoliths aus dem Basaltsteinbruch von Klöch, Nördlicher Bruch, (Steiermark, Österreich). Mitt. naturwiss. Ver. Steiermark 128, 21-42.
  • Pernambuco
    • Fernando de Noronha archipelago
      • Fernando de Noronha island
Kogarko, L., Kurat, G., & Ntaflos, T. (2001). Carbonate metasomatism of the oceanic mantle beneath Fernando de Noronha Island, Brazil. Contributions to Mineralogy and Petrology, 140(5), 577-587.
  • Nunavut
    • Coppermine River area
Roach, T. S., Roeder, P. L., & Hulbert, L. J. (1998). Composition of chromite in the upper chromitite, Muskox layered intrusion, Northwest Territories. The Canadian Mineralogist, 36(1), 117-135.
  • Shaanxi
    • Hanzhong
      • Ningqiang Co.
Lin, Y. T. & Kimura, M. (1996). Discovery of Complex Titanium Oxide Associations in a Plagioclase-Olivine Inclusion (POI) in the Ningqiang Carbonaceous Chondrite. Lunar and Planetary Science, vol. 27, pages 755-756. (1996).
Czech Republic
  • Liberec Region
Kühn, P., Scharmová, M.: Manganový armalcolit a pseudorutil z uranonosných sedimentů severočeské křídové pánve u Stráže pod Ralskem. Bulletin mineralogicko-petrografického oddělení Národního muzea v Praze, 1999, roč. 7, s. 173-176.
  • Greenland
    • Qeqertalik
J. W. Anthony et al.: Handbook of Mineralogy, Vol. 3 (1997), 22
Pedersen, A.K. (1979) A shale buchite xenolith with Al-armalcolite and native iron in a lava from Asuk, Disko, central West Greenland. Contributions to Mineralogy and Petrology, 69, No. 1, 83-94
  • French Southern and Antarctic Lands
Contrib. Mineral. Petrol., 122, 174-190 (1995); Grégoire, M., Lorand, J.P., O’Reilly, S.Y., Cottin, J.Y. (2000) Armalcolite-bearing, Ti-rich metasomatic assemblages in harzburgitic xenoliths from the Kerguelen Islands: Implications for the oceanic mantle budget of high-field strength elements. Geochimica et Cosmochimica Acta, 64, 673–694.
J. W. Anthony et al.: Handbook of Mineralogy, Vol. 3 (1997), 22
  • Chihuahua
    • Pueblito de Allende
Brearley, A. J. & Jones, R. H. (1998). Chondritic Meteorites. In: Planetary Materials (Papike, J. J., Editor): Chapter 3, 398 pages. Mineralogical Society of America: Washington, DC, USA. (1998)
  • San Luis Potosí
J. W. Anthony et al.: Handbook of Mineralogy, Vol. 3 (1997), 22
  • Hovd Aimag (Khovd Aimag)
    • Altai Mts
P.M. Kartashov analytical data
  • Dhofar
Meteoritical Bulletin No. 86
The Meteoritical Bulletin, No. 88, 2004 JULY, Meteoritics & Planetary Science 39, Axxx–Axxx (2004)
  • Caraş-Severin
    • Banat Mts
      • Gătaia
Seghedi I., Ntaflos T. 2006: G˘ataia lamproite (SW Romania). Mineralogia Polonica, vol. 29, 188-191
  • Chelyabinsk Oblast
    • Chelyabinsk coal basin
Cesnokov, B., M. Kotrly, and T. Nisanbajev (1998): Brennende Abraumhalden und Aufschlüsse im Tscheljabinsker Kohlenbecken - eine reiche Mineralienküche. Mineralien-Welt, 9 (3), 54-63 (in German).
Sharygin, V. V., & Sokol, E. V. (2010). Metal-phosphide-sulfide association in paralavas from natural fires and burned waste dumps (Kuznetsk and Chelyabinsk coal basins, Russia). In Proceedings of «ICCFR2–Second International Conference on Coal Fire Research». Berlin, Germany (pp. 410-411).
  • Krasnoyarsk Krai
    • Taymyrskiy Autonomous Okrug
      • Taimyr Peninsula
        • Khatanga
          • Malaya Romanikha River
P.M. Kartashov data
  • Sakha Republic (Yakutia)
[World of Stones 12:49]
    • Oymyakonsky District
Litasov, K. D., & Podgornykh, N. M. (2017). Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite. Journal of Raman Spectroscopy, 48(11), 1518-1527.
6th orogenic lherzolite conference 2014 Morocco
  • Banská Bystrica Region
    • Banská Bystrica Co.
      • Brusno
Uher, P. ,Černý, P., 1998 : Vzácnoprvková mineralizácia v granitových pegmatitoch Nízkych Tatier. Mineralia Slovaca, 30, 2,93 – 94
South Africa
  • Free State
    • Xhariep District
      • Jagersfontein
Minerals of South Africa
  • Limpopo
    • Waterberg District
      • Mogalakwena
        • Mokopane (Potgietersrus)
MCDONALD I., HOLWELL D.A. & ARMITAGE P.E.B. (2005). Geochemistry and mineralogy of the Platreef and ìCritical Zoneî cumulates of the Northern limb of the Bushveld Complex, South Africa: implications for Bushveld stratigraphy and the development of PGE mineralization. Miner. Deposita, 40, 526-549.
  • Northern Cape
    • Francis Baard District
      • Kimberley
        • KEM JV Mine (Kimberley Ekapa Mining Joint Venture mine; Kimberley Underground mine)
J. W. Anthony et al.: Handbook of Mineralogy, Vol. 3 (1997), 22
J. W. Anthony et al.: Handbook of Mineralogy, Vol. 3 (1997), 22
  • Andalusia
    • Granada
      • Benalúa de las Villas
Prinz, M., Nehru, C. E., Delaney, J. S., Weisberg, M., & Olsen, E. (1983, March). Globular silicate inclusions in IIE irons and Sombrerete: Highly fractionated minimum melts. In Lunar and Planetary Science Conference (Vol. 14, pp. 618-619).
  • Castile-La Mancha
    • Albacete
      • Hellín
        • Cancarix
E. Salvioli-mariani et al. , Eur. J. Mineral. , 1996, 8, pp. 1027-1039.
  • Murcia
J. W. Anthony et al.: Handbook of Mineralogy, Vol. 3 (1997), 22
  • Montana
    • Garfield Co.
AmMin 60:566; Journal of Petrology Volume 33 :3 Pages 505-520 1992
  • Texas
    • Uvalde Co.
      • Knippa
R&M 66:3 pp 196-224
  • Utah
    • Piute Co.
Mineralogical Magazine 1998 62 : 265-269
  • Wyoming
    • Sweetwater Co.
  • Masvingo
J. W. Anthony et al.: Handbook of Mineralogy, Vol. 3 (1997), 22
The Moon
  • Descartes Highlands
J. W. Anthony et al.: Handbook of Mineralogy, Vol. 3 (1997), 22; Dowty, E., Keil, K., & Prinz, M. (1974) Igneous rocks from Apollo 16 rake samples. In: Lunar Science Conference, 5th, Houston, Tex., March 18-22, 1974, Proceedings. Volume 2. (A75-39540 19-91) New York, Pergamon Press, Inc., 1974, p. 431-445.
  • Mare Tranquillitatis (Sea of Tranquility)
Proc. Apollo 11 Lunar Sci.Conf.(1970) 1, 55-63
  • Taurus-Littrow Valley
www.union.edu/PUBLIC/GEODEPT/COURSES/petrology/moon_rocks/70017.htm ; Longhi, J., Walker, D., Grove, T. L., Stolper, E. M., & Hays, J. F. (1974) The petrology of the Apollo 17 mare basalts. In: Lunar Science Conference, 5th, Houston, Tex., March 18-22, 1974, Proceedings. Volume 1. (A75-39540 19-91) New York, Pergamon Press, Inc., 1974, p. 447-469.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: April 24, 2019 07:42:23 Page generated: April 24, 2019 02:08:58
Go to top of page