Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery


This page is currently not sponsored. Click here to sponsor this page.
Synthetic ringwoodite
Synthetic ringwoodite
Synthetic ringwoodite
Hide all sections | Show all sections

About RingwooditeHide

A. Edward Ringwood
Bluish- to smoke- gray, purple, colourless
Specific Gravity:
3.9 (Calculated)
Crystal System:
Named in 1969 by R.A. Binns, R.J. Davis, and S.J.B. Reed in honor of Alfred Edward ("Ted") Ringwood (19 April 1930, Melbourne, Australia – 12 November 1993,Canberra, Australia), noted geochemist and Professor of Geology, Australian National University, Canberra, who predicted the mineral based on laboratory studies. He was the recipient of numerous awards including the Bowie Medal, the Wollaston Medal and the H.H. Hess Medal.
Polymorph of:
Olivine Group.
Mg analogue of ahrensite.

The isometric polymorph of Wadsleyite and Forsterite.

Experiments show that ringwoodite may incorporate essential amounts of Na, that enters the tetrahedral sites. Na prefers ringwoodite more than bridgmanite. Thus, ringwoodite is suspected for being an important sink for Na in deep transition mantle zone (Bindi et al., 2016).

Classification of RingwooditeHide

Approval Year:

9 : SILICATES (Germanates)
A : Nesosilicates
C : Nesosilicates without additional anions; cations in octahedral [6] coordination

51 : NESOSILICATES Insular SiO4 Groups Only
3 : Insular SiO4 Groups Only with all cations in octahedral [6] coordination

14 : Silicates not Containing Aluminum
21 : Silicates of Fe and Mg

Pronounciation of RingwooditeHide

PlayRecorded byCountry
Jolyon & Katya RalphUnited Kingdom

Physical Properties of RingwooditeHide

Bluish- to smoke- gray, purple, colourless
3.9 g/cm3 (Calculated)

Optical Data of RingwooditeHide

RI values:
n = 1.768
Isotropic minerals have no birefringence
Surface Relief:

Chemical Properties of RingwooditeHide

IMA Formula:
Common Impurities:

Chemical AnalysisHide

Oxide wt%:
SiO238.9 %
FeO23.4 %
MgO37.0 %
Total:99.3 %
Empirical formulas:
Sample IDEmpirical Formula
Sample references:
1Tenham meteorite, Tenham Station, Windorah, Barcoo Shire, Queensland, AustraliaBinns R A, Davis R J, Reed S J B (1969) Ringwoodite, natural (Mg,Fe)2SiO4 spinel in the Tenham meteorite. Nature 221, 943-944

Crystallography of RingwooditeHide

Crystal System:
Class (H-M):
m3m (4/m 3 2/m) - Hexoctahedral
Space Group:
Cell Parameters:
a = 8.113 Å
Unit Cell V:
534.00 ų (Calculated from Unit Cell)
Rounded grains, to 100 μm, or massive

X-Ray Powder DiffractionHide

Powder Diffraction Data:
2.447 (100)
1.434 (60)
2.028 (40)
2.872 (20)
1.560 (20)
1.0559 (10)
0.8283 (10)

Type Occurrence of RingwooditeHide

Place of Conservation of Type Material:
The Natural History Museum, London, England, 1935,792.
Geological Setting of Type Material:
Tenham meteorite
Associated Minerals at Type Locality:
Binns R A, Davis R J, Reed S J B (1969) Ringwoodite, natural (Mg,Fe)2SiO4 spinel in the Tenham meteorite. Nature 221, 943-944

Synonyms of RingwooditeHide

Other Language Names for RingwooditeHide

Simplified Chinese:林伍德石
Traditional Chinese:林伍德石

Relationship of Ringwoodite to other SpeciesHide

Other Members of this group:
AhrensiteSiFe2O4Iso. m3m (4/m 3 2/m)
BrunogeieriteGe4+Fe2+2O4Iso. m3m (4/m 3 2/m) : Fd3m
UlvöspinelTiFe2O4Iso. m3m (4/m 3 2/m) : Fd3m

Related Minerals - Nickel-Strunz GroupingHide

9.AC.AhrensiteSiFe2O4Iso. m3m (4/m 3 2/m)
9.AC.05FayaliteFe2+2SiO4Orth. mmm (2/m 2/m 2/m)
9.AC.05ForsteriteMg2SiO4Orth. mmm (2/m 2/m 2/m)
9.AC.05GlaucochroiteCaMn2+SiO4Orth. mmm (2/m 2/m 2/m)
9.AC.05KirschsteiniteCaFe2+SiO4Orth. mmm (2/m 2/m 2/m) : Pnma
9.AC.05TephroiteMn2+2SiO4Orth. mmm (2/m 2/m 2/m)
9.AC.15BrunogeieriteGe4+Fe2+2O4Iso. m3m (4/m 3 2/m) : Fd3m
9.AC.20ChesnokoviteNa2[SiO2(OH)2] · 8H2OOrth. mmm (2/m 2/m 2/m) : Ibca

Related Minerals - Dana Grouping (8th Ed.)Hide m3m (4/m 3 2/m) : Fd3m

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

14.21.4ClinoferrosiliteFe2+SiO3Mon. 2/m : P21/b
14.21.5Anthophyllite☐{Mg2}{Mg5}(Si8O22)(OH)2Orth. mmm (2/m 2/m 2/m) : Pnma
14.21.7 Magnesiocummingtonite☐{Mg2}{Mg5}(Si8O22)(OH)2
14.21.8Grunerite☐{Fe2+2}{Fe2+5}(Si8O22)(OH)2Mon. 2/m : B2/m
14.21.9MinnesotaiteFe2+3Si4O10(OH)2Tric. 1 : P1
14.21.11Jimthompsonite(Mg,Fe)5Si6O16(OH)2Orth. mmm (2/m 2/m 2/m) : Pbca
14.21.12Clinojimthompsonite(Mg,Fe)5Si6O16(OH)2Mon. 2/m : B2/b

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Industrial Uses:

References for RingwooditeHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Binns, R.A., Davis, R.J., and Reed, S.J.B. (1969) Ringwoodite, natural (Mg,Fe)2SiO4 spinel in the Tenham meteorite. Nature: 221: 943-944.
Fleischer, M. (1969) New mineral names. American Mineralogist: 54: 1218-1223.
Coleman, L.C. (1977) Ringwoodite and majorite in the Catherwood meteorite. Canadian Mineralogist: 15: 97-101.
Boctor, N.Z., Bell, P.M., and Mao, H.K. (1982) Petrology and shock metamorphism of Pampa del Infierno chondrite. Geochimica et Cosmochimica Acta: 46: 1903-1911.
Sinogeikin, S.V., Katsura, T., and Bass, J.D. (1998) Sound velocities and elastic properties of Fe-bearing wadsleyite and ringwoodite. Journal of Geophysical Research: 103: 20819-20825.
Smyth, Joseph; Holl, Christopher M.; Frost, Daniel J.; Jacobsen, Steven D. (2004) High pressure crystal chemistry of hydrous ringwoodite and water in the Earth’s interior. Physics of the Earth and Planetary Interiors: 143-144: 271-278.
Pearson, D.G., Brenker, F.E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M.T., Matveev, S., Mather, K., Silversmit, G., Schmitz, S., Vekemans, B., Vincze, L. (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature: 507: 221–224.
Thomas, S.-M., Jacobsen, S.D., Bina C.R., Reichart, P., Moser, M., Hauri, E.H., Koch-Müller, M., Smyth, J.R., Dollinger, G. (2015) Quantification of water in hydrous ringwoodite. Frontiers in Earth Science: 2: 1-10.
Redfern, Simon (2014) Mineral hints at bright blue rocks deep in the Earth. BBC news. http://www.bbc.com/news/science-environment-26553115
Bindi, L., Tamarova, A., Bobrov, A.V., Sirotkina, E.A., Tschauner, O., Walter, M.J., Irifune, T. (2016) Incorporation of high amounts of Na in ringwoodite: Possible implications for transport of alkali into lower mantle. American Mineralogist: 101: 483-486.
Purevjav, N., Okuchi, T., Wang, X., Hoffmann, C., Tomioka, N. (2018) Determination of hydrogen site and occupancy in hydrous Mg2SiO4 spinel by single-crystal neutron diffraction. Acta Crystallographica: B74: 115-120.

Internet Links for RingwooditeHide

Localities for RingwooditeHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
  • Eastern Antarctica
    • American Highland
      • Grove Mts
YT Lin, Lu Feng, Sen Hu (2011) High Pressure Mineral Assemblages in the Lherzolitic Shergottite Grove Mountains (GRV) 020090. Japan Geooscience Union Meeting Makuhari, Chiba Japan.
Feng, L., Lin, Y., Hu, S., Xu, L. & Miao, B. Estimating compositions of natural ringwoodite in the heavily shocked Grove Mountains 052049 meteorite from Raman spectra. Am. Mineral. 96, 1480–1489 (2011)
Lu Feng, Masaaki Miyahara, Toshiro Nagase, Eiji Ohtani, Sen Hu, Ahmed El Goresy, Yangting Lin (2011) Shock Conditions and Formation Mechanism of Akimotoite-Pyroxene Glass Assemblages in the Grove Mountains (GRV) 052082. Japan Geooscience Union Meeting Makuhari, Chiba Japan.
    • Queen Maud Land
      • Queen Fabiola Mts (Yamato Mts)
Ozawa, S., Ohtani, E., Suzuki, A., Miyahara, M., Terada, K., & Kimura, M. (2007, December). Shock metamorphism of L6 chondrites Sahara 98222 and Yamato 74445: the PT conditions and the shock age. In AGU Fall Meeting Abstracts.
    • Victoria Land
      • Elephant Moraine
Walton, E. L. (2013) Shock metamorphism of Elephant Moraine A79001: Implications for olivine-ringwoodite transformation and the complex thermal history of heavily shocked Martian meteorites. Geochimica et Cosmochimica Acta 107:299-315. (Apr 2013).
  • Chaco
    • Almirante Brown Department
      • Pampa del Infierno
Geochimica et Cosmochimica Acta: 46: 1903-1911.
  • New South Wales
    • Bourke Co.
Mason, B. (1974) Notes on Australian meteorites: Records of the Australian Museum 29(5): 169–186, plates 6–7. (May 1974).
  • Queensland
    • Barcoo Shire
      • Windorah
        • Tenham Station
Binns, R.A., Davis, R.J., and Reed, S.J.B. (1969) Ringwoodite, natural (Mg,Fe)2SiO4 spinel in the Tenham meteorite. Nature: 221: 943-944.; Canadian Mineralogist (1977) 15: 97.; HB2/2 (1995); Tomioka, N. and Fujino, K. (1997) Natural (Mg,Fe)SiO3-ilmenite and -perovskite in the Tenham meteorite. Science: 277: 1084–1086.; Jambor, J.L. and Roberts, A.C. (1998) New mineral names. American Mineralogist: 83: 400-403.; Ferroir, T., Miyahara, M., Ohtani, E., Beck, P., Simionovici, A., Gillet, P., and El Goresy, A. (xxxx) 72nd Meeting of the Meteoritical Society: Abstracts Page A69 No. 5143.; ; O. Tschauner et al. (2018) Structure analysis and conditions of formation of akimotoite in the Tenham chondrite: Meteoritics & Planetary Science 53 (1): 62-74. (Jan 2018).
  • Western Australia
    • Dundas Shire
      • Rawlinna
Smith, J. V.; Mason, Brian 1970 Pyroxene-Garnet Transformation in Coorara Meteorite. Science, Volume 168, Issue 3933, pp. 832-833
  • Mato Grosso
    • Juína kimberlite field
Pearson, D.G. et al. "Hydrous mantle transition zone indicated by ringwoodite included within diamond" letter to Nature; Nature 507, 221–224 (13 March 2014)
  • Alberta
    • Peace River
Canadian Mineralogist Vol. 21, pp. 29-35 (1983); Grady, M.M., Pratesi, G. & Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge University Press: Cambridge, United Kingdom. 373 pages.; Tomioka, N. & Miyahara, M. (2017) High-pressure minerals in shocked meteorites: Meteoritics & Planetary Science 52(9): 2017-2039. (Sept 2017).
  • Saskatchewan
    • Catherwood
Canadian Mineralogist (1977): 15: 97-101.
  • Hebei
    • Zhangjiakou
      • Wanquan Co.
Hongsen Xie, Huifen Zhang, Yueming Zhang, Huigang Xu, Shijie Zhuang (1984): Acta Mineralogica Sinica 4(4), 289-295
  • Hubei
    • Suizhou
      • Zengdu District (Cengdou District)
        • Xihe
American Mineralogist (2000): 85: 1564.; Xie Xiande, Chen Ming, Wang Deqiang, A. El Goresy (2001): NaAlSi3O8-hollandite and other high-pressure minerals in the shock melt veins of the Suizhou meteorite. Chinese Science Bulletin 46, 1116-1125.; Chen, M., Shu, J., & Mao, H. K. (2008). Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chinese Science Bulletin, 53(21), 3341-3345.; Chen, M., & Xie, X. (2015). Shock-produced akimotoite in the Suizhou L6 chondrite. Science China Earth Sciences, 58(6), 876-880.
  • Jiangsu
    • Taizhou
      • Gaogang District
        • Sixiangkou
Zhang, A., et al (2006): Lunar and Planetary Science, 37, 1069; Miyajima, N., El Goresy, A., Dupas-Bruzek, C., Seifert, F., Rubie, D.C., Chen, M., Xie, X. (2007): Ferric iron in Al-bearing akimotoite coexisting with iron-nickel metal in a shock-melt vein in an L-6 chondrite. American Mineralogist, 92, 1545-1549.; Chen, M., El Goresy, A. & Gillet, P. Ringwoodite lamellae in olivine: clues to olivine–ringwoodite phase transition mechanisms in shocked meteorites and subducting slabs. Proc. Natl Acad. Sci. USA 101, 15033–15037 (2004)
  • Mafraq
Yaseen, I. A. A. B. (2014). Petrography and Mineral Chemistry of the Almanden Garnet, and Implication for Kelyphite Texture in the Miocene Alkaline Basaltic Rocks North East Jordan. International Journal of Geosciences, 5(02), 222.
  • Al Jabal al Gharbi District
  • Souss-Massa Region
    • Tata Province
Ma, C., Tschauner, O., Liu, Y., Beckett, J. R., Rossman, G. R., Zuravlev, K., ... & Taylor, L. A. (2014, March). Discovery of Ahrensite gamma-Fe2SiO4 and Tissintite (Ca, Na, □) AlSi2O6: Two New High Pressure Minerals from the Tissint Martian Meteorite. In Lunar and Planetary Science Conference (Vol. 45, p. 1222).; Baziotis, I. P., Liu, Y., DeCarli, P. S., Melosh, H. J., McSween, H. Y., Bodnar, R. J., & Taylor, L. A. (2013). The Tissint Martian meteorite as evidence for the largest impact excavation. Nature Communications, 4, 1404.
  • Dhofar
D.D. Badjukov et al. , Lunar and Planetary Science, XXXVI (2005), 1684.pdf
  • Kansas
    • Ness Co.
Rubin, A.E. & Read, W.F. (1984) The Brownell and Ness County (1894) L6 Chondrites: Further sorting-out of Ness County meteorites. Meteoritics 19(3):153-160. (Sept 1984).
  • New Mexico
    • De Baca Co.
Acosta, T.E., Scott, E.R.D. & Sharma, S.K. (2012) Micro-Raman Mapping of Mineral Phases in the Strongly Shocked Taiban Ordinary Chondrite: 43rd Lunar and Planetary Science Conference. LPI Contribution No. 1659, id.2725.
    • Harding Co.
Zhidong Xie et al. , Lunar and Planetary Science XXXVI (2005), 1216.pdf
    • Roosevelt Co.
      • Rogers
  • Oregon
    • Josephine Co.
      • Josephine Creek District
  • Texas
    • Randall Co.
Zhidong Xie et al. , Lunar and Planetary Science XXXVI (2005), 1216.pdf; Tomioka, N. & Miyahara, M. (2017) High-pressure minerals in shocked meteorites: Meteoritics & Planetary Science 52(9): 2017-2039. (Sept 2017).
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: March 20, 2019 21:30:01 Page generated: March 11, 2019 06:45:39
Go to top of page