SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Sarcopside

This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About SarcopsideHide

Formula:
(Fe2+,Mn2+,Mg)3(PO4)2
May contain minor Mn(II) and Mg replacing Fe.
Colour:
Gray-pink, red-brown, brown (slightly altered), blue, lavender, green; flesh-red in transmitted light, rarely white.
Lustre:
Resinous, Waxy, Greasy
Hardness:
4
Specific Gravity:
3.64 - 3.73
Crystal System:
Monoclinic
Name:
Named in 1868 by Christian Friedrich Martin Websky from the Greek, σάρζ "sarka," for "flesh," plus οψις "opsism" for "view," alluding to the flesh-red color observed on fresh fracture surfaces.
Isostructural with:
Ferrous iron analogue of chopinite.

Chemically related to graftonite.

Visit gemdat.org for gemological information about Sarcopside.


Classification of SarcopsideHide

Approved, 'Grandfathered' (first described prior to 1959)
8.AB.15

8 : PHOSPHATES, ARSENATES, VANADATES
A : Phosphates, etc. without additional anions, without H2O
B : With medium-sized cations
Dana 7th ed.:
38.1.3.1
38.3.1.1

38 : ANHYDROUS NORMAL PHOSPHATES, ARSENATES, AND VANADATES
3 : (AB)3(XO4)2
19.12.34

19 : Phosphates
12 : Phosphates of Mn

Physical Properties of SarcopsideHide

Resinous, Waxy, Greasy
Transparency:
Translucent, Opaque
Comment:
Lustre also glistening
Colour:
Gray-pink, red-brown, brown (slightly altered), blue, lavender, green; flesh-red in transmitted light, rarely white.
Hardness:
Tenacity:
Brittle
Cleavage:
Distinct/Good
Distinct on a plane approximately perpendicular to the fibers, and another less distinct parallel to the fiber lenght (=[001] - ?).
Fracture:
Splintery, Fibrous
Density:
3.64 - 3.73 g/cm3 (Measured)    3.94 g/cm3 (Calculated)
Comment:
Measured values are for New Hampshire and Silesian materials, respectively.

Optical Data of SarcopsideHide

Type:
Biaxial (-)
RI values:
nα = 1.670 - 1.676 nβ = 1.728 - 1.730 nγ = 1.730 - 1.734
2V:
Measured: 26° to 28°, Calculated: 20° to 28°
Birefringence:
0.060
Max Birefringence:
δ = 0.060
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
High
Dispersion:
r > v perceptible
Optical Extinction:
Z=b, X^c = 45°

Chemical Properties of SarcopsideHide

Formula:
(Fe2+,Mn2+,Mg)3(PO4)2

May contain minor Mn(II) and Mg replacing Fe.
IMA Formula:
Fe2+3(PO4)2

Crystallography of SarcopsideHide

Crystal System:
Monoclinic
Class (H-M):
2/m - Prismatic
Space Group:
P21/b
Setting:
P21/a
Cell Parameters:
a = 10.437(22) Å, b = 4.768(9) Å, c = 6.026(8) Å
β = 90.00(15)°
Ratio:
a:b:c = 2.189 : 1 : 1.264
Unit Cell V:
299.88 ų (Calculated from Unit Cell)
Z:
2
Morphology:
Irregular masses sometimes with a fibrous structure. May be configured into distorted six-sided plates (Silesia).
Twinning:
Polysynthetic on {001}, common.
Comment:
Pseudo-orthorhombic.

X-Ray Powder DiffractionHide

Powder Diffraction Data:
d-spacingIntensity
3.91 Å(50)
3.52 Å(100)
3.01 Å(60)
2.82 Å(70)
2.49 Å(70)
2.47 Å(70)
1.769 Å(40)
1.758 Å(50)
Comments:
ICDD 39-341

Geological EnvironmentHide

Geological Setting:
Pegmatite

Type Occurrence of SarcopsideHide

Other Language Names for SarcopsideHide

Relationship of Sarcopside to other SpeciesHide

Other Members of this group:
Chopinite(Mg,Fe2+)3(PO4)2Mon. 2/m : P21/b
Zavalíaite(Mn2+,Fe2+,Mg)3(PO4)2Mon. 2/m : P21/b

Common AssociatesHide

Associated Minerals Based on Photo Data:
5 photos of Sarcopside associated with GraftoniteFe2+Fe2+2(PO4)2
3 photos of Sarcopside associated with MuscoviteKAl2(AlSi3O10)(OH)2
2 photos of Sarcopside associated with Heterosite(Fe3+,Mn3+)PO4
2 photos of Sarcopside associated with FerrohagendorfiteNaCaFe2+Fe2+2(PO4)3
1 photo of Sarcopside associated with QuartzSiO2
1 photo of Sarcopside associated with GalileiiteNa3Fe2+Fe2+11(PO4)9
1 photo of Sarcopside associated with TroiliteFeS
1 photo of Sarcopside associated with TriphyliteLiFe2+PO4
1 photo of Sarcopside associated with VivianiteFe2+3(PO4)2 · 8H2O

Related Minerals - Nickel-Strunz GroupingHide

8.AB.BorisenkoiteCu3[(V,As)O4]2Mon. 2/m : P21/b
8.AB.05FarringtoniteMg3(PO4)2Mon. 2/m
8.AB.10FerrisickleriteLi1-x(Fe3+xFe2+1-x)PO4Orth.
8.AB.10Heterosite(Fe3+,Mn3+)PO4Orth. mmm (2/m 2/m 2/m) : Pmna
8.AB.10LithiophiliteLiMn2+PO4Orth. mmm (2/m 2/m 2/m) : Pmna
8.AB.10NatrophiliteNaMn2+PO4Orth. mmm (2/m 2/m 2/m) : Pmna
8.AB.10PurpuriteMn3+(PO4)Orth. mmm (2/m 2/m 2/m) : Pmna
8.AB.10SickleriteLi1-x(Mn3+xMn2+1-x)PO4Orth.
8.AB.10SimferiteLi(Mg,Fe3+,Mn3+)2(PO4)2Orth.
8.AB.10TriphyliteLiFe2+PO4Orth. mmm (2/m 2/m 2/m) : Pmna
8.AB.10KarenwebberiteNaFe2+PO4Orth. mmm (2/m 2/m 2/m) : Pnma
8.AB.15Chopinite(Mg,Fe2+)3(PO4)2Mon. 2/m : P21/b
8.AB.20BeusiteMn2+Mn2+2 (PO4)2Mon.
8.AB.20GraftoniteFe2+Fe2+2(PO4)2Mon. 2/m : P21/b
8.AB.25XanthiositeNi3(AsO4)2Mon. 2/m : P21/b
8.AB.30LammeriteCu3(AsO4)2Mon.
8.AB.30Lammerite-βCu3(AsO4)2Mon. 2/m : P21/b
8.AB.35McbirneyiteCu3(VO4)2Tric. 1 : P1
8.AB.35StranskiiteZn2Cu(AsO4)2Tric. 1 : P1
8.AB.35PseudolyonsiteCu3(VO4)2Mon. 2/m : P21/b
8.AB.40LyonsiteCu3Fe4(VO4)6Orth.

Related Minerals - Dana Grouping (8th Ed.)Hide

38.3.1.2FarringtoniteMg3(PO4)2Mon. 2/m

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

19.12.1MetaswitzeriteMn2+3(PO4)2 · 4H2OMon. 2/m : P2/b
19.12.2BermaniteMn2+Mn3+2(PO4)2(OH)2 · 4H2OMon. 2/m : P2/b
19.12.3NatrophiliteNaMn2+PO4Orth. mmm (2/m 2/m 2/m) : Pmna
19.12.4SidorenkiteNa3Mn2+(CO3)(PO4)Mon.
19.12.5Niahite(NH4)(Mn2+,Mg)(PO4) · H2OOrth. mm2 : Pmn21
19.12.6RobertsiteCa2Mn3+3(PO4)3O2 · 3H2OMon. m : Bb
19.12.7PararobertsiteCa2Mn3+3(PO4)3O2 · 3H2OMon. 2/m : P21/b
19.12.8SinkankasiteMn2+Al(PO3OH)2(OH) · 6H2OTric.
19.12.9MangangordoniteMn2+Al2(PO4)2(OH)2 · 8H2OTric.
19.12.10Heterosite(Fe3+,Mn3+)PO4Orth. mmm (2/m 2/m 2/m) : Pmna
19.12.11PurpuriteMn3+(PO4)Orth. mmm (2/m 2/m 2/m) : Pmna
19.12.12WolfeiteFe2+2(PO4)(OH)Mon. 2/m : P21/b
19.12.13TriploiditeMn2+2(PO4)(OH)Mon. 2/m : P2/b
19.12.14LipscombiteFe2+Fe3+2(PO4)2(OH)2Tet.
19.12.15FrondeliteMn2+Fe3+4(PO4)3(OH)5Orth. 2 2 2 : C2 2 21
19.12.16RockbridgeiteFe2+Fe3+4(PO4)3(OH)5Orth. mmm (2/m 2/m 2/m)
19.12.17Kryzhanovskite(Fe3+,Mn2+)3(PO4)2(OH,H2O)3Orth.
19.12.18LandesiteMn2+3-xFe3+x(PO4)2(OH)x · (3-x)H2OOrth.
19.12.19Phosphoferrite(Fe2+,Mn2+)3(PO4)2 · 3H2OOrth. mmm (2/m 2/m 2/m) : Pmna
19.12.20Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2OOrth. mmm (2/m 2/m 2/m) : Pmna
19.12.21EarlshannoniteMn2+Fe3+2(PO4)2(OH)2 · 4H2OMon.
19.12.22HureauliteMn2+5(PO3OH)2(PO4)2 · 4H2OMon. 2/m : B2/b
19.12.23SwitzeriteMn2+3(PO4)2 · 7H2OMon.
19.12.24LaueiteMn2+Fe3+2(PO4)2(OH)2 · 8H2OTric. 1 : P1
19.12.25PseudolaueiteMn2+Fe3+2(PO4)2(OH)2 · 8H2OMon. 2/m : P21/b
19.12.26StrunziteMn2+Fe3+2(PO4)2(OH)2 · 6H2OTric. 1 : P1
19.12.27StewartiteMn2+Fe3+2(PO4)2(OH)2 · 8H2OTric. 1 : P1
19.12.28Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3Mon.
19.12.29Ferroalluaudite(Na,Ca)Fe2+(Fe3+,Mn2+,Fe2+)2(PO4)3Mon. 2/m : B2/b
19.12.30FillowiteNa3CaMn2+11(PO4)9Trig. 3 : R3
19.12.31JohnsomervilleiteNa3CaFe11(PO4)9Trig.
19.12.32WicksiteNaCa2(Fe2+,Mn2+)4MgFe3+(PO4)6 · 2H2OOrth. mmm (2/m 2/m 2/m)
19.12.33Dickinsonite-(KMnNa)(KNa)(Mn2+◻)Ca(Na2Na)Mn2+13Al(PO4)11(PO4)(OH)2Mon. 2/m : B2/b
19.12.35LudlamiteFe2+3(PO4)2 · 4H2OMon. 2/m : P21/b
19.12.36GraftoniteFe2+Fe2+2(PO4)2Mon. 2/m : P21/b
19.12.37WilhelmvierlingiteCaMnFe3+(PO4)2(OH) · 2H2OOrth.
19.12.38FairfielditeCa2Mn2+(PO4)2 · 2H2OTric. 1 : P1
19.12.39BeusiteMn2+Mn2+2 (PO4)2Mon.
19.12.40MesseliteCa2Fe2+(PO4)2 · 2H2OTric. 1 : P1
19.12.41Jahnsite-(CaMnFe){Ca}{Mn2+}{Fe2+2}{Fe3+2}(PO4)4(OH)2 · 8H2OMon. 2/m : P2/b
19.12.42Jahnsite-(CaMnMn){Ca}{Mn2+}{Mn2+2}{Fe3+2}(PO4)4(OH)2 · 8H2OMon. 2/m : P2/b
19.12.43Jahnsite-(CaMnMg){Ca}{Mn2+}{(Mg,Fe2+)2}{Fe3+2}(PO4)4(OH)2 · 8H2OMon. 2/m : P2/b
19.12.44KeckiteCaMn2+(Fe3+Mn2+)Fe3+2(PO4)4(OH)3 · 7H2OMon. 2/m : P2/b
19.12.45StanfielditeCa4Mg5(PO4)6Mon.
19.12.46Laubmannite(Fe2+,Mn2+,Ca)3Fe3+6(PO4)4(OH)12
19.12.47ZodaciteCa4Mn2+Fe3+4(PO4)6(OH)4 · 12H2OMon.
19.12.48HagendorfiteNaCaMn2+Fe2+2(PO4)3Mon. 2/m : B2/b
19.12.49Maghagendorfite(□,Na,)(Na,Ca,Fe2+)Mn(Mg,Fe2+,Fe3+)3(PO4)3Mon.
19.12.50VaruliteNaCaMn2+Mn2+2(PO4)3Mon. 2/m : B2/b
19.12.51GriphiteNa4Li2Ca6(Mn2+,Fe2+,Mg)19Al8(PO4)24(F,OH)8Iso. m3 (2/m 3) : Pa3
19.12.52AttakoliteCaMn2+Al4(SiO3OH)(PO4)3(OH)4Mon. 2/m : B2/m
19.12.53Arrojadite-(KFe)(KNa)(Fe2+◻)Ca(Na2◻)Fe2+13Al(PO4)11(PO3OH)(OH)2Mon.
19.12.54Lun'okite(Mn,Ca)(Mg,Fe,Mn)Al(PO4)2OH · 4H2OOrth. mmm (2/m 2/m 2/m) : Pbca
19.12.55EosphoriteMn2+Al(PO4)(OH)2 · H2OOrth. mmm (2/m 2/m 2/m) : Cmca
19.12.56Ernstite(Mn2+,Fe3+)Al(PO4)(OH,O)2 · H2OMon.
19.12.57ChildreniteFe2+Al(PO4)(OH)2 · H2OOrth. mm2 : Ccc2
19.12.58BobfergusoniteNa2Mn5FeAl(PO4)6Mon. 2/m : P2/b
19.12.59QingheiiteNaMn3+Mg(Al,Fe3+)(PO4)3Mon. 2/m : P21/b
19.12.60Whiteite-(CaFeMg){Ca}{(Fe2+,Mn2+)}{Mg2}{Al2}(PO4)4(OH)2 · 8H2OMon. 2/m : P21/b
19.12.61Whiteite-(CaMnMg){Ca}{Mn2+}{Mg2}{Al2}(PO4)4(OH)2 · 8H2OMon. 2/m
19.12.62Whiteite-(MnFeMg){(Mn2+,Ca)}{(Fe2+,Mn2+)}{Mg2}{Al2}(PO4)4(OH)2 · 8H2OMon. 2/m : P21/b
19.12.63Rittmannite{(Mn2+,Ca)}{Mn2+}{(Fe2+,Mn2+,Mg)2}{(Al,Fe3+)2}(PO4)4(OH)2 · 8H2OMon.
19.12.64ZanazziiteCa2Mg5Be4(PO4)6(OH)4 · 6H2OMon. 2/m : B2/b
19.12.65Samuelsonite(Ca,Ba)Ca8Fe2+2Mn2+2Al2(PO4)10(OH)2Mon. 2/m : B2/m

Fluorescence of SarcopsideHide

Not fluorescent in UV

Other InformationHide

Notes:
Alters superficially to vivianite + unidentifeid Fe-Mn phosphates.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for SarcopsideHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Websky (1868) Zeitschrift der Deutsche geologische Gesellschaft, Berlin: 20: 245 (as Sarkopsid).
Holden (1920) American Mineralogist: 5: 99.
Holden (1924) American Mineralogist: 9: 205.
Larsen, E.S. and Berman, H. (1934) The Microscopic Determination of the Nonopaque Minerals, Second edition, USGS Bulletin 848: 193.
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged, 1124 pp.: 858.
American Mineralogist (1969): 54: 969-972.
American Mineralogist (1972): 57: 24-35.

Internet Links for SarcopsideHide

Localities for SarcopsideHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Antarctica
 
  • Eastern Antarctica
    • Transantarctic Mountains
      • Wisconsin Range
        • Graves Nunataks meteorites
Grew, E.S., Yates, M.G., Beane, R.J., Floss, C. and Gerbi, C. (2010) Chopinite-sarcopside solid solution, [(Mg,Fe)3□](PO4)2, in GRA95209, a transitional acapulcoite: Implications for phosphate genesis in meteorites. American Mineralogist: 95: 260-272.
Argentina
 
  • Chubut Province
    • Tehuelches department
      • Nueva Lubecka
Ian Steele et al (1991). Occurrence and crystal structure of Ca-free beusite in the El Sampal IIIA iron meteorite. American Mineralogist, 76, 1985-1989.
Austria
 
  • Upper Austria
    • Rohrbach District
      • Aigen im Mühlkreis
Arthofer, P. (2005): Phosphatlinsen aus den Pegmatiten des Steinbruches Oberhaag, Diendorf bei Aigen-Schlägl, Oberösterreich. Geonachrichten 20, 49-51.
Brazil
 
  • Goiás
Queiroz, H. D. A. (2016) Sistema granítico: pegmatítico Mata Azul: caracterização e gênese. PhD Thesis. do Instituto de Geociências (IG) da Universidade de Brasília (UnB)
  • Minas Gerais
    • Conselheiro Pena
Cassedanne, J.P., Cassedanne, J.O. (1982) Presence de legrandite dans une pegmatite de Minas Gerais, Bresil. The Canadian Mineralogist: 20(1): 87-89.
    • Galiléia
      • Laranjeiras
[MinRec 12:69]
  • Santa Catarina
    • São Francisco do Sul
      • Morro do Rócio
Britvin, S. N., Shilovskikh, V. V., Pagano, R., Vlasenko, N. S., Zaitsev, A. N., Krzhizhanovskaya, M. G., ... & Gurzhiy, V. V. (2019). Allabogdanite, the high-pressure polymorph of (Fe, Ni) 2 p, a stishovite-grade indicator of impact processes in the Fe–Ni–p system. Scientific reports, 9(1), 1047.
Canada
 
  • Northwest Territories
    • Yellowknife Pegmatite field
Hawthorne, F.C., Wise, M.A., Černý, P., Abdu, Y.A., Ball, N.A., Pieczka, A., Włodek, A. (2018): Beusite-(Ca), ideally CaMn2+2(PO4)2, a new graftonite-group mineral from the Yellowknife pegmatite field, Northwest Territories, Canada: Description and crystal structure. Mineralogical Magazine, 82: 1323-1332.
  • Ontario
    • Kenora District
      • Campfire Lake
Cerny, P., Selway, J.B., Ercit, T.S., Breaks, F.W., Anderson, A.J., Anderson, S.D. (1998) Graftonite-beusite in granitic pegmatites of the Superior Province; a study in contrasts. The Canadian Mineralogist: 36(2): 367-376.
China
 
  • Guangxi
    • Hezhou
Lin, S. & Hsu, W.B. (2007) Mineralogical and chemical classification of Zhaoping, Xifu and Hami iron meteorites. Chinese Astronomy and Astrophysics vol 32, issue 3, pp 293-305. (July 2007)
Rubo Zhang (1995): Journal of Mineralogy and Petrology 16(2)
Czech Republic
 
  • Central Bohemian Region
    • Kutná Hora District
Povondra, P., Pivec, E. (eds.) et al.: Přibyslavice peraluminuous granite. Acta universitatis carolinae, Geologica, 1987, no. 3, s . 183 – 283.
  • Liberec Region
    • Liberec District
      • Frýdlant
Seifert, W.; Thomas, R.; Rhede, D.; Förster, H.-J. (2010): Origin of coexisting wustite, MgFe and REE phosphate minerals in graphite-bearing fluorapatite from the Rumburk granite. European Journal of Mineralogy 22, 495-507.
  • Plzeň Region
    • Domažlice District
      • Otov
Čech F., Staněk J., Dávidová Š. (1981): Minerály pegmatitů. - in: Bernard J.H. [ed.]: Mineralogie Československa. Academia, Praha.
  • Vysočina Region
    • Žďár nad Sázavou District
      • Bory
Staněk, J.: Parageneze minerálů pegmatitových žil z Hatí u Dolních Borů na západní Moravě. Acta Mus. Moraviae, Sci. nat., vol. 76, pages 19-49.
Staněk, J.: Asociace minerálů významnějších pegmatitových žil v Hatích u Dolních Borů na západní Moravě. Acta Musei Moraviae, Scientiae naturales, 1997, roč. 82, 3-19.
        • Horní Bory
          • Cyrilov (Cyrillhof)
Škoda, R., Staněk, J., Čopjaková, R.: Minerální asociace fosfátových nodulí z granitického pegmatitu od Cyrilova u Velkého Meziříčí, Moldanubikum; část 1 – primární a exsoluční fáze. Acta Mus. Moraviae, Sci. geol., 2007, 92, 59-74.
Finland
 
  • North Karelia
    • Tohmajärvi
Alviola Reijo 1974. Selostus pegmatiittitutkimuksista Kiteen-Tohmajärven alueella vuosina 1972-1973 11 s 29 liites. Geologian Tutkimuskeskus, arkistoraportti, 14 19/4232/74/1/85.
  • South Ostrobothnia
    • Alajärvi
Ilkka Mikkola collection
France
 
  • Occitanie
    • Ariège
      • Foix
        • Auzat
Inventaire Minéralogique de la France Ariège T.2 éditions BRGM
    • Pyrénées-Orientales
Berbain,C., Riley, T., Favreau, G., (2012): Phosphates des pegmatites du massif des Albères (Pyrénées-Orientales). Le Cahier des Micromonteurs. 117, 121-172
      • Céret
        • Argelès-sur-Mer
Berbain, C., Favreau, G. & Aymar, J. (2005): Mines et minéraux des Pyrénées-Orientales et des Corbières, Association Française de Microminéralogie Ed., 135-137.
Berbain, C., Favreau, G. & Aymar, J. (2005): Mines et minéraux des Pyrénées-Orientales et des Corbières, Association Française de Microminéralogie Ed., 137.
BERBAIN. C, RILEY. T, FAVREAU. G, (2012). Phosphates des pegmatites du massif des Albères. Ed Association française de Microminéralogie,
        • Collioure
BERBAIN. C, RILEY. T, FAVREAU. G, (2012) Phosphates des pegmatites du massif des Albères. Ed Association Française de Microminéralogie
Germany
 
  • Bavaria
    • Upper Palatinate
      • Neustadt an der Waldnaab District
        • Waidhaus
          • Hagendorf
http://www.berthold-weber.de/h_miner.htm
Italy
 
  • Lombardy
    • Lecco Province
      • Colico
VIGNOLA, P., & DIELLA, V. (2007). Phosphates from Piona granitic pegmatites (Central Southern Alps, Italy). Granitic Pegmatites: the State of the Art. Book of Abstr.(T. Martins & R. Vieira, eds.). Universidade do Porto, Departamento de Geologia, Memórias, 8, 102-103.
Vignola P., Fransolet A.-M., Guastoni A., Appiani R. (2011): Le pegmatiti di Piona. Recenti studi sui filoni Malpensata, Luna e Sommafiume. Riv. Mineral. Ital., 35, 1, 30-38.
      • Dorio
Vignola P., Fransolet A.-M., Diella V., Ferrari E.S. (2010): Alteration process of a graftonite + sarcopside + triphylite primary phosphate association from Luna pegmatitic dike, Lecco province, Italy. 20th General Meeting of the International mineralogical Association, 21-27 August 2010, Budapest, Hungary. Acta Mineral. Petrogr., Abstract Series, 6, 610; Vignola P., Diella V., Ferrari E.S., Fransolet A.-M. (2011): Complex mechanisms of alteration in a graftonite + sacropside+ triphylite association from the Luna pegmatite, Piona, Lecco Province, Italy. Can. Mineral., 49, 765-776.
  • Trentino-Alto Adige
    • Trento Province (Trentino)
      • Rabbi
        • Ceresè
Vignola, P., Zucali, M., Rotiroti, N., Marotta, G., Risplendente, A., Pavese, A., ... & Bertoldi, G. (2018). The Chrysoberyl-and Phosphate-Bearing Albite Pegmatite of Malga Garbella, Val Di Rabbi, Trento Province, Italy. The Canadian Mineralogist, 56(4), 411-424.
Japan
 
  • Ibaraki Prefecture
    • Kasumigaura City
      • Chiyoda-machi
Matsubara, S. & Kato, A. (1980) Koubutsugaku Zasshi, 14, 269-286.
Mexico
 
  • Chihuahua
    • Jiménez Municipality
Olsen, E. & Fredriksson, K. (1966) Phosphates in iron and pallasite meteorites: Geochimica et Cosmochimica Acta 30(5): 459-470. (May 1966)
  • Durango
    • Santiago Papasquiaro Municipality
Meteoritics 28:415 (July, 1993)
Namibia
 
  • Erongo Region
    • Karibib
      • Abbabis Farm 70
Förch, M. (1998): Röntgenographische, chemische und optische Untersuchungen an pegmatitischen Fe-Mn-Phosphaten und deren Genese. Universität Stuttgart, Stuttgart, Germany, 135 pp. (in German).
      • Tsaobismund Farm 85
Keller, P. (1991) The occurrence of Li-Fe-Mn phosphate minerals in granitic pegmatites of Namibia. Communications of the Geological Survey of Namibia, 7, 21-35.
Contrib Mineral Petrol (1986) 92:502-517
North Africa
 
  • Sahara Desert
V. V. Sharygin, N. S. Karmanov and N. M. Podgornykh (2016) Na-Fe-Phosphate Globules in Impact Metal-Troilite Associations of Chelyabinsk Meteorite. 79th Annual Meeting of the Meteoritical Society (2016)
Poland
 
  • Lower Silesian Voivodeship
Pieczka A., Łobos K., Sachanbiński M. 2004: The first occurence of elbaite in Poland. Mineralogia Polonica, vol. 35, 3-14
    • Świdnica County
      • Gmina Świdnica
Pieczka A., Golębiowska B., Skowroński A.: Ferrisicklerite and other phosphate minerals from the Lutomia pegmatite (SW Poland, Lower Silesia, Góry Sowie Mts.)
Websky (1868) Zeitschrift der Deutsche geologische Gesellschaft, Berlin: 20: 245; Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 859.
Pieczka, A., Hawthorne, F.C., Gołębiowska, B., Włodek, A., Grochowina, A. (2016): Maneckiite, ideally NaCa2Fe2+2(Fe3+Mg)Mn2(PO4)6(H2O)2, a new phosphate mineral of the wicksite supergroup from the Michałkowa pegmatite, Góry Sowie block, southwestern Poland. Mineralogical Magazine: 80: (in press
Barsch O., Finckh L. 1925: Erläuterungen zu Blatt Lauterbach. Geol. Karte. v. Preussen und benachbarten deutschen Ländern 1:25 000. Lief. 254. Preuss. Geol. Ländesanst. Berlin
Russia
 
  • Chelyabinsk Oblast
Na- V. V. Sharygin, N. S. Karmanov and N. M. Podgornykh (2016) Fe-Phosphate Globules in Impact Metal-Troilite Associations of Chelyabinsk Meteorite. 79th Annual Meeting of the Meteoritical Society (2016)
    • Kopeysk
Victor Victorovich Sharygin (2016) Phosphate inclusions in cohenite from “black blocks” of the 45 mine burned dump, Kopeisk, Chelyabinsk Coal Basin
Rwanda
 
  • Western Province
Fransolet, A.-M., Fontan, F., Keller, P., Antenucci, D. (1998) La Serie johnsomervilleite-fillowite dans les associations de phosphates de pegmatites granitiques de l'Afrique Centrale. The Canadian Mineralogist: 36(2): 355–366.
Spain
 
  • Castile and Leon
    • Salamanca
Roda, E., Fontán, F., Pesquera, A., & Keller, P. (2001). Phosphate mineral associations of the Aldehuela de la Bóveda, Li-Sn-Nb+-Tb bearing pegmatite, Salamanca, Spain: . In Mineral Deposits at the Beginning of the 21 st Century. Proceedings of the Joint sixth Biennial SGA-SEG Meeting (pp. 477-480).
      • Garcirrey
American Mineralogist 89:110-125 (2004); Encarnación Roda-Robles, Alfonso Pesquera (2007) Locality no. 4: The Phosphates-Rich Cañada Pegmatite (Aldehuela de La Bóveda, Salamanca, Spain) in ALEXANDRE LIMA & ENCARNACIÓN RODA ROBLES ed (2007) GRANITIC PEGMATITES: THE STATE OF THE ART - FIELD TRIP GUIDEBOOK. MEMÓRIAS N. º 9, UNIV. DO PORTO, FACULDADE DE CIÊNCIAS, DEPARTAMENTO DE GEOLOGIA pp 67-72.
Encarnación Roda-Robles, Alfonso Pesquera (2007) Locality no. 3: Lepidolite-spodumene-rich and cassiterite-rich pegmatites from the Feli open-pit, (La Fregeneda, Salamanca, Spain) in ALEXANDRE LIMA & ENCARNACIÓN RODA ROBLES ed (2007) GRANITIC PEGMATITES: THE STATE OF THE ART - FIELD TRIP GUIDEBOOK. MEMÓRIAS N. º 9, UNIV. DO PORTO, FACULDADE DE CIÊNCIAS, DEPARTAMENTO DE GEOLOGIA pp 55-64; Roda-Robles, E., Vieira, R., Pesquera, A., & Lima, A. (2010). Chemical variations and significance of phosphates from the Fregeneda-Almendra pegmatite field, Central Iberian Zone (Spain and Portugal). Mineralogy and Petrology, 100(1-2), 23-34.
  • Catalonia
    • Girona (Gerona)
      • Alt Empordà
        • Cadaqués
Bareche, E. (2005) "Els minerals de Catalunya. Segle XX" Ed. Museu Mollfulleda de Mineralogia - Grup Mineralògic Català, 269 p.
Sweden
 
  • Jämtland County
    • Bräcke
Smeds, S-A., Uher, P., Cerny, P., Wise, M.A., Gustafsson, L. & Penner, P. (1998): Graftonite-beusite in Sweden: primary phases, products of exsolution, and distribution in zoned populations of granitic pegmatites. Canadian Mineralogist. 36, 377-394.
  • Stockholm County
    • Haninge
Smeds, S-A., Uher, P., Cerny, P., Wise, M.A., Gustafsson, L. & Penner, P. (1998): Graftonite-beusite in Sweden: primary phases, products of exsolution, and distribution in zoned populations of granitic pegmatites. Canadian Mineralogist. 36, 377-394.
      • Utö
Smeds, S-A., Uher, P., Cerny, P., Wise, M.A., Gustafsson, L. & Penner, P. (1998): Graftonite-beusite in Sweden: primary phases, products of exsolution, and distribution in zoned populations of granitic pegmatites. Canadian Mineralogist. 36, 377-394.
    • Nynäshamn
      • Norrö
Gustafsson, Lars & Otter, Bertil (1991): Mineralförekomster i Stockholmstrakten.Del 2. STEIN 18(4),4-12
Smeds, S-A., Uher, P., Cerny, P., Wise, M.A., Gustafsson, L. & Penner, P. (1998): Graftonite-beusite in Sweden: primary phases, products of exsolution, and distribution in zoned populations of granitic pegmatites. Canadian Mineralogist. 36, 377-394.
  • Västernorrland County
    • Örnsköldsvik
Smeds, S-A., Uher, P., Cerny, P., Wise, M.A., Gustafsson, L. & Penner, P. (1998): Graftonite-beusite in Sweden: primary phases, products of exsolution, and distribution in zoned populations of granitic pegmatites. Canadian Mineralogist. 36, 377-394.
    • Sollefteå
Smeds, S-A., Uher, P., Cerny, P., Wise, M.A., Gustafsson, L. & Penner, P. (1998): Graftonite-beusite in Sweden: primary phases, products of exsolution, and distribution in zoned populations of granitic pegmatites. Canadian Mineralogist. 36, 377-394.
Ukraine
 
  • Dnepropetrovsk Oblast
Britvin, S.N.; Krivovichev, S.V.; Obolonskaya, E.V.; Vlasenko, N.S.; Bocharov, V.N.; Bryukhanova, V.V. (2020) Xenophyllite, Na4Fe7(PO4)6, an Exotic Meteoritic Phosphate: New Mineral Description, Na-ions Mobility and Electrochemical Implications. Minerals 10, 300.
USA
 
  • New Hampshire
    • Cheshire Co.
      • Alstead
No reference listed
Peacor and Garske (1964): Sarcopside From Deering and East Alstead, New Hampshire (American Mineralogist: 49:1149-1150); Januzzi, R.E. and Seaman, David M. (1976) Mineral Localities Of Connecticut and Southern New York State and Pegmatite Minerals of the World. ; American Mineralogist 50:1698–1707
    • Grafton Co.
      • Grafton
Mineralogical Record (1973) 4:103-130
      • Groton
No reference listed
    • Hillsborough Co.
      • Deering
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 859.; Peacor and Garske (1964): Sarcopside From Deering and East Alstead, New Hampshire (American Mineralogist: 49:1149-1150); Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index; Mineralogical Record (1973) 4:103-130
    • Sullivan Co.
      • Newport
Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
  • New Mexico
    • Cibola Co.
      • Zuni Mountains
        • Zuni Mountains Mining District
Olsen, E., Steele, I. (1993) New Alkali Phosphates and Their Associations in the IIIAB Iron Meteorites. Meteoritics: 28(3): 415.
  • North Carolina
    • Madison Co.
      • Walnut Mountains
Buchwald, Vagn F.,(1975) Handbook of Iron Meteorites; Bild, R. W. (1974). New occurrences of phosphates in iron meteorites. Contributions to Mineralogy and Petrology, 45(2), 91-98.
  • South Dakota
    • Custer Co.
      • Custer Mining District
        • Custer
Rocks & Min.:60:117.; Am Min (1969), 54:969-972
[MinRec 4:111, 4:131-136]
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2020, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: August 10, 2020 09:47:37 Page generated: June 20, 2020 23:41:18
Go to top of page