Help mindat.org|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Sphalerite

This page kindly sponsored by Todd Hall
Formula:
ZnS
System:
Isometric
Colour:
Yellow, light to dark ...
Lustre:
Adamantine, Resinous
Hardness:
3½ - 4
Name:
Named in 1847 by Ernst Friedrich Glocker from the Greek σφαλεροζ "sphaleros" = treacherous, in allusion to the ease with which dark varieties were mistaken for galena, but yielded no lead. Originally called blende in 1546 by Georgius Agricola (Georg Bauer). Known by a variety of chemical-based names subsequent to Agricola and before Glocker including "zincum".
Dimorph of:
Sphalerite Group.

Sphalerite, also known as blende or zinc blende, is the major ore of zinc. When pure (with little or no iron) it forms clear crystals with colours ranging from pale yellow (known as Cleiophane) to orange and red shades (known as Ruby Blende), but as iron content increases it forms dark, opaque metallic crystals (known as Marmatite).
Very rare green crystals owe their colour to trace amounts of Co (Henn & Hofmann, 1985; Rager et al., 1996).

Sphalerite may also contain considerable Mn, grading into alabandite. Samples containing up to 0.36 apfu (atoms per formula unit) Mn (21.4 wt.% MnO) have been described by Hurai & Huraiová (2011).

See "Best Minerals" article on the Schalenblende variety, by Harjo Neutkens: http://www.mindat.org/mesg-85-134773.html

According to Haussühl and Müller (1963), there are numerous polytypes; the ones identified by them are 3R (=3C); 2H, 4H, 6H; and 9R, 12R, 15R and 21R.

Visit gemdat.org for gemological information about Sphalerite.


Classification of Sphalerite

Approved, 'Grandfathered' (first described prior to 1959)
2.CB.05a

2 : SULFIDES and SULFOSALTS (sulfides, selenides, tellurides; arsenides, antimonides, bismuthides; sulfarsenites, sulfantimonites, sulfbismuthites, etc.)
C : Metal Sulfides, M: S = 1: 1 (and similar)
B : With Zn, Fe, Cu, Ag, etc.
2.8.2.1

2 : SULFIDES
8 : AmXp, with m:p = 1:1
3.4.4

3 : Sulphides, Selenides, Tellurides, Arsenides and Bismuthides (except the arsenides, antimonides and bismuthides of Cu, Ag and Au, which are included in Section 1)
4 : Sulphides etc. of Group II metals other than Hg (Mg, Ca, Zn, Cd)

Physical Properties of Sphalerite

Adamantine, Resinous
Diaphaneity (Transparency):
Transparent, Translucent
Colour:
Yellow, light to dark brown, black, red-brown, colourless, light blue. green
Streak:
Pale yellow to brown.
Hardness (Mohs):
3½ - 4
Hardness (Vickers):
VHN100=208 - 224 kg/mm2
Tenacity:
Brittle
Cleavage:
Perfect
Perfect {011}
Fracture:
Conchoidal
Density:
3.9 - 4.1 g/cm3 (Measured)    4.096 g/cm3 (Calculated)

Optical Data of Sphalerite

Type:
Isotropic
RI values:
nα = 2.369
Birefringence:
May show strain induced birefringence
Max Birefringence:
δ = 2.369 - Isotropic minerals have no birefringence
Surface Relief:
Moderate

Chemical Properties of Sphalerite

Formula:
ZnS
Elements listed in formula:
Common Impurities:
Mn,Cd,Hg,In,Tl,Ga,Ge,Sb,Sn,Pb,Ag

Crystallography of Sphalerite

Crystal System:
Isometric
Class (H-M):
4 3m - Hextetrahedral
Space Group:
F4 3m
Cell Parameters:
a = 5.406 Å
Unit Cell Volume:
V 157.99 ų (Calculated from Unit Cell)
Z:
4
Twinning:
{111}

Crystallographic forms of Sphalerite

Crystal Atlas:
Image Loading
Click on an icon to view
Sphalerite no.1 - Goldschmidt (1913-1926)
Sphalerite no.3 - Goldschmidt (1913-1926)
Sphalerite no.9 - Goldschmidt (1913-1926)
Sphalerite no.13 - Goldschmidt (1913-1926)
Sphalerite no.33 - Goldschmidt (1913-1926)
Sphalerite no.46 - Goldschmidt (1913-1926)
Sphalerite no.53 - Goldschmidt (1913-1926)
Sphalerite no.162 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by www.smorf.nl.

Toggle
Edge Lines | Miller Indicies | Axes

Transparency
Opaque | Translucent | Transparent

View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation
X-Ray Powder Diffraction:
Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
X-Ray Powder Diffraction Data:
d-spacingIntensity
3.123 (100)
2.705 (10)
1.912 (51)
1.561 (30)
1.351 (6)
1.240 (9)
1.1034 (9)
Comments:
Similar to that of cerianite-(Ce).

Relationship of Sphalerite to other Species

Other Members of Group:
2.CB.AgmantiniteAg2MnSnS4
2.CB.05aColoradoiteHgTe
2.CB.05aHawleyiteCdS
2.CB.05aMetacinnabarHgS
2.CB.05cPolhemusite(Zn,Hg)S
2.CB.05bSakuraiite(Cu,Zn,Fe)3(In,Sn)S4
2.CB.05aStilleiteZnSe
2.CB.05aTiemanniteHgSe
2.CB.05UM1998-15-S:CuFeZnCu2Fe3Zn5S10
2.CB.05aRudashevskyite(Fe,Zn)S
2.CB.10aChalcopyriteCu1+Fe3+S2
2.CB.10aEskeborniteCuFeSe2
2.CB.10aGalliteCuGaS2
2.CB.10bHaycockiteCu4Fe5S8
2.CB.10aLenaiteAgFeS2
2.CB.10bMooihoekiteCu9Fe9S16
2.CB.10bPutoraniteCu1.1Fe1.2S2
2.CB.10aRoquesiteCuInS2
2.CB.10bTalnakhiteCu9Fe8S16
2.CB.10aLaforêtiteAgInS2
2.CB.15aČernýiteCu2CdSnS4
2.CB.15aFerrokësteriteCu2(Fe,Zn)SnS4
2.CB.15aHocartiteAg2FeSnS4
2.CB.15aIdaiteCu3FeS4
2.CB.15aKësteriteCu2ZnSnS4
2.CB.15aKuramiteCu3SnS4
2.CB.15bMohiteCu2SnS3
2.CB.15aPirquitasiteAg2ZnSnS4
2.CB.15aStanniteCu2FeSnS4
2.CB.15cStannoiditeCu8(Fe,Zn)3Sn2S12
2.CB.15aVelikiteCu2HgSnS4
2.CB.15cUM2006-11-S:CuFeGeZnCu8(Fe,Zn)3Ge2S12 (?)
2.CB.20ChatkaliteCu6FeSn2S8
2.CB.20MawsoniteCu6Fe2SnS8
2.CB.30ColusiteCu12VAs3S16
2.CB.30GermaniteCu13Fe2Ge2S16
2.CB.30GermanocolusiteCu13VGe3S16
2.CB.30NekrasoviteCu13VSn3S16
2.CB.30StibiocolusiteCu13V(Sb,Sn,As)3S16
2.CB.30OvamboiteCu10Fe3WGe3S16
2.CB.30MaikainiteCu10Fe3MoGe3S16
2.CB.35aHemusiteCu41+Cu22+SnMoS8
2.CB.35aKiddcreekiteCu6WSnS8
2.CB.35aPolkovicite(Fe,Pb)3(Ge,Fe)1-xS4
2.CB.35aRenierite(Cu1+,Zn)11Fe4(Ge4+,As5+)2S16
2.CB.35aVincienniteCu10Fe4SnAsS16
2.CB.35aMorozeviczitePb3Ge1-xS4
2.CB.35bCatamarcaiteCu6GeWS8
2.CB.40LautiteCuAsS
2.CB.45CadmoseliteCdSe
2.CB.45GreenockiteCdS
2.CB.45WurtziteZnS
2.CB.45RambergiteMnS
2.CB.45Buseckite(Fe,Zn,Mn)S
2.CB.55aCubaniteCuFe2S3
2.CB.55bIsocubaniteCuFe2S3
2.CB.60PicotpauliteTlFe2S3
2.CB.60RaguiniteTlFeS2
2.CB.65ArgentopyriteAgFe2S3
2.CB.65SternbergiteAgFe2S3
2.CB.70SulvaniteCu3VS4
2.CB.75VulcaniteCuTe
2.CB.80EmpressiteAgTe
2.CB.85MuthmanniteAuAgTe2

Other Names for Sphalerite

Name in Other Languages:
Bosnian (Latin Script):Sfalerit
Catalan:Esfalerita
Czech:Sfalerit
Finnish:Sinkkivälke
Hungarian:Szfalerit
Italian:Sfalerite
Japanese:閃亜鉛鉱
Latvian:Sfalerīts
Lithuanian:Sfaleritas
Low Saxon:Sphalerit
Norwegian (Bokmål):Sinkblende
Norwegian (Nynorsk):Sinkblende
Polish:Sfaleryt
Portuguese:Blenda
Romanian:Blendă
Simplified Chinese:闪锌矿
Slovak:Sfalerit
Swedish:Zinkblände
Traditional Chinese:閃鋅礦

Other Information

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for Sphalerite

Reference List:
Agricola (1546) 465.

Wallerius (1747) 248.

Bergmann (1782).

Glocker (1847) 17.

Headden, W.P. (1906) Mineralogic notes, III, phosphorescent zinc blendes: Colorado Sci. Soc. Proc.: 8: 167-182.

Brown, J.S. (1936) Supergene sphalerite, galena, and willemite at Balmat, NY. Economic Geology: 31: 331-354.

Palache, C., Berman, H., Frondel, C. (1944) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Volume I: Elements, Sulfides, Sulfosalts, Oxides. John Wiley and Sons, Inc., New York. 7th edition, revised and enlarged, 834pp.: 210-215.

Smith. F.G. (1955) Structure of zinc-sulfide minerals. American Mineralogist: 40: 658-675.

Rigault G. (1956) Gallio e Indio nella blenda. Periodico di Mineralogia: 43-78.

Haussühl, S., Müller, G. (1963): Neue ZnS-Polytypen (9 R, 12 R und 21R) in mesozoischen Sedimenten NW-Deutschlands. Contributions to Mineralogy and Petrology: 9: 28-39 [in German, with English abstract]

Fleet, M.E. (1975) Thermodynamic properties of (Zn,Fe)S solid solutions at 850°C. American Mineralogist: 60: 466-470.

Fleet, M.E. (1977) Structural transformations in natural ZnS. American Mineralogist: 62: 540-546.

Fleet, M.E. (1977) The birefringence-structural state relation in natural zinc sulfides and its application to the schalenblende from Pribram. The Canadian Mineralogist: 15: 303-308.

Schaefer, S.C. (1978) Electrochemical determination of the Gibbs energy of formation of sphalerite (ZnS). U.S. Bureau of Mines, Report of Investigation 8301, 16 pp.

Togari, K. (1978) Colour of Sphalerite. Jour. Fac. Sci., Hokkaido Univ., Ser. IV, vol. 18, no. 3, Mar. 1978, pp. 283-290.

(1980) Acta Crystallographica: A36: 482.

Augustithis, S.S., Vgenopoulos, A. (1982) On the hawleyite-sphalerite-wurtzite-galena paragenesis from Ragada, Komotini, (Rhodope) North Greece. Special Publication of the Society for Geology Applied to Mineral Deposits: 2: 413-417.

Schaefer, S.C., Gokeen, N.A. (1982) Electrochemical determination of the thermodynamic properties of sphalerite, ZnS (beta). High Temperature Science: 15: 225-237.

Henn, U. & Hofmann, C. (1985) Green sphalerite from Zaire. Journal of Gemmology 19, 416-418.

Rager, H., Amthauer, G., Bernroider, M., Schürmann, K. (1996) Color, crystal chemistry, and mineral association of a green sphalerite from Steinperf, Dill syncline, FRG. European Journal of Mineralogy: 8: 1191-1198.

Bawden, T.M., et al. (2003) Extreme 34S depletions in ZnS at the Mike gold deposit, Carlin Trend, Nevada: Evidence for bacteriogenic supergene sphalerite. Geology: 31: 913-916.

Lusk, J., Calder, B.O.E. (2004) The composition of sphalerite and associated sulfides in reactions of the Cu–Fe–Zn–S, Fe–Zn–S and Cu–Fe–S systems at 1 bar and temperatures between 250 and 535 °C. Chemical Geology: 203: 319-345.

Deore, S., Navrotsky, A. (2006) Oxide melt solution calorimetry of sulfides: Enthalpy of formation of sphalerite, galena, greenockite, and hawleyite. American Mineralogist: 91: 400-403.

Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B., Melcher, F. (2009) Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica et Cosmochimica Acta: 73: 4761-4791.

Hurai, V., Huraiová, M. (2011) Origin of ferroan alabandite and manganoan sphalerite from the Tisovec skarn, Slovakia. Neues Jahrbuch für Mineralogie - Abhandlungen: 188: 119-134.

Internet Links for Sphalerite

mindat.org URL:
https://www.mindat.org/min-3727.html
Please feel free to link to this page.
Specimens:
The following Sphalerite specimens are currently listed for sale on minfind.com.

Significant localities for Sphalerite

Showing 38 significant localities out of 21,464 recorded on mindat.org.

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.
(TL) indicates type locality for a valid mineral species. (FRL) indicates first recorded locality for everything else. ? indicates mineral may be doubtful at this locality. All other localities listed without reference should be considered as uncertain and unproven until references can be found.
Argentina
 
  • Tucumán
    • Burruyacú Department
      • Sierra de La Ramada
Raúl Jorge Tauber Larry´s collection.
Austria
 
  • Carinthia
    • Gailtaler Alpen & Karnische Alpen
      • Bleiberg District
        • Kreuth
G. Niedermayr, I. Praetzel: Mineralien Kärntens, 1995
Canada
 
  • Ontario
    • Wellington Co.
      • Guelph Township
Reiner Mielke Ray Lehoux
France
 
  • Auvergne-Rhône-Alpes
    • Isère
      • La Mure
  • Grand Est
    • Haut-Rhin
      • Cernay
        • Steinbach
          • Silberthal
J.-L. Hohl: "Minéraux et Mines du Massif Vosgien", Editions du Rhin (Mulhouse), 1994 Mines, mineurs et minéralogie du Silberthal, tomes 1 et 2
  • Occitanie
    • Gard
      • Saint-Laurent-le-Minier
        • Les Malines District
J F Carpenter specimen
Germany
 
  • North Rhine-Westphalia
    • Bergisches Land
      • Waldbröl
        • Wirtenbach
Lapis 2005(30), 9
Ireland
 
  • Co. Longford
    • Ballymahon
      • Keel
Barry Flannery (Personal Collection); Singer, D.A., Berger, V.I., and Moring, B.C., (2009), Sediment-hosted zinc-lead deposits of the world; database and grade and tonnage models: U.S. Geological Survey Open-File Report 2009-1252
  • Co. Tipperary
    • Silvermines District
Barry Flannery Collection; Mineralogical Magazine 1959 32 : 128-139.
Barry Flannery Collection; Econ Geol (1987) 82:371-394
Moreton, S. (1999) Mineralogical Record, 30, 99-106.
Italy
 
  • Tuscany
    • Lucca Province
      • Apuan Alps
        • Stazzema
European Journal of Mineralogy, 12 (2)
Dini A., 1995. Metacinabro zincifero (leviglianite) e sfalerite mercurifera della miniera di Levigliani (Alpi Apuane, Toscana). Atti Soc. Tosc. Sci. Nat., Mem., 102: 67-72.
          • Ponte Stazzemese
Orlandi P., Dini A., 2004. Die Mineralien der Buca della Vena-Mine, Apuaner Berge, Toskana (Italien). Lapis, 1: 11-24
        • Vergemoli
          • Fornovolasco
Cioffi M., 1991. La mineralizzazione a magnetite-pirite di Fornovolasco (Alpi Apuane). Tesi di laurea inedita, Università di Firenze. ; Biagioni, C., Orlandi, P., & Bonini, M. (2008). Fornovolasco. Storia e minerali delle miniere di ferro presso Vergemoli (Alpi Apuane). Rivista Mineralogica Italiana, 4/2008, 230-252
      • Gallicano
Biagioni, C., & Barsanti, M. (2008). Primo ritrovamento di millerite nella Valle del Serchio (Lucca). MICRO (notizie mineralogiche), 2008, 111-116.
Kazakhstan
 
  • Karagandy Province (Qaragandy Oblysy; Karaganda Oblast')
    • Dzhezkazgan (Zhezqazghan)
RWMW Specimen; Box, S.E., Syusyura, Boris, Hayes, T.S., Taylor, C.D., Zientek, M.L., Hitzman, M.W., Seltmann, Reimer, Chechetkin, Vladimir, Dolgopolova, Alla, Cossette, P.M., and Wallis, J.C., 2012, Sandstone copper assessment of the Chu-Sarysu Basin, Central Kazakhstan: U.S. Geological Survey Scientific Investigations Report 2010–5090–E, 63 p. ; Evseev, A. A. (1995) Kazaknstan and Middle Asia. A brief Mineralogical Guide. World of Stone 8:24-30
Kosovo
 
  • District of Kosovska Mitrovica
    • Kosovska Mitrovica
      • Trepča valley
        • Trepča complex
Féraud J. (1979) - La mine " Stari-Trg " (Trepca, Yougoslavie) et ses richesses minéralogiques. Avec la collaboration de Mari D. et G. (1979) Minéraux et Fossiles, n° 59-60, p. 19-28; Joana Koà Odziejczyk ,Jaroslav Pršek , Halilqela ( 2012) MIneralogical Diversity In Orebodies Within Xth Horizon.At Stan Terg Mine, Kosovo. Buletini i Shkencave Gjeologjike pp84-
Norway
 
  • Buskerud
    • Kongsberg
Neumann, H. (1944): Silver deposits at Kongsberg. Norges Geologiske Undersøkelse 162. p. 57
  • Rogaland
    • Karmøy
Torkelsen, Arne (1993): Om gruvene på Karmøy. STEIN 20 (1), 47-52
Peru
 
  • Ancash Department
    • Bolognesi Province
      • Huallanca District
        • Huallanca
Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.; Econ Geol (1985) 80:416-478
Mineralogical Record 28, no. 4 (1997); Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.; Hyrsl & Rosales (2003) Mineralogical Record, 34, 241-254.
    • Pallasca Province
      • Pampas District
Mineralogical Record 28, No. 4 (1997); Hyršl, J. (2011): Pasto Bueno und Mundo Nuevo in Peru- die weltbesten Hübnerite und mehr. Mineralien Welt 22(1), 64-79
    • Recuay Province
      • Ticapampa District
Mi.Rec. 28, no.4 (1997)
  • La Libertad Department
    • Santiago de Chuco Province
      • Quiruvilca District
Min.Rec. 28, #4 (1997)
Romania
 
  • Maramureș Co.
    • Baia Mare (Nagybánya)
      • Chiuzbaia (Kisbánya)
Palache et al (1944), Dana's System of Mineralogy, Seventh ed., Vol. 1: 450.; Cook, N. J. & Damian, G. S. (1997): New data on "plumosite" and other sulfosalt minerals from the Herja hydrothermal vein deposit, Baia Mare district, Rumania. Geologica Carpathica 48, 387-399.; Damian, G. (2012). The genesis of the base metal ore deposit from Herja. Studia UBB, Geologia, 48(1), 85-100.
Russia
 
  • Far-Eastern Region
    • Primorskiy Kray
      • Kavalerovo Mining District
        • Dal'negorsk (Dalnegorsk; Tetyukhe; Tjetjuche; Tetjuche)
[MinRec 32:9]; Rogulina, L.I., and Sveshnikova, O.L. (2008): Geology of Ore Deposits 50(1), 60-74.; Dobovol'skaya, M. G., Baskina, V. A., Balashova, S. P., Kenisarin, A. M., Arakelyants, M. M., Klimachev, L. A., & Muravitskaya, G. N. (1990). Order of Formation of the Ores and Mafic Dikes of the Nikolayevsk Deposit (Southern Primor'ye). International Geology Review, 32(4), 391-403.
South Africa
 
  • Gauteng Province
    • Witwatersrand field
      • West Rand District (West Rand)
        • Far West Rand (West Wits Line)
          • Western Sector
            • Carletonville
[MinRec 32:177]
Spain
 
  • Catalonia
    • Barcelona
      • Vallès Occidental-Baix Llobregat
        • Sant Cugat del Vallès-El Papiol
No reference listed
Switzerland
 
  • Wallis (Valais)
    • Binn Valley
      • Fäld (Imfeld; Im Feld; Feld)
No reference listed
UK
 
  • England
    • Cumbria
      • Alston Moor District
        • Nent Valley
No reference listed
        • Nenthead
Dunham K C, Geology of the Northern Pennine Orefield , Vol 1, Tyne to Stainmore. HMSO
    • West Dorset
      • Eype
David Baldwin
USA
 
  • Connecticut
    • Litchfield Co.
      • Thomaston
        • Thomaston Dam
Yedlin, Neal. (1973a), Yedlin on Micromounting. Mineralogical Record: 4(2).; Yedlin, Neal. (1973b), Yedlin on Micromounting. Mineralogical Record: 4(6).; Fluorite: The Collector's Choice. Extra Lapis English No. 9; Segeler, Curt and Molon, Joseph. (1985), The Thomaston Dam Site, Thomaston, Connecticut; Rocks & Minerals: 60(3): 119-124.; Henderson, William A. (1995), Microminerals of Connecticut; Rocks & Minerals: 70: 420-425.; Henderson, William A. (1979), Microminerals. Thomaston Dam. Mineralogical Record: 10: 239-241.; Vogt, Wolfgang. (1991), Rediscovering Thomaston Dam. Lapidary Journal: April.
    • New Haven Co.
      • Southbury
J. Zolan; Weber, Marcelle H. and Earle C. Sullivan. (1995): Connecticut Mineral Locality Index. Rocks & Minerals (Connecticut Issue): 70(6): 407; Garabedian, James A. (1998), Secondary Mineralization of Half-Moon Vesicles in the Mesozoic Basalt of the O&G#2 Quarry, Woodbury, Connecticut. University of Connecticut Master of Science Thesis.
  • Maryland
    • Carroll Co.
      • Medford
J. Wingard, personal observation 5/1/04
  • Missouri
    • Lewis Co.
R&M 73:2 pp 98-117
  • New York
    • Monroe Co.
      • Penfield
Jensen, David E. (1942), Minerals of the Lockport dolomite in the vicinity of Rochester, N.Y. Rocks & Minerals: 17(6): 199-203.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2017, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: May 26, 2017 21:39:45 Page generated: May 21, 2017 10:20:47
Go to top of page