Help|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery


This page is currently not sponsored. Click here to sponsor this page.
K3Al5(PO3OH)6(PO4)2 · 18H2O
Yellow, gray, white; ...
Discovered by H. Richmond and described by James Hector in 1865. The mineral is named after its discovery locality, Sugar Loaves, Taranaki peninsula, New Zealand.
A secondary mineral formed from the interaction of phosphatic solutions derived from bird or bat guano on clays or aluminous rocks under perenially damp conditions in caves and along sea coasts.

Classification of Taranakite

Approved, 'Grandfathered' (first described prior to 1959)

C : Phosphates without additional anions, with H2O
H : With large and medium-sized cations, RO4:H2O < 1:1

3 : Miscellaneous

19 : Phosphates
8 : Phosphates of Al and other metals

Physical Properties of Taranakite

Diaphaneity (Transparency):
Yellow, gray, white; colourless in transmitted light
2.12 - 2.15 g/cm3 (Measured)    2.12 g/cm3 (Calculated)

Optical Data of Taranakite

Uniaxial (-)
RI values:
nω = 1.506 - 1.510 nε = 1.500 - 1.503
Max Birefringence:
δ = 0.006 - 0.007
Image shows birefringence interference colour range (at 30µm thickness) and does not take into account mineral colouration.
Surface Relief:

Chemical Properties of Taranakite

IMA Formula:
K3Al5(PO3OH)6(PO4)2 · 18H2O
Elements listed in formula:

Crystallography of Taranakite

Crystal System:
Class (H-M):
3m (3 2/m) - Hexagonal Scalenohedral
Space Group:
Cell Parameters:
a = 8.7025Å, c = 95.05Å
a:c = 1 : 10.922
Unit Cell Volume:
V 6,234.06 ų (Calculated from Unit Cell)
Crystals pseudohexagonal, platy; minute, lath-like and commonly in compact nodular aggregates, pulverulent, flour-like to claylike; massive.
Space group determined from synthetic material.

Type Occurrence of Taranakite

Associated Minerals at Type Locality:

Relationship of Taranakite to other Species

8.CH.05WalentaiteH2Ca2Fe63+(AsO4)5(PO4)3 · 14H2O
8.CH.10AnapaiteCa2Fe2+(PO4)2 · 4H2O
8.CH.15PicropharmacoliteCa4Mg(AsO3OH)2(AsO4)2 · 11H2O
8.CH.20Dittmarite(NH4)MgPO4 · H2O
8.CH.20Niahite(NH4)Mn2+PO4 · H2O
8.CH.25FrancoanelliteK3Al5(PO3OH)6(PO4)2 · 12H2O
8.CH.30Schertelite(NH4)2Mg(PO3OH)2 · 4H2O
8.CH.35Hannayite(NH4)2Mg3(PO3OH)4 · 8H2O
8.CH.40Struvite(NH4)MgPO4 · 6H2O
8.CH.40Struvite-(K)KMgPO4 · 6H2O
8.CH.40HazeniteKNaMg2(PO4)2 · 14H2O
8.CH.45RimkorolgiteBaMg5(PO4)4 · 8H2O
8.CH.50BakhchisaraitseviteNa2Mg5(PO4)4 · 7H2O
8.CH.55FahleiteCaZn5Fe23+(AsO4)6 · 14H2O
8.CH.55SmolyaninoviteCo3Fe23+(AsO4)4 · 11H2O
8.CH.60Barahonaite-(Al)(Ca,Cu,Na,Fe3+,Al)12Al2(AsO4)8(OH,Cl)x · nH2O
8.CH.60Barahonaite-(Fe)(Ca,Cu,Na,Fe3+,Al)12Fe23+(AsO4)8(OH,Cl)x · nH2O
19.8.3WarditeNaAl3(PO4)2(OH)4 · 2H2O
19.8.6TinsleyiteKAl2(PO4)2(OH) · 2H2O
19.8.8FrancoanelliteK3Al5(PO3OH)6(PO4)2 · 12H2O
19.8.9GordoniteMgAl2(PO4)2(OH)2 · 8H2O
19.8.10AldermaniteMg5Al12(PO4)8(OH)22 · 32H2O
19.8.11OveriteCaMgAl(PO4)2(OH) · 4H2O
19.8.12MontgomeryiteCa4MgAl4(PO4)6(OH)4 · 12H2O
19.8.14FoggiteCaAlPO4(OH)2 · H2O
19.8.15GatumbaiteCaAl2(PO4)2(OH)2 · H2O
19.8.17MatulaiteFe3+Al7(PO4)4(PO3OH)2(OH)8 · 16H2O
19.8.20MillisiteNaCaAl6(PO4)4(OH)9 · 3H2O
19.8.21EnglishiteK3Na2Ca10Al15(OH)7(PO4)21 · 26H2O
19.8.22KleemaniteZnAl2(PO4)2(OH)2 · 3H2O
19.8.23MantienneiteKMg2Al2Ti(PO4)4(OH)3 · 15H2O
19.8.24PaulkerriteKMg2TiFe23+(PO4)4(OH)3 · 15H2O

Other Names for Taranakite

Name in Other Languages:

Other Information

Other Information:
Readily soluble in acids.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for Taranakite

Reference List:
Hector, J., Skey, W. (1865) Taranakite, a new phosphatic mineral, Taranaki, presented by H. Richmond, Esq. in Appendix A. Supplementary Report on Class 1. Reports of the Jurors, New Zealand Expedition, pg. 423.

Cox, S.H. (1882) Notes on the Mineralogy of New Zealand. Transactions of the New Zealand Institute: 15: 385.

Gautier (1893) Comptes rendu de l’Académie des sciences de Paris: 116: 928, 102, 1171, 1271 (as Minervite).

Gautier (1894) V-Minervite; nouveau phosphate d'almine hydrat. Annales des mines: 5: 23 (as Minervite).

Carnot, M.-A. (1895) Sur un gisement de phosphates d'alumine et de potasse trouve en Algerie et sur la genese de ces mineraux. Annales des mines: 8: 319.

Carnot, A. (1895) Minervite, Minerva grotto, Fauzan, Dep. Herault, France. Ann. Des Mines, ser. 9: 8: 319.

Casorio, E. (1904) Acc. Georgofili, Att.: 1: July 3, 1904 (as Palmerite).

Lacroix, A. (1910) Minervite, basalt cave, St. Paul, Reunion, Indian Ocean. Bulletin de la Société française de Minéralogie: 33: 36.

Barth and Berman (1912) Chemie der Erde, Jena: 5: 114.

Lacroix (1912) Bulletin de la Société française de Minéralogie: 35: 114.

Bannister, F.A., Hutchinson, G.E. (1947) The identity of minervite and palmerite with taranakite. Mineralogical Magazine: 28: 31.

Palache, C., Berman, H., Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged, 1124 pp.: 999-1000.

Murray, J.W., Dietrich, R.V. (1965) Brushite and taranakite from Pig Hole Cave, Giles County, Virginia. American Mineralogist: 41: 616-626.

Smith, J.P., Brown, W.E. (1959) X-ray studies of aluminum and iron phosphates containing potassium or ammonium. American Mineralogist: 44: 138-142.

Balenzano, F., Dell’Anna, L., Di Pierro, M. (1974) Ricerche mineralogische su alcuni fosfati rinvenuti nelle grotte di Castellana (Bari): strengite alluminifera, vivianite, taranakite, brushite e idrossiapatite. Rend. Soc. Ital. Mineral. Petrol.: 30: 543–573. (in Italian)

Sakae, T., Sudo, T. (1975) Taranakite from the Onino-Iwaya Limestone Cave at Hiroshima Prefecture, Japan: a new occurrence. American Mineralogist: 60: 331–334.

Fiore, S., Laviano, R. (1991) Brushite, hydroxylapatite, and taranakite from Apulian caves (southern Italy): new mineralogical data. American Mineralogist: 76: 1722–1727.

Dick, S., Gossner, U., Weiss, A., Robl, C., Grossman, G., Ohms, G., Zeiske, T. (1998) Taranakite – the mineral with the longest crystallographic axis. Inorganic Chimica Acta: 269: 47-57.

Zhou, J.M., Liu, C., Huang, P.M. (2000) Perturbation of Taranakite Formation by Ferrous and Ferric Iron under Acidic Conditions. Soil Science Society of America Journal: 64(3): 885–892.

Willems, L., Compère, P., Hatert, F., Pouclet, A., Vicat, J.P., Ek, C., Boulvain, F. (2002) Karst in granitic rocks, South Cameroon: cave genesis and silica and taranakite speleothems. Terra Nova: 14(5): 355–362.

Landis, C.A., Craw, D. (2003) Phosphate minerals formed by reaction of bird guano with basalt at Cooks Head Rock and Green Island, Otago, New Zealand. Journal of the Royal Society of New Zealand: 33(1): 487–495.

Internet Links for Taranakite URL:
Please feel free to link to this page.

Localities for Taranakite

map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.
(TL) indicates type locality for a valid mineral species. (FRL) indicates first recorded locality for everything else. ? indicates mineral may be doubtful at this locality. All other localities listed without reference should be considered as uncertain and unproven until references can be found.
  • Oran Province
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 1000.; A. Carnot, Compt. Rend. Acad. Sci. Paris, 1895, vol. 121, p. 153
  • Western Antarctica
    • Antarctic Peninsula
      • South Shetland Islands
        • King George Island
Proc. NIPR Symp. Polar Biol., 3,133-150(1990)
  • Santa Cruz
    • Corpen Aike department
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 1000.; L. R. Catalano, Argentina Direc. Minas y Geol. Pub., 1933, no. 100, p. 1.
  • New South Wales
    • Westmoreland Co.
      • Oberon
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 1000.
  • Victoria
    • Corangamite Shire
      • Skipton
        • Mt. Widderin (Anderson's Hill)
Webb, J. A., Joyce, E. B., & Stevens, N. C. (1982). Lava caves of Australia. In Proceedings of the Third International Symposium on Vulcanospeleology. International Speleological Foundation, Seattle. p74-85.
    • Moorabool Shire
      • Bacchus Marsh
Birch, W.D. & Henry, D.J., 1993, Phosphate Minerals of Victoria, The Mineralogical Society of Victoria, Special Publication No. 3
  • Western Australia
    • Dandaragan Shire
      • Jurien Bay
Helictite 13:19-33
    • Moora Shire
Bridge, P.J., Pryce, M.W., Clarke, R.M., and Costello, M.B. (1978): Sampleite from Jingemia Cave, Western Australia. Mineralogical Magazine (September 1978 Vol. 42) pp 369-371.
  • Guangxi Zhuang Autonomous Region
Xunyi Wang (1982): Acta Mineralogica Sinica 2(2), 154-156
Czech Republic
  • Moravia (Mähren; Maehren)
    • South Moravia Region
      • Oslavany
Hršelová, P., Cempírek, J., Houzar, S., Sejkora, J. (2013): S,F,Cl-rich mineral assemblages from burned spoil heaps in the Rosice-Oslavany coalfield, Czech Republic. Can. Mineral.: 51(1): 171-188
  • Occitanie
    • Hérault
      • Cevennes Mts
Onac, B. P., & Forti, P. (2011). State of the art and challenges in cave minerals studies. Studia UBB Geologia, 56(1), 33-42.
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 1000.; F. A. Bannister and Miss Hilda Bennett (1947) Whitlockite from Sebdou, Oran, Algeria. Mineralogical Magazine 28:29-30
  • North Rhine-Westphalia
    • Eifel
      • Mechernich
        • Kall
Blaß, G. & Graf, H. W. (1995): Neufunde von Schlackenhalden in der nördlichen Eifel (II). Mineralien-Welt, 6 (3), 28-31.
  • Thuringia
    • Gera
      • Ronneburg U deposit
EDX and XRD confirmed by Dr. Th. Witzke, ex Rüger-collection
  • Macedonia Department
    • Serres Prefecture
      • Alistrati
Natural History Museum Vienna collection (collected by Robert Seemann in 2006, PXRD-analysed by Christian L. Lengauer, University of Vienna)
  • Borsod-Abaúj-Zemplén Co.
    • Aggteleki Mts
      • Aggtelek
    • Borsodi Mts
      • Parasznya
Szakáll-Gatter-Szendrei: Mineral Species of Hungary, 2006
  • Apulia
    • Bari Province
      • Castellana Grotte
Balenzano, F., Dell'Ann,a L. & Di Pierro, M. (1974a): Ricerche mineralogiche su alcuni fosfati rinvenuti nelle Grotte di Castellana (Bari): strengite alluminifera, vivianite, taranakite, brushite e idrossiapatite. Rendiconti della Società Italiana di Mineralogia e Petrologia, 30(2), 543-573.
  • Campania
    • Salerno Province
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 1000.
  • Sardinia
    • Carbonia-Iglesias Province
      • Carbonia
        • Barbusi
Sauro, F., De Waele, J., Onac, B. P., Galli, E., Dublyansky, Y., Baldoni, E., & Sanna, L. (2014). Hypogenic speleogenesis in quartzite: the case of Corona'e Sa Craba Cave (SW Sardinia, Italy). Geomorphology, 211, 77-88.
  • Sicily
    • Trapani Province
      • Castellammare del Golfo
Vattano M., Audra P., Benvenuto F., Bigot J.-Y., De Waele J., Galli E., Madonia G., Nobécourt J.-C. (2013): Hypogenic Caves of Sicily (Southern Italy). 16th International Congress of Speleology, Czech Republic, Brno, July 21-28, 2013. Proceedings, Vol. 3, 144-149.
  • Honshu Island
    • Chugoku region
      • Hiroshima prefecture
Sakae and Sudo (1975) Am. Min. 60, 331-334; Aizawa and Fuji (1993) Journ. Speleol. Soc. Japan, 18, 11-16.
  • Kyushu Region
    • Kumamoto Prefecture
Nobuhide Sawamura & Hitoshi Momoi: “Cave minerals and the guano from Kyusendo cave in Kumamoto Prefecture, Japan”, Journal of the Speleological Society of Japan; N. Kashiima: “The phosphate minerals from Kyusen-do cave, southern Kyushu”, Journal of the Speleological Society of Japan.)
  • Rift Valley Province
    • Suswa Volcano
Forti, P., E. Galli & A. Rossi (2004):"Minerogenesis of volcanic caves of Kenya" , Int. J. Speleol. 32, 3-18
  • Osh Oblast
    • Aravan
V.I. Stepanov data
  • Borneo
    • Sarawak
Mineralogical Magazine (1983): 47: 79-80.
  • Coahuila
    • Mun. de Cuatrociénegas
      • Cuatro Ciénegas (Cuatrociénegas de Carranza; Venustiano Carranza)
        • Limestone caves
Forti, P. et al. (2006): ACTA CARSOLOGICA 35/1, 79–98.
New Zealand (TL)
  • North Island
    • Taranaki
      • New Plymouth
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 1000; American Mineralogist (1991): 76: 1722; Inorg. Chem. 269 (1998), 269
  • South Island
    • Otago
J. Thornton in Micro-Scope, April 1995
Réunion Island
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 1000.
  • Bistrița-Năsăud Co.
    • Rodna Mtn (Rodnei Mtn)
al României, I. G. (2003) The 5 Th Symposium Baia Mare Branch Of The Geological Society Of Romania. pp11-12
  • Brașov Co.
Puşcaş, C. M., Kristaly, F., Stremţan, C. C., Onac, B. P., & Effenberger, H. S. (2014). Stability of cave phosphates: Case study from Liliecilor Cave (Trascău Mountains, Romania). Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 191(2), 157-168.; Marincea, Ş., Dumitraş, D. g., Diaconu, G., & Fransolet, a. m. (2004) Mineralogical Data on the Bat Guano Deposit from Gura Ponicovei Cave (Almaj Mountains, Romania). Romanian Journal of Mineral Deposits 81:126-129
  • Hunedoara Co.
    • Cerna valley
Onac, B. P. (2009): ACTA CARSOLOGICA 38/1, 27-39
    • Hunedoara
      • Boșorod
Am Min 90:1203-1208 (2005); D. Dumitras , Si. Marincea (2000) Phosphates In The Bat Guano Deposit From The "Dry" Cioclovina Cave, Sureanu Mountains, Romania. Romanian Journal of Mineral Devosits Vol 79 Suppl pp 43-45
  • Maramureș Co.
    • Chioarului District
      • Chioarului Hills
Neacșu Antonela, Cioacă Mihaela (2007) Gemological occurrences in Romania. PROIECT ROMANIT, Raport 2b. Geologie, p.29-30
  • Sălaj Co.
    • Boiului Plateau
Tudor Tămaș, Răzvan Ungureanu (2010)-Mineralogy of Speleothems from four caves in the Purcăreț-Boiu Mare Plateau and the Baia Mare Depression (NW Romania). Studia Universitatis Babeș-Boyai, Geologia, 55 (2), 43-49.
  • Košice Region
    • Rožňava Co.
      • Kečovo
Sejkora, J., Duda, R., Cejka, J., Ederova, J. & Novotna, M. (2004): Taranakite (K,NH4)Al3(PO4)3(OH).9H2O formed from the decomposition of bat guano in the Domica cave (Slovak Republic). Mineralia Slovaca 36, 343-348. (in Czech.)
South Africa
Cairncross, B. and Dixon, R., (1995), Minerals of South Africa.
  • Mpumalanga Province
    • Ehlanzeni District
      • Nelspruit
Martini, J.E.J. et al (1997), "Mbobo Mkulu Cave, South Africa", in "Cave Minerals of the World" (1997)
South Korea
  • Gangwon-do (Kangwon-do; Gang'weondo)
    • Yeongwol-gun (Yongwol-gun)
Jun, Chang-Pyo ; Lee, Seong-Joo ; Kong, Dal-Yong ; Kang, Il-Mo ; Song, Yun-Goo (2010) Mineralogy of Secondary Phosphates and Sulfates Precipitated within the Sequence of Bat Guano Deposits in the Gossi Cave, Korea. Journal of the Mineralogical Society of Korea, volume 23, issue 4, 2010, Pages 395-402
  • Balearic Islands
B. Onac et al (2009) Mineral Diversity in Caves from Mallorca Island, Spain. Mineralogy 1 2009 ICS Proceedings. In 15th International Congress of Speleology. p 325
      • Inca
Onac, B.P., Fornós, J.J., Ginés, A., Ginés, J. (2005): Mineralogical reconnaissance of caves from Mallorca Island. Endins, 27, 131-140.
  • California
    • San Francisco Co.
      • Farallon Islands
Hanna, G. Dallas (1951), Geology of the Farallon Islands: California Division Mines Bulletin 154: 301-310; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 314.
  • Virginia
    • Bath Co.
NSS Bulletin 44:90-97 (1982)
    • Giles Co.
Murray, J. W. & Dietrich, R. V. (1956): Brushite and taranakite from Pig Hole Cave, Giles County, Virginia. American Mineralogist 41, 616-626.
Minerals of Virginia, 1990 by R. V. Dietrich
Mineral and/or Locality is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © and the Hudson Institute of Mineralogy 1993-2017, except where stated. relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: February 28, 2017 08:05:12 Page generated: February 26, 2017 09:49:55
Go to top of page