Help mindat.org|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on Mindat
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralSearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Taranakite

This page is currently not sponsored. Click here to sponsor this page.
Formula:
(K,NH4)Al3(PO4)3(OH) · 9H2O
Colour:
Yellow, gray, white; colourless in transmitted light
Specific Gravity:
2.12 - 2.15
Crystal System:
Trigonal
Name:
Discovered by H. Richmond and described by James Hector in 1865. The mineral is named after its discovery locality, Sugar Loaves, Taranaki peninsula, New Zealand.
A secondary mineral formed from the interaction of phosphatic solutions derived from bird or bat guano on clays or aluminous rocks under perenially damp conditions in caves and along sea coasts.


Hide all sections | Show all sections

Classification of TaranakiteHide

Approved, 'Grandfathered' (first described prior to 1959)
8.CH.25

8 : PHOSPHATES, ARSENATES, VANADATES
C : Phosphates without additional anions, with H2O
H : With large and medium-sized cations, RO4:H2O < 1:1
39.3.6.1

39 : HYDRATED ACID PHOSPHATES,ARSENATES AND VANADATES
3 : Miscellaneous
19.8.7

19 : Phosphates
8 : Phosphates of Al and other metals

Physical Properties of TaranakiteHide

Transparency:
Transparent
Colour:
Yellow, gray, white; colourless in transmitted light
Tenacity:
Malleable
Density:
2.12 - 2.15 g/cm3 (Measured)    2.12 g/cm3 (Calculated)

Optical Data of TaranakiteHide

Type:
Uniaxial (-)
RI values:
nω = 1.506 - 1.510 nε = 1.500 - 1.503
Max Birefringence:
δ = 0.006 - 0.007
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
Low

Chemical Properties of TaranakiteHide

Formula:
(K,NH4)Al3(PO4)3(OH) · 9H2O
IMA Formula:
K3Al5(PO3OH)6(PO4)2 · 18H2O

Crystallography of TaranakiteHide

Crystal System:
Trigonal
Class (H-M):
3m (3 2/m) - Hexagonal Scalenohedral
Space Group:
R3c
Cell Parameters:
a = 8.7025 Å, c = 95.05 Å
Ratio:
a:c = 1 : 10.922
Unit Cell V:
6,234.06 ų (Calculated from Unit Cell)
Z:
6
Morphology:
Crystals pseudohexagonal, platy; minute, lath-like and commonly in compact nodular aggregates, pulverulent, flour-like to claylike; massive.
Comment:
Space group determined from synthetic material.

Type Occurrence of TaranakiteHide

Synonyms of TaranakiteHide

Other Language Names for TaranakiteHide

Common AssociatesHide

ArdealiteCa2(HPO4)(SO4) · 4H2O
BrushiteCa(HPO4) · 2H2O
FrancoanelliteK3Al5(PO4)2(HPO4)3 · 12H2O
MinyuliteKAl2(PO4)2(OH,F) · 4H2O
StrengiteFePO4 · 2H2O
VarisciteAlPO4 · 2H2O
VashegyiteAl11(PO4)9(OH)6 · 38H2O
VashegyiteAl11(PO4)9(OH)6 · 38H2O
VivianiteFe2+3(PO4)2 · 8H2O
Associated Minerals Based on Photo Data:
Parwanite1 photo of Taranakite associated with Parwanite on mindat.org.
Montmorillonite1 photo of Taranakite associated with Montmorillonite on mindat.org.

Related Minerals - Nickel-Strunz GroupingHide

8.CH.05WalentaiteH(Ca,Mn2+,Fe2+)Fe3+3(AsO4,PO4)4 · 7H2OOrth.
8.CH.10AnapaiteCa2Fe2+(PO4)2 · 4H2OTric. 1 : P1
8.CH.15PicropharmacoliteCa4Mg(AsO4)2(HAsO4)2 · 11H2OTric. 1 : P1
8.CH.20Dittmarite(NH4)Mg(PO4) · H2OOrth.
8.CH.20Niahite(NH4)(Mn2+,Mg)(PO4) · H2OOrth. mm2 : Pmn21
8.CH.25FrancoanelliteK3Al5(PO4)2(HPO4)3 · 12H2OTrig.
8.CH.30Schertelite(NH4)2MgH2(PO4)2 · 4H2OOrth.
8.CH.35Hannayite(NH4)2Mg3H4(PO4)4 · 8H2OTric. 1 : P1
8.CH.40Struvite(NH4)Mg(PO4) · 6H2OOrth. mm2
8.CH.40Struvite-(K)KMg(PO4)·6H2OOrth. mm2 : Pmn21
8.CH.40HazeniteKNaMg2(PO4)2 · 14H2OOrth. mm2
8.CH.45Rimkorolgite(Mg,Mn)5(Ba,Sr,Ca)(PO4)4 · 8H2OOrth.
8.CH.50BakhchisaraitseviteNa2Mg5(PO4)4 · 7H2OMon.
8.CH.55FahleiteCaZn5Fe3+2(AsO4)6 · 14H2OOrth.
8.CH.55SmolyaninoviteCo3Fe3+2(AsO4)4 · 11H2OOrth.
8.CH.60Barahonaite-(Al)(Ca,Cu,Na,Fe3+,Al)12Al2(AsO4)8(OH,Cl)x · nH2OMon. 2/m : P2/b
8.CH.60Barahonaite-(Fe)(Ca,Cu,Na,Fe3+,Al)12Fe3+2(AsO4)8(OH,Cl)x · nH2OMon. 2/m : P2/b

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

19.8.1MontebrasiteLiAl(PO4)(OH)Tric. 1 : P1
19.8.2BrazilianiteNaAl3(PO4)2(OH)4Mon. 2/m : P2/b
19.8.3WarditeNaAl3(PO4)2(OH)4 · 2H2OTet. 4 2 2 : P41 21 2
19.8.4TancoiteLiNa2Al(PO4)(HPO4)(OH)Orth. mmm (2/m 2/m 2/m) : Pbca
19.8.5Bertossaite(Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4Orth.
19.8.6TinsleyiteKAl2(PO4)2(OH) · 2H2OMon.
19.8.8FrancoanelliteK3Al5(PO4)2(HPO4)3 · 12H2OTrig.
19.8.9GordoniteMgAl2(PO4)2(OH)2 · 8H2OTric. 1 : P1
19.8.10AldermaniteMg5Al12(PO4)8(OH)22 · 32H2OOrth.
19.8.11OveriteCaMgAl(PO4)2(OH) · 4H2OOrth. mmm (2/m 2/m 2/m) : Pbca
19.8.12MontgomeryiteCa4MgAl4(PO4)6(OH)4 · 12H2OMon. 2 : B2
19.8.14FoggiteCaAl(PO4)(OH)2 · H2OOrth.
19.8.15GatumbaiteCaAl2(PO4)2(OH)2 · H2OMon. 2/m : P2/m
19.8.16CrandalliteCaAl3(PO4)(PO3OH)(OH)6Trig. 3m (3 2/m) : R3m
19.8.17Matulaite(Fe3+,Al)Al7(PO4)4(PO3OH)2(OH)8(H2O)8 · 8H2OMon.
19.8.19LehiiteCaAl3(PO4)(PO3OH)(OH)6
19.8.20Millisite(Na,K)CaAl6(PO4)4(OH)9 · 3H2OTet.
19.8.21EnglishiteK3Na2Ca10Al15(PO4)21(OH)7 · 26H2OMon. 2/m
19.8.22KleemaniteZnAl2(PO4)2(OH)2 · 3H2OMon.
19.8.23MantienneiteKMg2Al2Ti(PO4)4(OH)3 · 15H2OOrth.
19.8.24PaulkerriteK(Mg,Mn2+)2(Fe3+,Al,Ti,Mg)2Ti(PO4)4(OH)3 · 15H2OOrth. mmm (2/m 2/m 2/m) : Pbca

Other InformationHide

Notes:
Readily soluble in acids.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for TaranakiteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Hector, J., Skey, W. (1865) Taranakite, a new phosphatic mineral, Taranaki, presented by H. Richmond, Esq. in Appendix A. Supplementary Report on Class 1. Reports of the Jurors, New Zealand Expedition, pg. 423.
Cox, S.H. (1882) Notes on the Mineralogy of New Zealand. Transactions of the New Zealand Institute: 15: 385.
Gautier (1893) Comptes rendu de l’Académie des sciences de Paris: 116: 928, 102, 1171, 1271 (as Minervite).
Gautier (1894) V-Minervite; nouveau phosphate d'almine hydrat. Annales des mines: 5: 23 (as Minervite).
Carnot, M.-A. (1895) Sur un gisement de phosphates d'alumine et de potasse trouve en Algerie et sur la genese de ces mineraux. Annales des mines: 8: 319.
Carnot, A. (1895) Minervite, Minerva grotto, Fauzan, Dep. Herault, France. Ann. Des Mines, ser. 9: 8: 319.
Casorio, E. (1904) Acc. Georgofili, Att.: 1: July 3, 1904 (as Palmerite).
Lacroix, A. (1910) Minervite, basalt cave, St. Paul, Reunion, Indian Ocean. Bulletin de la Société française de Minéralogie: 33: 36.
Barth and Berman (1912) Chemie der Erde, Jena: 5: 114.
Lacroix (1912) Bulletin de la Société française de Minéralogie: 35: 114.
Bannister, F.A., Hutchinson, G.E. (1947) The identity of minervite and palmerite with taranakite. Mineralogical Magazine: 28: 31.
Palache, C., Berman, H., Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged, 1124 pp.: 999-1000.
Murray, J.W., Dietrich, R.V. (1965) Brushite and taranakite from Pig Hole Cave, Giles County, Virginia. American Mineralogist: 41: 616-626.
Smith, J.P., Brown, W.E. (1959) X-ray studies of aluminum and iron phosphates containing potassium or ammonium. American Mineralogist: 44: 138-142.
Balenzano, F., Dell’Anna, L., Di Pierro, M. (1974) Ricerche mineralogische su alcuni fosfati rinvenuti nelle grotte di Castellana (Bari): strengite alluminifera, vivianite, taranakite, brushite e idrossiapatite. Rend. Soc. Ital. Mineral. Petrol.: 30: 543–573. (in Italian)
Sakae, T., Sudo, T. (1975) Taranakite from the Onino-Iwaya Limestone Cave at Hiroshima Prefecture, Japan: a new occurrence. American Mineralogist: 60: 331–334.
Fiore, S., Laviano, R. (1991) Brushite, hydroxylapatite, and taranakite from Apulian caves (southern Italy): new mineralogical data. American Mineralogist: 76: 1722–1727.
Dick, S., Gossner, U., Weiss, A., Robl, C., Grossman, G., Ohms, G., Zeiske, T. (1998) Taranakite – the mineral with the longest crystallographic axis. Inorganic Chimica Acta: 269: 47-57.
Zhou, J.M., Liu, C., Huang, P.M. (2000) Perturbation of Taranakite Formation by Ferrous and Ferric Iron under Acidic Conditions. Soil Science Society of America Journal: 64(3): 885–892.
Willems, L., Compère, P., Hatert, F., Pouclet, A., Vicat, J.P., Ek, C., Boulvain, F. (2002) Karst in granitic rocks, South Cameroon: cave genesis and silica and taranakite speleothems. Terra Nova: 14(5): 355–362.
Landis, C.A., Craw, D. (2003) Phosphate minerals formed by reaction of bird guano with basalt at Cooks Head Rock and Green Island, Otago, New Zealand. Journal of the Royal Society of New Zealand: 33(1): 487–495.

Internet Links for TaranakiteHide

Localities for TaranakiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Algeria
 
  • Oran Province
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 1000.; A. Carnot, Compt. Rend. Acad. Sci. Paris, 1895, vol. 121, p. 153
Antarctica
 
  • Western Antarctica
    • Antarctic Peninsula
      • South Shetland Islands
        • King George Island
Proc. NIPR Symp. Polar Biol., 3,133-150(1990)
Argentina
 
  • Santa Cruz
    • Corpen Aike department
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 1000.; L. R. Catalano, Argentina Direc. Minas y Geol. Pub., 1933, no. 100, p. 1.
Australia
 
  • New South Wales
    • Westmoreland Co.
      • Oberon
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 1000.
  • Victoria
    • Corangamite Shire
      • Skipton
        • Mt. Widderin (Anderson's Hill)
Webb, J. A., Joyce, E. B., & Stevens, N. C. (1982). Lava caves of Australia. In Proceedings of the Third International Symposium on Vulcanospeleology. International Speleological Foundation, Seattle. p74-85.
    • Moorabool Shire
      • Bacchus Marsh
Birch, W.D. & Henry, D.J., 1993, Phosphate Minerals of Victoria, The Mineralogical Society of Victoria, Special Publication No. 3
  • Western Australia
    • Dandaragan Shire
      • Jurien Bay
Helictite 13:19-33
    • Moora Shire
Bridge, P.J., Pryce, M.W., Clarke, R.M., and Costello, M.B. (1978): Sampleite from Jingemia Cave, Western Australia. Mineralogical Magazine (September 1978 Vol. 42) pp 369-371.
China
 
  • Guangxi Zhuang Autonomous Region
Xunyi Wang (1982): Acta Mineralogica Sinica 2(2), 154-156
Czech Republic
 
  • Moravia (Mähren; Maehren)
    • South Moravia Region
      • Oslavany
Hršelová, P., Cempírek, J., Houzar, S., Sejkora, J. (2013): S,F,Cl-rich mineral assemblages from burned spoil heaps in the Rosice-Oslavany coalfield, Czech Republic. Can. Mineral.: 51(1): 171-188
France
 
  • Occitanie
    • Hérault
      • Cevennes Mts
Onac, B. P., & Forti, P. (2011). State of the art and challenges in cave minerals studies. Studia UBB Geologia, 56(1), 33-42.
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 1000.; F. A. Bannister and Miss Hilda Bennett (1947) Whitlockite from Sebdou, Oran, Algeria. Mineralogical Magazine 28:29-30
Germany
 
  • North Rhine-Westphalia
    • Eifel
      • Mechernich
        • Kall
Blaß, G. & Graf, H. W. (1995): Neufunde von Schlackenhalden in der nördlichen Eifel (II). Mineralien-Welt, 6 (3), 28-31.
  • Thuringia
    • Gera
      • Ronneburg U deposit
EDX and XRD confirmed by Dr. Th. Witzke, ex Rüger-collection
Greece
 
  • Macedonia Department
    • Serres Prefecture
      • Alistrati
Natural History Museum Vienna collection (collected by Robert Seemann in 2006, PXRD-analysed by Christian L. Lengauer, University of Vienna)
Hungary
 
  • Borsod-Abaúj-Zemplén Co.
    • Aggteleki Mts
      • Aggtelek
    • Borsodi Mts
      • Parasznya
Szakáll-Gatter-Szendrei: Mineral Species of Hungary, 2006
Italy
 
  • Apulia
    • Bari Province
      • Acquaviva delle Fonti
Dell'Anna, L., Fiore, S., Laviano, R. (1989): I fosfati di cavità carsiche pugliesi: giaciture, natura e genesi. Atti del XV Congresso Nazionale di Speleologia. Castellana Grotte 10-13 settembre 1987. Comune di Castellana Grotte e Gruppo Puglia Grotte, Castellana Grotte, 171-187.
      • Castellana Grotte
Balenzano, F., Dell'Ann,a L. & Di Pierro, M. (1974a): Ricerche mineralogiche su alcuni fosfati rinvenuti nelle Grotte di Castellana (Bari): strengite alluminifera, vivianite, taranakite, brushite e idrossiapatite. Rendiconti della Società Italiana di Mineralogia e Petrologia, 30(2), 543-573.
      • Polignano a Mare
Dell'Anna, L., Fiore, S., Laviano, R. (1989): I fosfati di cavità carsiche pugliesi: giaciture, natura e genesi. Atti del XV Congresso Nazionale di Speleologia. Castellana Grotte 10-13 settembre 1987. Comune di Castellana Grotte e Gruppo Puglia Grotte, Castellana Grotte, 171-187.
    • Taranto Province
      • Martina Franca
Dell'Anna, L., Fiore, S., Laviano, R. (1989): I fosfati di cavità carsiche pugliesi: giaciture, natura e genesi. Atti del XV Congresso Nazionale di Speleologia. Castellana Grotte 10-13 settembre 1987. Comune di Castellana Grotte e Gruppo Puglia Grotte, Castellana Grotte, 171-187.
Dell'Anna, L., Fiore, S., Laviano, R. (1989): I fosfati di cavità carsiche pugliesi: giaciture, natura e genesi. Atti del XV Congresso Nazionale di Speleologia. Castellana Grotte 10-13 settembre 1987. Comune di Castellana Grotte e Gruppo Puglia Grotte, Castellana Grotte, 171-187.
Dell'Anna, L., Fiore, S., Laviano, R. (1989): I fosfati di cavità carsiche pugliesi: giaciture, natura e genesi. Atti del XV Congresso Nazionale di Speleologia. Castellana Grotte 10-13 settembre 1987. Comune di Castellana Grotte e Gruppo Puglia Grotte, Castellana Grotte, 171-187.
  • Campania
    • Salerno Province
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 1000.
  • Friuli-Venezia Giulia
    • Gorizia Province
      • Sagrado
        • San Martino del Carso
Cancian, G. (1984): I fosfati della "Grotta ad Est di San Martino del Carso" (Gorizia): brushite, idrossiapatite, francoanellite, taranakite. Atti III Covegno Triveneto di Speleologia, 17-18 nov. 1984, Vicenza, 1-8.
  • Sardinia
    • Carbonia-Iglesias Province
      • Carbonia
        • Barbusi
Sauro, F., De Waele, J., Onac, B. P., Galli, E., Dublyansky, Y., Baldoni, E., & Sanna, L. (2014). Hypogenic speleogenesis in quartzite: the case of Corona'e Sa Craba Cave (SW Sardinia, Italy). Geomorphology, 211, 77-88.
  • Sicily
    • Trapani Province
      • Castellammare del Golfo
Vattano M., Audra P., Benvenuto F., Bigot J.-Y., De Waele J., Galli E., Madonia G., Nobécourt J.-C. (2013): Hypogenic Caves of Sicily (Southern Italy). 16th International Congress of Speleology, Czech Republic, Brno, July 21-28, 2013. Proceedings, Vol. 3, 144-149.
Japan
 
  • Honshu Island
    • Chugoku region
      • Hiroshima prefecture
Sakae and Sudo (1975) Am. Min. 60, 331-334; Aizawa and Fuji (1993) Journ. Speleol. Soc. Japan, 18, 11-16.
  • Kyushu Region
    • Kumamoto Prefecture
Nobuhide Sawamura & Hitoshi Momoi: “Cave minerals and the guano from Kyusendo cave in Kumamoto Prefecture, Japan”, Journal of the Speleological Society of Japan; N. Kashiima: “The phosphate minerals from Kyusen-do cave, southern Kyushu”, Journal of the Speleological Society of Japan.)
Kenya
 
  • Rift Valley Province
    • Suswa Volcano
Forti, P., E. Galli & A. Rossi (2004):"Minerogenesis of volcanic caves of Kenya" , Int. J. Speleol. 32, 3-18
Kyrgyzstan
 
  • Osh Oblast
    • Aravan
V.I. Stepanov data
Malaysia
 
  • Borneo
    • Sarawak
Mineralogical Magazine (1983): 47: 79-80.
Mexico
 
  • Coahuila
    • Mun. de Cuatrociénegas
      • Cuatro Ciénegas (Cuatrociénegas de Carranza; Venustiano Carranza)
        • Limestone caves
Forti, P. et al. (2006): ACTA CARSOLOGICA 35/1, 79–98.
New Zealand (TL)
 
  • North Island
    • Taranaki
      • New Plymouth
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 1000; American Mineralogist (1991): 76: 1722; Inorg. Chem. 269 (1998), 269
  • South Island
    • Otago
J. Thornton in Micro-Scope, April 1995
Réunion Island
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 1000.
Romania
 
  • Bistrița-Năsăud Co.
    • Rodna Mtn (Rodnei Mtn)
al României, I. G. (2003) The 5 Th Symposium Baia Mare Branch Of The Geological Society Of Romania. pp11-12
  • Brașov Co.
Puşcaş, C. M., Kristaly, F., Stremţan, C. C., Onac, B. P., & Effenberger, H. S. (2014). Stability of cave phosphates: Case study from Liliecilor Cave (Trascău Mountains, Romania). Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 191(2), 157-168.; Marincea, Ş., Dumitraş, D. g., Diaconu, G., & Fransolet, a. m. (2004) Mineralogical Data on the Bat Guano Deposit from Gura Ponicovei Cave (Almaj Mountains, Romania). Romanian Journal of Mineral Deposits 81:126-129
  • Hunedoara Co.
    • Cerna valley
Onac, B. P. (2009): ACTA CARSOLOGICA 38/1, 27-39
    • Hunedoara
      • Boșorod
Am Min 90:1203-1208 (2005); D. Dumitras , Si. Marincea (2000) Phosphates In The Bat Guano Deposit From The "Dry" Cioclovina Cave, Sureanu Mountains, Romania. Romanian Journal of Mineral Devosits Vol 79 Suppl pp 43-45
  • Maramureș Co.
    • Chioarului District
      • Chioarului Hills
Neacșu Antonela, Cioacă Mihaela (2007) Gemological occurrences in Romania. PROIECT ROMANIT, Raport 2b. Geologie, p.29-30
  • Sălaj Co.
    • Boiului Plateau
Tudor Tămaș, Răzvan Ungureanu (2010)-Mineralogy of Speleothems from four caves in the Purcăreț-Boiu Mare Plateau and the Baia Mare Depression (NW Romania). Studia Universitatis Babeș-Boyai, Geologia, 55 (2), 43-49.
Slovakia
 
  • Košice Region
    • Rožňava Co.
      • Kečovo
Sejkora, J., Duda, R., Cejka, J., Ederova, J. & Novotna, M. (2004): Taranakite (K,NH4)Al3(PO4)3(OH).9H2O formed from the decomposition of bat guano in the Domica cave (Slovak Republic). Mineralia Slovaca 36, 343-348. (in Czech.)
South Africa
Cairncross, B. and Dixon, R., (1995), Minerals of South Africa.
  • Mpumalanga Province
    • Ehlanzeni District
      • Nelspruit
Martini, J.E.J. et al (1997), "Mbobo Mkulu Cave, South Africa", in "Cave Minerals of the World" (1997)
South Korea
 
  • Gangwon-do (Kangwon-do; Gang'weondo)
    • Yeongwol-gun (Yongwol-gun)
Jun, Chang-Pyo ; Lee, Seong-Joo ; Kong, Dal-Yong ; Kang, Il-Mo ; Song, Yun-Goo (2010) Mineralogy of Secondary Phosphates and Sulfates Precipitated within the Sequence of Bat Guano Deposits in the Gossi Cave, Korea. Journal of the Mineralogical Society of Korea, volume 23, issue 4, 2010, Pages 395-402
Spain
 
  • Balearic Islands
B. Onac et al (2009) Mineral Diversity in Caves from Mallorca Island, Spain. Mineralogy 1 2009 ICS Proceedings. In 15th International Congress of Speleology. p 325
      • Inca
Onac, B.P., Fornós, J.J., Ginés, A., Ginés, J. (2005): Mineralogical reconnaissance of caves from Mallorca Island. Endins, 27, 131-140.
USA
 
  • California
    • San Francisco Co.
      • Farallon Islands
Hanna, G. Dallas (1951), Geology of the Farallon Islands: California Division Mines Bulletin 154: 301-310; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 314.
  • Virginia
    • Bath Co.
NSS Bulletin 44:90-97 (1982)
    • Giles Co.
Murray, J. W. & Dietrich, R. V. (1956): Brushite and taranakite from Pig Hole Cave, Giles County, Virginia. American Mineralogist 41, 616-626.
Minerals of Virginia, 1990 by R. V. Dietrich
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2017, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: September 25, 2017 17:53:36 Page generated: September 17, 2017 23:20:19
Go to top of page