Tetraferriphlogopite
This page is currently not sponsored. Click here to sponsor this page.
About Tetraferriphlogopite
Formula:
KMg3(Fe3+Si3O10)(OH,F)2
Member of:
Classification of Tetraferriphlogopite
Approved, 'Grandfathered' (first described prior to 1959)
Approval year:
2008
8/H.11-90
9.EC.20
9 : SILICATES (Germanates)
E : Phyllosilicates
C : Phyllosilicates with mica sheets, composed of tetrahedral and octahedral nets
9 : SILICATES (Germanates)
E : Phyllosilicates
C : Phyllosilicates with mica sheets, composed of tetrahedral and octahedral nets
Chemical Properties of Tetraferriphlogopite
Formula:
KMg3(Fe3+Si3O10)(OH,F)2
IMA Formula:
KMg3(Si3Fe3+)O10(OH)2
Type Occurrence of Tetraferriphlogopite
Other Language Names for Tetraferriphlogopite
Relationship of Tetraferriphlogopite to other Species
Member of:
Other Members of this group:
Annite | KFe2+3(AlSi3O10)(OH)2 | Mon. 2/m : B2/m |
Eastonite | KMg2Al(Al2Si2O10)(OH)2 | Mon. |
Fluorannite | KFe2+3(Si3Al)O10F2 | Mon. |
Fluorophlogopite | KMg3(Si3Al)O10F2 | Mon. 2/m : B2/m |
Fluorotetraferriphlogopite | KMg3(Fe3+Si3O10)F2 | Mon. 2/m : B2/m |
Oxyphlogopite | K(Mg,Ti,Fe)3[(Si,Al)4O10](O,F)2 | Mon. 2/m : B2/m |
Phlogopite | KMg3(AlSi3O10)(OH)2 | Mon. 2/m : B2/m |
Siderophyllite | KFe2+2Al(Al2Si2O10)(OH)2 | Mon. |
Tetraferriannite | KFe2+3(Si3Fe3+)O10(OH)2 | Mon. |
Common Associates
Associated Minerals Based on Photo Data:
3 photos of Tetraferriphlogopite associated with Pyroaurite-2H | Mg6Fe3+2(OH)16(CO3) · 4H2O |
3 photos of Tetraferriphlogopite associated with Pyrochlore Group | A2Nb2(O,OH)6Z |
3 photos of Tetraferriphlogopite associated with Albite | Na(AlSi3O8) |
2 photos of Tetraferriphlogopite associated with Calcite | CaCO3 |
2 photos of Tetraferriphlogopite associated with Chalcopyrite | CuFeS2 |
2 photos of Tetraferriphlogopite associated with Fluorapatite | Ca5(PO4)3F |
2 photos of Tetraferriphlogopite associated with Armalcolite | (Mg,Fe2+)Ti2O5 |
2 photos of Tetraferriphlogopite associated with Sanidine | K(AlSi3O8) |
1 photo of Tetraferriphlogopite associated with Fluorcalciopyrochlore | (Ca,Na)2(Nb, Ti)2O6F |
Related Minerals - Nickel-Strunz Grouping
9.EC. | Balestraite | KLi2V5+Si4O12 | Mon. 2 : B2 |
9.EC.05 | Minnesotaite | Fe2+3Si4O10(OH)2 | Tric. 1 : P1 |
9.EC.05 | Talc | Mg3Si4O10(OH)2 | Tric. 1 : P1 |
9.EC.05 | Willemseite | Ni3Si4O10(OH)2 | Mon. |
9.EC.9.EC. | Voloshinite | Rb(LiAl1.5◻1.5)(Al0.5Si3.5)O10F2 | Mon. 2/m : B2/b |
9.EC.10 | Ferripyrophyllite | Fe3+Si2O5(OH) | Mon. |
9.EC.10 | Pyrophyllite | Al2Si4O10(OH)2 | Tric. 1 |
9.EC.15 | Boromuscovite | KAl2(BSi3O10)(OH)2 | Mon. |
9.EC.15 | Celadonite | K(Mg,Fe2+)Fe3+(Si4O10)(OH)2 | Mon. 2/m : B2/m |
9.EC.15 | Chernykhite | (Ba,Na)(V3+,Al,Mg)2((Si,Al)4O10)(OH)2 | Mon. |
9.EC.15 | Montdorite | (K,Na)2(Fe2+,Mn2+,Mg)5(Si4O10)2(OH,F)4 | Mon. 2/m : B2/m |
9.EC.15 | Muscovite | KAl2(AlSi3O10)(OH)2 | Mon. 2/m : B2/b |
9.EC.15 | Nanpingite | CsAl2(AlSi3O10)(OH,F)2 | Mon. |
9.EC.15 | Paragonite | NaAl2(AlSi3O10)(OH)2 | Mon. |
9.EC.15 | Roscoelite | K(V3+,Al)2(AlSi3O10)(OH)2 | Mon. 2/m : B2/b |
9.EC.15 | Tobelite | (NH4,K)Al2(AlSi3O10)(OH)2 | Mon. |
9.EC.15 | Aluminoceladonite | K(Mg,Fe2+)Al(Si4O10)(OH)2 | Mon. |
9.EC.15 | Chromphyllite | K(Cr,Al)2(AlSi3O10)(OH,F)2 | Mon. 2/m : B2/b |
9.EC.15 | Ferroaluminoceladonite | K(Fe2+,Mg)(Al,Fe3+)(Si4O10)(OH)2 | Mon. 2/m : B2/m |
9.EC.15 | Ferroceladonite | K(Fe2+,Mg)(Fe3+,Al)(Si4O10)(OH)2 | Mon. 2/m : B2/m |
9.EC.15 | Chromceladonite | K(Mg,Fe2+)(Cr,Al)(Si4O10)(OH)2 | Mon. |
9.EC.15 | Tainiolite | KLiMg2(Si4O10)F2 | Mon. |
9.EC.15 | Ganterite | (Ba,Na,K)(Al,Mg)2(AlSi3O10)(OH)2 | Mon. |
9.EC.20 | Annite | KFe2+3(AlSi3O10)(OH)2 | Mon. 2/m : B2/m |
9.EC.20 | Ephesite | NaLiAl2(Al2Si2O10)(OH)2 | Tric. |
9.EC.20 | Hendricksite | KZn3(Si3Al)O10(OH)2 | Mon. 2/m : B2/m |
9.EC.20 | Masutomilite | (K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2 | Mon. |
9.EC.20 | Norrishite | KLiMn3+2(Si4O10)O2 | Mon. 2/m : B2/m |
9.EC.20 | Phlogopite | KMg3(AlSi3O10)(OH)2 | Mon. 2/m : B2/m |
9.EC.20 | Polylithionite | KLi2Al(Si4O10)(F,OH)2 | Mon. 2/m : B2/b |
9.EC.20 | Preiswerkite | NaMg2Al(Al2Si2O10)(OH)2 | Mon. |
9.EC.20 | Siderophyllite | KFe2+2Al(Al2Si2O10)(OH)2 | Mon. |
9.EC.20 | Fluorotetraferriphlogopite | KMg3(Fe3+Si3O10)F2 | Mon. 2/m : B2/m |
9.EC.20 | Wonesite | (Na,K)(Mg,Fe,Al)6((Al,Si)4O10)2(OH,F)4 | Mon. 2/m : B2/m |
9.EC.20 | Eastonite | KMg2Al(Al2Si2O10)(OH)2 | Mon. |
9.EC.20 | Tetraferriannite | KFe2+3(Si3Fe3+)O10(OH)2 | Mon. |
9.EC.20 | Trilithionite | K(Li1.5Al1.5)(AlSi3O10)(F,OH)2 | Mon. 2/m : B2/b |
9.EC.20 | Fluorannite | KFe2+3(Si3Al)O10F2 | Mon. |
9.EC.20 | Shirokshinite | KNaMg2(Si4O10)F2 | Mon. 2/m : B2/m |
9.EC.20 | Shirozulite | KMn2+3(Si3Al)O10(OH)2 | Mon. 2/m : B2/m |
9.EC.20 | Sokolovaite | CsLi2Al(Si4O10)F2 | Mon. |
9.EC.20 | Aspidolite | NaMg3(AlSi3O10)(OH)2 | Mon. 2/m : B2/m |
9.EC.20 | Fluorophlogopite | KMg3(Si3Al)O10F2 | Mon. 2/m : B2/m |
9.EC.20 | UM2004-49-SiO:AlCsFHKLi | (Cs,K)(Al,Li)2.6((Si,Al)4O10)(F,OH)2 | |
9.EC.20 | Suhailite | (NH4)Fe2+3(AlSi3O10)(OH)2 | Mon. 2/m : B2/m |
9.EC.20 | Yangzhumingite | KMg2.5(Si4O10)F2 | Mon. 2/m : B2/m |
9.EC.20 | Orlovite | KLi2Ti(Si4O10)OF | Mon. 2 : B2 |
9.EC.20 | Oxyphlogopite | K(Mg,Ti,Fe)3[(Si,Al)4O10](O,F)2 | Mon. 2/m : B2/m |
9.EC.30 | Margarite | CaAl2(Al2Si2O10)(OH)2 | Mon. |
9.EC.35 | Anandite | (Ba,K)(Fe2+,Mg)3((Si,Al,Fe)4O10)(S,OH)2 | Mon. 2/m : B2/b |
9.EC.35 | Bityite | LiCaAl2(AlBeSi2O10)(OH)2 | Mon. 2/m : B2/b |
9.EC.35 | Clintonite | CaAlMg2(SiAl3O10)(OH)2 | Mon. 2/m : B2/m |
9.EC.35 | Kinoshitalite | (Ba,K)(Mg,Mn2+,Al)3(Al2Si2O10)(OH)2 | Mon. |
9.EC.35 | Ferrokinoshitalite | (Ba,K)(Fe2+,Mg)3(Al2Si2O10)(OH,F)2 | Mon. |
9.EC.35 | Oxykinoshitalite | (Ba,K)(Mg,Ti,Fe3+,Fe2+)3((Si,Al)4O10)(O,OH,F)2 | Mon. 2/m : B2/m |
9.EC.35 | Fluorokinoshitalite | BaMg3(Al2Si2O10)F2 | Mon. 2/m : B2/m |
9.EC.40 | Beidellite | (Na,Ca0.5)0.3Al2((Si,Al)4O10)(OH)2 · nH2O | Mon. |
9.EC.40 | Kurumsakite | (Zn,Ni,Cu)8Al8V5+2Si5O35 · 27H2O (?) | Orth. |
9.EC.40 | Montmorillonite | (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O | Mon. 2/m : B2/m |
9.EC.40 | Nontronite | Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O | Mon. |
9.EC.40 | Volkonskoite | Ca0.3(Cr,Mg,Fe)2((Si,Al)4O10)(OH)2 · 4H2O | Mon. |
9.EC.40 | Yakhontovite | (Ca,Na)0.5(Cu,Fe,Mg)2(Si4O10)(OH)2 · 3H2O | Mon. |
9.EC.45 | Hectorite | Na0.3(Mg,Li)3(Si4O10)(F,OH)2 | Mon. |
9.EC.45 | Saponite | Ca0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O | Mon. |
9.EC.45 | Sauconite | Na0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O | Mon. |
9.EC.45 | Spadaite | MgSiO2(OH)2 · H2O (?) | |
9.EC.45 | Stevensite | (Ca,Na)xMg3-x(Si4O10)(OH)2 | Mon. |
9.EC.45 | Swinefordite | Li(Al,Li,Mg)4((Si,Al)4O10)2(OH,F)4 · nH2O | Mon. |
9.EC.45 | Zincsilite | Zn3Si4O10(OH)2 · 4H2O (?) | Mon. |
9.EC.45 | Ferrosaponite | Ca0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O | Mon. |
9.EC.50 | Vermiculite | Mg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O | Mon. 2/m |
9.EC.55 | Baileychlore | (Zn,Fe2+,Al,Mg)6(Si,Al)4O10(OH)8 | Tric. 1 |
9.EC.55 | Chamosite | (Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8 | Mon. |
9.EC.55 | Clinochlore | Mg5Al(AlSi3O10)(OH)8 | Mon. 2/m : B2/m |
9.EC.55 | Cookeite | (Al2Li)Al2(AlSi3O10)(OH)8 | Mon. 2/m |
9.EC.55 | Franklinfurnaceite | Ca2Fe3+Mn2+3Mn3+(Zn2Si2O10)(OH)8 | Mon. 2 : B2 |
9.EC.55 | Gonyerite | (Mn2+,Mg)5Fe3+(Fe3+Si3O10)(OH)8 | Orth. |
9.EC.55 | Nimite | (Ni,Mg,Al)6((Si,Al)4O10)(OH)8 | Mon. |
9.EC.55 | Orthochamosite | (Fe2+,Mg,Fe3+)5Al(AlSi3O10)(OH,O)8 | |
9.EC.55 | Pennantite | Mn2+5Al(AlSi3O10)(OH)8 | Tric. |
9.EC.55 | Sudoite | Mg2Al3(Si3Al)O10)(OH)8 | Mon. |
9.EC.55 | Donbassite | Al4.33(AlSi3O10)(OH)8 | Mon. 2 : B2 |
9.EC.55 | Glagolevite | Na(Mg,Al)6(AlSi3O10)(OH,O)8 | Tric. 1 : P1 |
9.EC.55 | Borocookeite | Li1+3xAl4-x(BSi3O10)(OH)8 | |
9.EC.60 | Aliettite | Ca0.2Mg6((Si,Al)8O20)(OH)4 · 4H2O | Mon. |
9.EC.60 | Corrensite | (Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O | Orth. |
9.EC.60 | Dozyite | Mg7Al2(Al2Si4O15)(OH)12 | Mon. |
9.EC.60 | Hydrobiotite | K(Mg,Fe2+)6((Si,Al)8O20)(OH)4 · nH2O | Mon. |
9.EC.60 | Karpinskite | (Ni,Mg)2Si2O5(OH)2 (?) | Mon. |
9.EC.60 | Kulkeite | Mg8Al(AlSi7O20)(OH)10 | Mon. |
9.EC.60 | Lunijianlaite | Li0.7Al6.2(AlSi7O20)(OH,O)10 | Mon. |
9.EC.60 | Rectorite | (Na,Ca)Al4((Si,Al)8O20)(OH)4 · 2H2O | Mon. |
9.EC.60 | Saliotite | (Li,Na)Al3(AlSi3O10)(OH)5 | Mon. |
9.EC.60 | Tosudite | Na0.5(Al,Mg)6((Si,Al)8O18)(OH)12 · 5H2O | Mon. 2 : B2 |
9.EC.60 | Brinrobertsite | Na0.3Al4(Si4O10)2(OH)4 · 3.5 H2O | Mon. |
9.EC.65 | Macaulayite | (Fe,Al)24Si4O43(OH)2 | Mon. |
9.EC.70 | Burckhardtite | Pb2(Fe3+Te6+)[AlSi3O8]O6 | Trig. 3m (3 2/m) : P3 1m |
9.EC.75 | Ferrisurite | (Pb,Ca)2.4Fe3+2(Si4O10)(CO3)1.7(OH)3 · nH2O | Mon. |
9.EC.75 | Surite | (Pb,Ca)3(Al,Fe2+,Mg)2((Si,Al)4O10)(CO3)2(OH)2 | Mon. |
9.EC.75 | Niksergievite | (Ba,Ca)2Al3(AlSi3O10)(CO3)(OH)6 · nH2O | Mon. |
9.EC.80 | Kegelite | Pb8Al4(Si8O20)(SO4)2(CO3)4(OH)8 | Mon. |
Other Information
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
References for Tetraferriphlogopite
Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Wahl W (1925) Die Gesteine des Wiborger Rapakiwigebietes. Fennia 45, 83-88
Brigatti M F, Medici L, Poppi L (1996) Refinement of the structure of natural ferriphlogopite. Clays and Clay Minerals 44, 540-545
Rieder M, Cavazzini G, D’Yakonov Y S, Frank-Kamenetskii V A, Gottardt G, Guggenheim S, Koval P V, Muller G, Neiva A M R, Radoslovich E W, Robert J L, Sassi F P, Takeda H, Weiss Z, Wones D R (1998) Nomenclature of the micas. The Canadian Mineralogist 36, 905-912
Semenova T F, Rozhdestvenskaya I V, Frank-Kamenetskii V A (1977) Refinement of the crystal structure of tetraferriphlogopite. Soviet Physics - Crystallography 22, 680-683
Mineralogical Record 39 (2008), 131
Internet Links for Tetraferriphlogopite
mindat.org URL:
https://www.mindat.org/min-3922.html
Please feel free to link to this page.
Please feel free to link to this page.
Search Engines:
External Links:
Mineral Dealers:
Localities for Tetraferriphlogopite
Locality List




All localities listed without proper references should be considered as questionable.
Afghanistan | |
| Vikhter, B. Y., Yeremenko, G. K., & Chmyrev, V. M. (1976). A young volcanogenic carbonatite complex in Afghanistan. International Geology Review, 18(11), 1305-1312. Mars, J. C., & Rowan, L. C. (2011). ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan. Geosphere, 7(1), 276-289. |
Angola | |
| Alberti, A., Castorina, F., Censi, P., Comin-Chiaramonti, P., & Gomes, C. B. (1999). Geochemical characteristics of Cretaceous carbonatites from Angola. Journal of African Earth Sciences, 29(4), 735-759. doi.org/10.1016/S0899-5362(99)00127-X Allsopp, H. L., & Hargraves, R. B. (1985). Rb-Sr ages and palaeomagnetic data for some Angolan alkaline intrusives. Transactions of the Geological Society of South Africa, 88(2), 295-299. Issa Filho, A. B. R. M. D., Dos Santos, A. B. R. M. D., Riffel, B. F., Lapido-Loureiro, F. E. V., & McReath, I. (1991). Aspects of the geology, petrology and chemistry of some Angolan carbonatites. Journal of Geochemical Exploration, 40(1-3), 205-226. doi.org/10.1016/0375-6742(91)90039-W Lapido-Loureiro, F.E. 1973. Carbonatitos de Angola. Memorias e Trabalhos do Instituto de Investigacoes Cientifica de Angola, 11. |
| Amores-Casals, S.; Gonçalves, A.O.; Melgarejo, J.-C.; Molist, J.M. (2020) Nb and REE Distribution in the Monte Verde Carbonatite–Alkaline–Agpaitic Complex (Angola). Minerals 10, 5. |
| Amores-Casals, S., Melgarejo, J. C., Bambi, A., Gonçalves, A. O., Morais, E. A., Manuel, J., ... & Molist, J. M. (2019). Lamprophyre-Carbonatite Magma Mingling and Subsolidus Processes as Key Controls on Critical Element Concentration in Carbonatites—The Bonga Complex (Angola). Minerals, 9(10), 601. |
Antarctica | |
| Luttinen, A. V., Zhang, X., & Foland, K. A. (2002). 159 Ma Kjakebeinet lamproites (Dronning Maud Land, Antarctica) and their implications for Gondwana breakup processes. Geological Magazine, 139(5), 525-539. |
Australia | |
| Black, L. P., LP, B., & BL, G. (1978). The age of the mud tank carbonatite, strangways range, northern territory. BMR Journal of Australian Geology and Geophysics, 3, 227-232. Currie, K. L., Knutson, J., & Temby, P. A. (1992). The Mud Tank carbonatite complex, central Australia—an example of metasomatism at mid-crustal levels. Contributions to Mineralogy and Petrology, 109(3), 326-339. Nelson, D. R., Chivas, A. R., Chappell, B. W., & McCulloch, M. T. (1988). Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochimica et Cosmochimica Acta, 52(1), 1-17. Wilson, A. F. (1979). Contrast in the isotopic composition of oxygen and carbon between the Mud Tank Carbonatite and the marbles in the granulite terrane of the Strangways Range, central Australia. Journal of the Geological Society of Australia, 26(1-2), 39-44. |
| Woolley A.R. (2019) Alkaline Rocks and Carbonatites of the World. Part 4: Antarctica, Asia and Europe, p.243. |
| Dunkan, R.K. & Willett, G.C. 1990. Mount Weld carbonatite. Hughes, F. E. (Ed.). (1990). Geology of the mineral deposits of Australia and Papua New Guinea. Australasian Institute of Mining and Metallurgy. Melbourne, 591-597. Middlemost, E. (1990). Mineralogy and petrology of the rauhaugites of the Mt Weld carbonatite complex of Western Australia. Mineralogy and Petrology, 41(2-4), 145-161. Nelson, D. R., Chivas, A. R., Chappell, B. W., & McCulloch, M. T. (1988). Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochimica et Cosmochimica Acta, 52(1), 1-17. |
| Hamilton, R., & Rock, N. M. (1990). Geochemistry, mineralogy and petrology of a new find of ultramafic lamprophyres from Bulljah Pool, Nabberu Basin, Yilgarn Craton, Western Australia. Lithos, 24(4), 275-290. |
| Woolley A.R. (2019) Alkaline Rocks and Carbonatites of the World. Part 4: Antarctica, Asia and Europe, p.244 Jaques et al.(1986): The Kimberlites and Lamproites of Western Australia, Geological Survey of Western Australia (1986) |
| Atkinson, W. J., Hughes, F. E., & Smith, C. B. (1984). A review of the kimberlitic rocks of Western Australia. In Developments in Petrology (Vol. 11, pp. 195-224). Elsevier. Grice, J. D., & Boxer, G. L. (1990). Diamonds from Kimberley, Western Australia. The Mineralogical Record, 21, 559-564. Jaques, A. L., Lewis, J. D., & Smith, C. B. (1986). The Kimberlites and Lamproites of Western Australia: Geol. Surv. West. Aust. Bull, 132. Jaques, A. L., O'Neill, H. S. C., Smith, C. B., Moon, J., & Chappell, B. W. (1990). Diamondiferous peridotite xenoliths from the Argyle (AK1) lamproite pipe, Western Australia. Contributions to Mineralogy and Petrology, 104(3), 255-276. Luguet, A., Jaques, A. L., Pearson, D. G., Smith, C. B., Bulanova, G. P., Roffey, S. L., ... & Lorand, J. P. (2009). An integrated petrological, geochemical and Re–Os isotope study of peridotite xenoliths from the Argyle lamproite, Western Australia and implications for cratonic diamond occurrences. Lithos, 112, 1096-1108. Pidgeon, R. T., Smith, C. B., & Fanning, C. M. (1989). Kimberlite and lamproite emplacement ages in Western Australia. Kimberlites and related rocks, 1, 382-391. |
Belarus | |
| Aizberg, R. Y., Beskopylny, V. N., Starchik, T. A., & Tsekoyeva, T. K. (2001). Late Devonian magmatism in the Pripyat Palaeorift: a geodynamic model. Geological Quarterly, 45(4), 349-358. Mikhailov, N.D. & Laptsevich, A.G. 2009. Lamprophyric rocks of the Devonian alkali igneous complex of Belarus. Geochemistry of Magmatic Rocks, 26, International Conference. Russian Academy of Sciences, Vernadsky Institute of Geochemistry, Moscow, 104-106. Mikhailov, N.D., Laptsevich, A.G. & Vladykin, N.V. 2010. Alkali lamprophyres of the Paleozoic igneous complex of Belarus. Vladykin, N.V. (ed) Deep-Seated Magmatism, its Sources and Plumes. Russian Academy of Sciences, Vinogradov Institute of Geochemistry, Siberian Branch, Irkutsk, 185-197. Veretennikov, N.V. & Laptsevich, A.G. 2007. First carbonatite finding in the platform cover of Belarus. Doklady of the National Academy of Science of Belarus, 51, 84-88. Wilson, M. & Lyashkevich, Z.M. 1996. Magmatism and the geodynamics of rifting of the Pripyat-Dnieper-Donets rift. East European Platform. Tectonophysics, 268, 65-81. |
Brazil | |
| Traversa, G., Gomes, C. B., Brotzu, P., Buraglini, N., Morbidelli, L., Principato, M. S., ... & Ruberti, E. (2001). Petrography and mineral chemistry of carbonatites and mica-rich rocks from the Araxá complex (Alto Paranaíba Province, Brazil). Anais da Academia Brasileira de Ciências, 73(1), 71-98. |
| Comin-Chiaramonti, P., de Barros Gomes, C., Castorina, F., di Censi, P., Antonini, P., Furtado, S., ... & Scheibe, L. F. (2008). Geochemistry and geodynamic implications of the Anitápolis and Lages alkaline-carbonatite complexes, Santa Catarina State, Brazil. Brazilian Journal of Geology, 32(1), 43-58. |
Comin-Chiaramonti, P., de Barros Gomes, C., Castorina, F., di Censi, P., Antonini, P., Furtado, S., ... & Scheibe, L. F. (2008). Geochemistry and geodynamic implications of the Anitápolis and Lages alkaline-carbonatite complexes, Santa Catarina State, Brazil. Brazilian Journal of Geology, 32(1), 43-58. | |
Canada | |
| Chakhmouradian, A. R., Reguir, E. P., & Mitchell, R. H. (2002). Strontium-apatite: New occurrences, and the extent of Sr-for-Ca substitution in apatite-group minerals. The Canadian Mineralogist, 40(1), 121-136. |
| Kamenetsky, V. S., Grütter, H., Kamenetsky, M. B., & Gömann, K. (2013). Parental carbonatitic melt of the Koala kimberlite (Canada): constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate. Chemical Geology, 353, 96-111. |
| Digonnet, S., Goulet, N., Bourne, J., Stevenson, R., and Archibald, D. (2000) Petrology of the Abloviak ailikite dikes, New Québec: evidence for a Cambrian diamondiferous alkaline province in northeastern North America. Canadian Journal of Earth Science: 37: 517-533.; Tappe, S., Jenner, G. A., Foley, S. F., Heaman, L., Besserer, D., Kjarsgaard, B. A., & Ryan, B. (2004). Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline Province. Lithos, 76(1), 491-518. |
China | |
| Jinhua Hao, Jianping Chen, Yongge Tian, Yulong Li, and Jingwu Yin (2010): Geology and Exploration 46(3), 367-376 |
Czech Republic | |
| Ulrych, J., Povondra, P., Pivec, E., Rutšek, J., Bendl, J., & Bilik, I. (1996). Alkaline ultramafic sill at Dvůr Králové nad Labem, eastern Bohemia: petrological and geochemical constraints. Acta Univ. Carol., Geol, 40, 53-79. |
DR Congo | |
| Williams, C. T., Wall, F., Woolley, A. R., & Phillipo, S. (1997). Compositional variation in pyrochlore from the Bingo carbonatite, Zaire. Journal of African Earth Sciences, 25(1), 137-145. doi.org/10.1016/S0899-5362(97)00066-3 Woolley, A. R., Williams, C. T., Wall, F., Garcia, D., & Moute, J. (1995). The Bingo carbonatite-ijolite-nepheline syenite complex, Zaire: geology, petrography, mineralogy and petrochemistry. Journal of African Earth Sciences, 21(3), 329-348. doi.org/10.1016/0899-5362(95)00093-9 |
Finland | |
| Mutanen, T. 2011. Alkalikiviä ja appiniitteja. Raportti hankkeen " Magmatismi ja malminmuodostus II" toiminnasta 2002-2005. |
| H. Vartiainen, A.R. Woolley (1974) The age of the Sokli carbonatite, Finland and some relationships of the North Atlantic Igneous Province. Bull. Geol. Soc. Finl. vol 46, 81- 91, Kononova, V. A., Shanin, L. L., & Arakelyants, M. M. (1974). Times of formation of alkaline massifs and carbonatites. International Geology Review, 16(10), 1119-1130. H. Vartiainen, A.R. Woolley (1976) The petrology, mineralogy and chemistry of the fenites of the Sokli carbonatite intrusion, Finland. Geol. Surv. of Finland, Bull. 280 Mäkelä, M., & Vartiainen, H. (1978). A study of sulfur isotopes in the Sokli multi-stage carbonatite (Finland). Chemical Geology, 21(3-4), 257-265. Vartiainen, H., Kresten, P., & Kafkas, Y. (1978). Alkaline lamprophyres from the Sokli complex, northern Finland. Bull. Geol. Soc. Finland, 50(1-2), 59-68. Vartiainen, H. E. I. K. K. I., & Paarma, H. E. I. K. K. I. (1979). Geological characteristics of the Sokli carbonatite complex, Finland. Economic Geology, 74(5), 1296-1306. Vartiainen, H. (1980). The petrography, mineralogy and petrochemistry of the Sokli carbonatite massif, northern Finland. Bulletin of Geological Survey of Finland. Heinänen, K., & VARTIAINEN, H. (1981). Magnetite in Sokli carbonatite Massif and in Tulppio olivinite. Bull. Geol. Soc. Finland, 53, 83-90. Lapin, A. V., & Vartiainen, H. (1983). Orbicular and spherulitic carbonatites from Sokli and Vuorijärvi. Lithos, 16(1), 53-60. Vartiainen, H. (1989). The phosphate deposits of the Sokli Carbonatite Complex, Finland. In Phosphate deposits of the world. Phosphate rock resources (pp. 398-402). Kramm, U. (1993). Mantle components of carbonatites from the Kola Alkaline Province, Russia and Finland: a Nd-Sr study. European Journal of Mineralogy, 985-990. Kramm, U., Kogarko, L. N., Kononova, V. A., & Vartiainen, H. (1993). The Kola Alkaline Province of the CIS and Finland: Precise Rb Sr ages define 380–360 Ma age range for all magmatism. Lithos, 30(1), 33-44. Albers, K.-H., Woolley, A.R., Garcia, D. & Sonnet, P. 1998. Development of new technology for utilisation of the unique Nb deposit at Sokli, Finland, for the European super-alloy industry. Ingrid, H. K. (1998). Rare earth elements in sövitic carbonatites and their mineral phases. Journal of Petrology, 39(11-12), 2105-2121. Lee, M. J., Garcia, D., Moutte, J., Wall, F., Williams, C. T., Woolley, A. R., & Stanley, C. J. (1999). Pyrochlore and whole rock chemistry of carbonatites and phoscorites at Sokli, Finland. Pp. 651-653 in: Mineral Deposits: Processes to Processing (CJ Stanley et al., editors), 1. Lee, M. J., Garcia, D., Moutte, J., Williams, C. T., & Wall, F. (2004). Carbonatites and phoscorites from the Sokli Complex, Finland. Phoscorites and Carbonatites from Mantle to Mine: the Key Example of the Kola Alkaline Province”, eds. F. Wall and AN Zaitev, The Mineralogical Society of Great Britain and Ireland, London, 133-162. Lee, M. J., Lee, J. I., Garcia, D., Moutte, J., Williams, C. T., Wall, F., & Kim, Y. (2006). Pyrochlore chemistry from the Sokli phoscorite-carbonatite complex, Finland: implications for the genesis of phoscorite and carbonatite association. Geochemical Journal, 40(1), 1-13. Lee, M. J., Lee, J. I., Garcia, D., Moutte, J., Williams, C. T., Wall, F., & Kim, Y. (2006). Pyrochlore chemistry from the Sokli phoscorite-carbonatite complex, Finland: implications for the genesis of phoscorite and carbonatite association. Geochemical Journal, 40(1), 1-13. Rukhlov, A. S., & Bell, K. (2010). Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: clues to mantle evolution. Mineralogy and Petrology, 98(1-4), 11-54. O’Brien, H., & Hyvönen, E. (2015). The Sokli carbonatite complex. In Mineral deposits of Finland (pp. 305-325). Elsevier. Woolley A.R. (2019) Alkaline Rocks and Carbonatites of the World. Part 4: Antarctica, Asia and Europe, p.315 Proceedings of the First Annual Workshop (Eurothen '98), Athens, Greece, National Technical University of Athens, Athens, 449-472. |
| Nykanen, J., Laajoki, K., & Karhu, J. (1997). Geology and geochemistry of the early Proterozoic Kortejarvi and Laivajoki carbonatites, central Fennoscandian Shield, Finland. Bulletin of the Geological Society of Finland, 69, 1-2. Kresten, P., Printzlau, I., Rex, D., Vartiainen, H., & Woolley, A. (1977). New ages of carbonatitic and alkaline ultramafic rocks from Sweden and Finland. Geologiska Föreningen i Stockholm Förhandlingar, 99(1), 62-65. O'Brien, H. E., Peltonen, P., & Vartiainen, H. (2005). Kimberlites, carbonatites, and alkaline rocks. In Developments in Precambrian Geology (Vol. 14, pp. 605-644). Elsevier. |
| Basu, A. R., Goodwin, A. M., & Tatsumoto, M. (1984). SmNd study of Archean alkalic rocks from the Superior Province of the Canadian Shield. Earth and planetary science letters, 70(1), 40-46. Ingrid, H. K. (1998). Rare earth elements in sövitic carbonatites and their mineral phases. Journal of Petrology, 39(11-12), 2105-2121. Kononova, V. A., Shanin, L. L., & Arakelyants, M. M. (1974). Times of formation of alkaline massifs and carbonatites. International Geology Review, 16(10), 1119-1130. O'Brien, H. E., Peltonen, P., & Vartiainen, H. (2005). Kimberlites, carbonatites, and alkaline rocks. In Developments in Precambrian Geology (Vol. 14, pp. 605-644). Elsevier. O’Brien, H., Heilimo, E., & Heino, P. (2015). The Archean Siilinjärvi carbonatite complex. In Mineral deposits of Finland (pp. 327-343). Elsevier. Patchett, P. J., Kouvo, O., Hedge, C. E., & Tatsumoto, M. (1982). Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 78(3), 279-297. Puustinen, K. 1971. Geology of the Siilinjarvi carbonatite complex, eastern Finland. Bulletin e la Comission Geologique de Finlande, 249, 1-43. Puustinen, K. (1972). Richterite and actinolite from the Siilinjarvi carbonatite complex, Finland. Bull Geol Soc Finland, 44, 83-86. Puustinen, K. A. U. K. O. (1973). Tetraferriphlogopite from the Siilinjärvi carbonatite complex, Finland. Bulletin of the Geological Society of Finland, 45, 35-42. Puustinen, K. (1974). DOLOMITE EXSOLUTION TEXTURES IN CALCITE FROM THE SIILINJAERVI CARBONATITE COMPLEX, FINLAND, 46, 151-159. Puustinnen, K. & Kauppinen, H. 1989. The Siilinjarvi carbonatite complex, eastern Finland. Notholt, A. J. G., Sheldon, R. P., & Davidson, D. F. (Eds.). (2005). Phosphate deposits of the world: volume 2, phosphate rock resources (Vol. 2). Cambridge University Press. 394-397. Rukhlov, A. S., & Bell, K. (2010). Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: clues to mantle evolution. Mineralogy and Petrology, 98(1-4), 11-54. Tichomirowa, M., Whitehouse, M. J., Gerdes, A., Götze, J., Schulz, B., & Belyatsky, B. V. (2013). Different zircon recrystallization types in carbonatites caused by magma mixing: Evidence from U–Pb dating, trace element and isotope composition (Hf and O) of zircons from two Precambrian carbonatites from Fennoscandia. Chemical Geology, 353, 173-198. Tilton, G. R. (1983). Evolution of depleted mantle: the lead perspective. Geochimica et Cosmochimica Acta, 47(7), 1191-1197. |
Puustinen, K. A. U. K. O. (1973). Tetraferriphlogopite from the Siilinjärvi carbonatite complex, Finland. Bull. Geol. Soc. Finland, 45, 35-42. | |
India | |
| Kaur, G., & Mitchell, R. H. (2013). Mineralogy of the P2-West ‘Kimberlite’, Wajrakarur kimberlite field, Andhra Pradesh, India: kimberlite or lamproite?. Mineralogical Magazine, 77(8), 3175-3196. |
| Bergman, S. C. (1987). Lamproites and other potassium-rich igneous rocks: a review of their occurrence, mineralogy and geochemistry. Geological Society, London, Special Publications, 30(1), 103-190. |
| Basu, S. K., & Narsayya, B. L. (1982). Note on a zone of probable carbonatite-alkali metasomatic rock associotion in the eastern part of Khetri copper belt, Northeastern Rajasthan. Indian Minerals, 36(1), 29-31. Saxena, M. N., Gupta, L. N., & CHAUDHRI, N. (1984). Carbonatite dikes in Dhanota-Dhancholi hills, Narnaul, Haryana. Current science, 53(12), 651-652. |
| Subrahmanyam, N. P., & Rao, G. V. D. (1977). Petrography, geochemistry and origin of the carbonatite veins of Mer pluton, Mundwara igneous complex, Rajasthan. Geological Society of India, 18(7), 306-322. LE-BAS, M. J., & Srivastava, R. K. (1989). The mineralogy and geochemistry of the Mundwara carbonatite dykes, Sirohi District, Rajasthan, India. Neues Jahrbuch für Mineralogie. Abhandlungen, (2), 207-227. Subrahmanyam, N. P., & Leelanandam, C. (1991). Geochemistry and petrology of the cumulophyric layered suite of rocks from the Toa pluton of the Mundwara alkali igneous complex, Rajasthan. Journal of the Geological Society of India, 38(4), 397-411. Narayan Das, G.R., Sharma, C.V. & Navaneetham, K.V. 1982. Carbonate-alkaline Complex of Mundwara. Journal of the Geological Society of India, 23, 604-609. |
| Kaur, G., Mitchell, R. H., & Ahmed, S. (2016). Typomorphic mineralogy of the Vattikod lamproites from Mesoproterozoic Ramadugu Lamproite Field, Nalgonda District, Telangana, India: A plausible manifestation of subduction-related alkaline magmatism in the Eastern Ghats Mobile Belt?. |
| Mitchell, R. H. & Fareeduddin (2009). Mineralogy of peralkaline lamproites from the Raniganj Coalfield, India. Mineralogical Magazine, 73, 457-477. Middlemost, E. A., Paul, D. K., & Fletcher, I. R. (1988). Geochemistry and mineralogy of the minette-lamproite association from the Indian Gondwanas. Lithos, 22(1), 31-42. |
Norway | |
| Zozulya, D.R., Savchenko, E. E., Kullerud, K.,Ravna, E. K. and L. M. Lyalina (2010) Unique accessory Ti-Ba-P mineralization in the Kvalöya ultrapotassic dike, Northern Norway. Geology of Ore Deposits 52, 843-851; Schingaro, E., Kullerud, K., Lacalamita, M., Mesto, E., Scordari, F., Zozulya, D., Erambert, M., Ravna, E.J.K. (2014): Yangzhumingite and phlogopite from the Kvaløya lamproite (North Norway): Structure, composition and origin. Lithos, 209, 1-13 |
Zozulya, D.R., Savchenko, E. E., Kullerud, K.,Ravna, E. K. and L. M. Lyalina (2010) Unique accessory Ti-Ba-P mineralization in the Kvalöya ultrapotassic dike, Northern Norway. Geology of Ore Deposits 52, 843-851; Schingaro, E., Kullerud, K., Lacalamita, M., Mesto, E., Scordari, F., Zozulya, D., Erambert, M., Ravna, E.J.K. (2014): Yangzhumingite and phlogopite from the Kvaløya lamproite (North Norway): Structure, composition and origin. Lithos, 209, 1-13 | |
| Mitchell, R.H. (1980): Pyroxenes of the Fen alkaline complex, Norway. American Mineralogist. 65: 45-54 |
| Mitchell, R.H. (1980): Pyroxenes of the Fen alkaline complex, Norway. American Mineralogist. 65: 45-54 |
Russia | |
| Nedosekova, I.L. (2007): Geology of Ore Deposits 49(2), 129-146. |
| Koneva A.A., Konev A.A., Vladykin N.V. (2010) Vein complex of the Biraya carbonatite deposit. in Abstracts of XXVII International conference School «Geochemistry of Alkaline rocks». – Moscow-Koktebel’. pp. 240 pp. |
| Lennikov, A. M., Zalishak, B. L., & Oktyabrsky, R. A. (2004). The Konder massif of ultramafic and alkaline rocks and related PGM mineralization. In Interim IAGOD Conf. Excursion Guidebook. Vladivostok: Dalnauka (p. 29). |
| Ras, I. K. U., Nedosekova IL, Udoratina OV, Vladykin NV, Pribavkin SV. (2011) Geochemistry and petrochemistry of carbonatites and dyke ultrabasites of Chetlassky complex (Timan, Russia). Abstracts of International conference Ore potential of alkaline, kimberlite and carbonatite magmatism |
| Zaitsev, A. N., Williams, C. T., Jeffries, T. E., Strekopytov, S., Moutte, J., Ivashchenkova, O. V., ... & Borozdin, A. P. (2014). Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes. Ore Geology Reviews, 61, 204-225.; Mikhailova, J. A., Kalashnikov, A. O., Sokharev, V. A., Pakhomovsky, Y. A., Konopleva, N. G., Yakovenchuk, V. N., ... & Ivanyuk, G. Y. (2016). 3D mineralogical mapping of the Kovdor phoscorite–carbonatite complex (Russia). Mineralium Deposita, 51(1), 131-149. |
P Haas collection | |
World of Stones 95: 5-6, 64.; Rimskaya-Korsakova O.M. and Sokolova E.P. (1964) ZVMO, 93(4), p.411 (in Rus.).; Jambor, J.L. and Roberts, A.C. (2001) New mineral names. American Mineralogist: 86: 197-200. | |
Mikhailova, J. A., Kalashnikov, A. O., Sokharev, V. A., Pakhomovsky, Y. A., Konopleva, N. G., Yakovenchuk, V. N., ... & Ivanyuk, G. Y. (2016). 3D mineralogical mapping of the Kovdor phoscorite–carbonatite complex (Russia). Mineralium Deposita, 51(1), 131-149. | |
www.koeln.netsurf.de/~w.steffens/lovo.htm | |
| www.koeln.netsurf.de/~w.steffens/vuori.htm; Sokolov, S. V. (2014). Portlandite in rocks of carbonatite massifs. Geochemistry International, 52(8), 698-701. |
| www.koeln.netsurf.de/~w.steffens/tury.htm; Liferovich, R. P., Mitchell, R. H., Zozulya, D. R., & Shpachenko, A. K. (2006). Paragenesis and composition of banalsite, stronalsite, and their solid solution in nepheline syenite and ultramafic alkaline rocks. The Canadian Mineralogist, 44(4), 929-942. |
| Putintseva, E. V., & Spiridonov, E. M. (2017). Allanite-(Ce): a Typical Mineral of Metakimberlite from the Lake Kimozero Area, Karelia. Geology of Ore Deposits, 59(8), 720-728. |
| Sharygin I.S., Golovin A.V. (2001) Origin of djerfisherite in mantle xenoliths and its relation to kimberlite magmatism. Abstracts of XXVII International conference School «Geochemistry of Alkaline rocks». – Moscow-Koktebel’. pp. 240 pp. ; Sharygin, I. S., Golovin, A. V., Korsakov, A. V., & Pokhilenko, N. P. (2013). Eitelite in sheared peridotite xenoliths from Udachnaya-East kimberlite pipe (Russia)–a new locality and host rock type. European Journal of Mineralogy, 25(5), 825-834.; Sharygin, V. V., Kamenetsky, V. S., & Kamenetsky, M. B. (2008). Potassium sulfides in kimberlite-hosted chloride–“nyerereite” and chloride clasts of Udachnaya-East pipe, Yakutia, Russia. The Canadian Mineralogist, 46(4), 1079-1095.; Rezvukhin, D.I.; Alifirova, T.A.; Golovin, A.V.; Korsakov, A.V. (2020) A Plethora of Epigenetic Minerals Reveals a Multistage Metasomatic Overprint of a Mantle Orthopyroxenite from the Udachnaya Kimberlite. Minerals 10, 264. |
| Sharygin, V. V. (2016) Secondary olivine-hosted inclusions in calcite-dolomite carbonatite of the Belaya Zima alkaline massif, Eastern Sayan, Russia: Evidence for Na-rich carbonatite composition. Asian Current Research On Fluid Inclusions (ACROFI-VI), Indian Institute of Technology Bombay; Doroshkevich, A. G., Veksler, I. V., Izbrodin, I. A., Ripp, G. S., Khromova, E. A., Posokhov, V. F., ... & Vladykin, N. V. (2016). Stable isotope composition of minerals in the Belaya Zima plutonic complex, Russia: Implications for the sources of the parental magma and metasomatizing fluids. Journal of Asian Earth Sciences, 116, 81-96. |
Serbia | |
| Cvetković, V., Prelević, D., Downes, H., Jovanović, M., Vaselli, O., & Pécskay, Z. (2004). Origin and geodynamic significance of Tertiary postcollisional basaltic magmatism in Serbia (central Balkan Peninsula). Lithos, 73(3-4), 161-186. Prelević, D., Foley, S. F., Romer, R. L., Cvetković, V., & Downes, H. (2005). Tertiary ultrapotassic volcanism in Serbia: constraints on petrogenesis and mantle source characteristics. Journal of Petrology, 46(7), 1443-1487. Glišic, M. 1959. Pojava kajanita iz okoline Bogovine u Istočnoj Serbiji. Bulletin du Service Géologique et Géophysique de la R.P. de Serbie, Beograd, 17, 115-121 [English abstract]. |
South Africa | |
| Kamenetsky, V. S., Belousova, E. A., Giuliani, A., Kamenetsky, M. B., Goemann, K., & Griffin, W. L. (2014). Chemical abrasion of zircon and ilmenite megacrysts in the Monastery kimberlite: Implications for the composition of kimberlite melts. Chemical Geology, 383, 76-85. |
| Henrietta Farr, Andrea Giuliani, David Phillips (2018) Melt evolution of the Finsch orangeite, South Africa. in abstracts of the 22nd IMA Meeting Melbourne p 423 |
Sweden | |
| Nysten, P., Holtstam, D. and Jonsson, E. (1999) The Långban minerals. In Långban - The mines,their minerals, geology and explorers (D. Holtstam and J. Langhof, eds.), Swedish Museum of Natural History and Raster Förlag, Stockholm & Chr. Weise Verlag, Munich, pp. 89-183. |
Ukraine | |
| Ryabchikov, I.D., Kogarko, L.N., Krivdik, S.G., and Ntaflos, T. (2008): Geology of Ore Deposits 50(6), 423-432. |
USA | |
| Scott Smith, B. H. and Skinner, E. H. W. (1984): Kimberlite and American Mines, near Prairie Creek, Arkansas, in Kornprobst, J. ed.: Kimberlite III: documents (Annales Sci. L'Universite de Clermont Fd. 74, pt. 1, pp. 27-36). |
Venezuela | |
| Sharygin, V. V., Sobolev, N. V., & Channer, D. M. D. (2009). Oscillatory-zoned crystals of pyrochlore-group minerals from the Guaniamo kimberlites, Venezuela. Lithos, 112, 976-985. |
Kovdor Zheleznyi Mine, Kovdor Massif, Murmansk Oblast, Russia