Tilleyite
This page is currently not sponsored. Click here to sponsor this page.
About Tilleyite
Formula:
Ca5(Si2O7)(CO3)2
Colour:
Colourless, white
Lustre:
Vitreous
Crystal System:
Monoclinic
Name:
Named after Cecil Edgar Tilley (May 14, 1894 Unley, Adelaide, South Australia - January 24, 1973 Cambridge, UK), Professor of Petrology, University of Cambridge (England).
This page provides mineralogical data about Tilleyite.
Classification of Tilleyite
Approved, 'Grandfathered' (first described prior to 1959)
8/C.09-20
9.BE.82
9 : SILICATES (Germanates)
B : Sorosilicates
E : Si2O7 groups, with additional anions; cations in octahedral [6] and greater coordination
9 : SILICATES (Germanates)
B : Sorosilicates
E : Si2O7 groups, with additional anions; cations in octahedral [6] and greater coordination
56.2.9.1
56 : SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
2 : Si2O7 Groups and O, OH, F, and H2O with cations in [4] and/or >[4] coordination
56 : SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
2 : Si2O7 Groups and O, OH, F, and H2O with cations in [4] and/or >[4] coordination
17.4.1
17 : Silicates Containing other Anions
4 : Silicates with carbonates
17 : Silicates Containing other Anions
4 : Silicates with carbonates
Physical Properties of Tilleyite
Vitreous
Colour:
Colourless, white
Optical Data of Tilleyite
Type:
Biaxial (+)
RI values:
nα = 1.612 - 1.617 nβ = 1.632 - 1.635 nγ = 1.652 - 1.654
2V:
Measured: 85° to 90°, Calculated: 88° to 90°
Max Birefringence:
δ = 0.040

Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
and does not take into account mineral colouration.
Surface Relief:
Moderate
Dispersion:
r < v
Chemical Properties of Tilleyite
Formula:
Ca5(Si2O7)(CO3)2
IMA Formula:
Ca5Si2O7(CO3)2
Elements listed:
Crystallography of Tilleyite
Crystal System:
Monoclinic
Cell Parameters:
a = 15.1 Å, b = 10.24 Å, c = 7.57 Å
β = 105.17°
β = 105.17°
Ratio:
a:b:c = 1.475 : 1 : 0.739
Unit Cell V:
1,129.72 ų (Calculated from Unit Cell)
Crystal Structure
Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File Best | x | y | z | a | b | c
CIF File Best | x | y | z | a | b | c
Rotation
Stop | Start
Stop | Start
Labels
Console Off | On | Grey | Yellow
Console Off | On | Grey | Yellow
Data courtesy of the American Mineralogist Crystal Structure Database. Click on an AMCSD ID to view structure
ID | Species | Reference | Link | Year | Locality | Pressure (GPa) | Temp (K) |
---|---|---|---|---|---|---|---|
0006060 | Tilleyite | Grice J D (2005) The structure of spurrite, tilleyite and scawtite, and relationships to other silicate-carbonate minerals The Canadian Mineralogist 43 1489-1500 | ![]() | 2005 | Cornet Hill, Apuseni Mountains, Romania | 0 | 293 |
0009150 | Tilleyite | Smith J V (1953) The crystal structure of tilleyite Acta Crystallographica 6 9-18 | ![]() | 1953 | 0 | 293 |
CIF Raw Data - click here to close
X-Ray Powder Diffraction
Image Loading
Radiation - Copper Kα
Data courtesy of RRUFF project at University of Arizona, used with permission.
Type Occurrence of Tilleyite
Other Language Names for Tilleyite
Common Associates
Associated Minerals Based on Photo Data:
4 photos of Tilleyite associated with Vesuvianite | Ca19Fe3+Al4(Al6Mg2)(◻4)◻[Si2O7]4[(SiO4)10]O(OH)9 |
4 photos of Tilleyite associated with Wollastonite | CaSiO3 |
1 photo of Tilleyite associated with Calcite | CaCO3 |
1 photo of Tilleyite associated with Magnetite | Fe2+Fe3+2O4 |
Related Minerals - Nickel-Strunz Grouping
9.BE. | Betalomonosovite | Na6◻4Ti4(Si2O7)2[PO3OH][PO2(OH)2]O2(OF) | Tric. 1 : P1 |
9.BE. | Bobshannonite | Na2KBa(Mn,Na)8(Nb,Ti)4(Si2O7)4O4(OH)4(O,F)2 | Tric. |
9.BE. | Calciomurmanite | (Na,◻)2Ca(Ti,Mg,Nb)4[Si2O7]2O2(OH,O)2(H2O)4 | Tric. 1 : P1 |
9.BE. | Batievaite-(Y) | Y2Ca2Ti(Si2O7)2(OH)2(H2O)4 | Tric. 1 : P1 |
9.BE. | Delhuyarite-(Ce) | Ce4Mg(Fe3+,W)3◻(Si2O7)2O6(OH)2 | Mon. 2/m : B2/m |
9.BE.X | Asimowite | Fe2+4O(Si2O7) | Orth. mmm (2/m 2/m 2/m) : Imma |
9.BE.02 | Wadsleyite | Mg4O(Si2O7) | Orth. |
9.BE.05 | Hennomartinite | SrMn3+2(Si2O7)(OH)2 · H2O | Orth. |
9.BE.05 | Lawsonite | CaAl2(Si2O7)(OH)2 · H2O | Orth. mmm (2/m 2/m 2/m) : Cmcm |
9.BE.05 | Noelbensonite | BaMn3+2(Si2O7)(OH)2 · H2O | Orth. |
9.BE.05 | Itoigawaite | SrAl2(Si2O7)(OH)2 · H2O | Orth. |
9.BE.07 | Ilvaite | CaFe3+Fe2+2(Si2O7)O(OH) | Orth. mmm (2/m 2/m 2/m) |
9.BE.07 | Manganilvaite | CaFe2+Fe3+Mn2+(Si2O7)O(OH) | Mon. 2/m : P21/b |
9.BE.10 | Suolunite | Ca2(H2Si2O7) · H2O | Orth. |
9.BE.12 | Jaffeite | Ca6(Si2O7)(OH)6 | Trig. 3 : P3 |
9.BE.15 | Fresnoite | Ba2Ti(Si2O7)O | Tet. 4mm : P4bm |
9.BE.17 | Baghdadite | Ca6Zr2(Si2O7)2O4 | Mon. 2/m : P21/b |
9.BE.17 | Burpalite | Na2CaZr(Si2O7)F2 | Mon. |
9.BE.17 | Cuspidine | Ca4(Si2O7)(F,OH)2 | Mon. 2/m : P21/b |
9.BE.17 | Hiortdahlite | Na2Ca4(Ca0.5Zr0.5)Zr(Si2O7)2OF3 | Tric. 1 : P1 |
9.BE.17 | Janhaugite | (Na,Ca)3(Mn2+,Fe2+)3(Ti,Zr,Nb)2(Si2O7)2O2(OH,F)2 | Mon. 2/m : P21/m |
9.BE.17 | Låvenite | (Na,Ca)2(Mn2+,Fe2+)(Zr,Ti)(Si2O7)(O,OH,F)2 | Mon. 2/m : P21/b |
9.BE.17 | Niocalite | (Ca,Nb)4(Si2O7)(O,OH,F)2 | Mon. |
9.BE.17 | Normandite | NaCa(Mn,Fe)(Ti,Nb,Zr)(Si2O7)OF | Mon. 2/m : P21/b |
9.BE.17 | Wöhlerite | NaCa2(Zr,Nb)(Si2O7)(O,OH,F)2 | Mon. 2 : P21 |
9.BE.17 | Hiortdahlite I | Na4Ca8Zr2(Nb,Mn,Ti,Fe,Mg,Al)2(Si2O7)4O3F5 | Tric. 1 : P1 |
9.BE.20 | Mosandrite-(Ce) | (Ca3REE)[(H2O)2Ca0.5◻0.5]Ti(Si2O7)2(OH)2(H2O)2 | Mon. 2/m : P21/b |
9.BE.20 | Nacareniobsite-(Ce) | NbNa3Ca3(Ce,REE )(Si2O7)2OF3 | Mon. |
9.BE.22 | Götzenite | NaCa6Ti(Si2O7)2OF3 | Tric. 1 : P1 |
9.BE.22 | Hainite-(Y) | Na2Ca4(Y,REE)Ti(Si2O7)2OF3 | Tric. 1 : P1 |
9.BE.22 | Rosenbuschite | Na6Ca6Zr3Ti(Si2O7)4O2F6 | Tric. 1 : P1 |
9.BE.22 | Kochite | Na3Ca2MnZrTi(Si2O7)2OF3 | Tric. 1 : P1 |
9.BE.23 | Dovyrenite | Ca6Zr(Si2O7)2(OH)4 | Orth. mmm (2/m 2/m 2/m) : Pnnm |
9.BE.25 | Barytolamprophyllite | (Ba,Na)2(Na,Ti,Fe3+)4Ti2(Si2O7)2O(OH,F) | Mon. |
9.BE.25 | Ericssonite | BaMn2+2Fe3+(Si2O7)O(OH) | Mon. 2/m : B2/m |
9.BE.25 | Lamprophyllite | (Na,Mn2+)3(Sr,Na)2(Ti,Fe3+)3(Si2O7)2O2(OH,O,F)2 | Mon. |
9.BE.25 | Ericssonite-2O | BaMn2+2Fe3+(Si2O7)O(OH) | Orth. |
9.BE.25 | Seidozerite | Na4MnZr2Ti(Si2O7)2O2F2 | Mon. |
9.BE.25 | Nabalamprophyllite | Na3(Ba,Na)2Ti3(Si2O7)2O2(OH,F)2 | Mon. 2/m |
9.BE.25 | Grenmarite | Na4MnZr3(Si2O7)2O2F2 | Mon. 2/m : P2/b |
9.BE.25 | Schüllerite | Ba2Na(Mn,Ca)(Fe3+,Mg,Fe2+)2Ti2(Si2O7)2(O,F)4 | Tric. 1 : P1 |
9.BE.25 | Lileyite | Ba2(Na,Fe,Ca)3MgTi2(Si2O7)2O2F2 | Mon. 2/m : B2/m |
9.BE.25 | Emmerichite | Ba2Na(Na,Fe2+)2(Fe3+,Mg)Ti2(Si2O7)2O2F2 | Mon. 2/m : B2/m |
9.BE.25 | Fluorbarytolamprophyllite | (Ba,Sr)2[(Na,Fe2+)3(Ti,Mg)F2][Ti2(Si2O7)2O2] | Mon. 2/m : B2/m |
9.BE.27 | Murmanite | Na2Ti2(Si2O7)O2 · 2H2O | Tric. |
9.BE.30 | Epistolite | Na2(Nb,Ti)2(Si2O7)O2 · nH2O | Tric. |
9.BE.32 | Lomonosovite | Na5Ti2(Si2O7)(PO4)O2 | Tric. 1 : P1 |
9.BE.35 | Vuonnemite | Na11Ti4+Nb2(Si2O7)2(PO4)2O3(F,OH) | Tric. |
9.BE.37 | Sobolevite | Na13Ca2Mn2Ti3(Si2O7)2(PO4)4O3F3 | Mon. m : Pb |
9.BE.40 | Innelite | Na2CaBa4Ti3(Si2O7)2(SO4)2O4 | Tric. 1 : P1 |
9.BE.40 | Phosphoinnelite | Na3Ba4Ti3(Si2O7)2(PO4,SO4)2O2F | Tric. |
9.BE.42 | Yoshimuraite | Ba2Mn2Ti(Si2O7)(PO4)O(OH) | Tric. 1 : P1 |
9.BE.45 | Quadruphite | Na14Ca2Ti4(Si2O7)2(PO4)2O2F | Tric. |
9.BE.47 | Polyphite | Na5(Na4Ca2)Ti2(Si2O7)(PO4)3O2F2 | Tric. 1 : P1 |
9.BE.50 | Bornemanite | Na6BaTi2Nb(Si2O7)2(PO4)O2(OH)F | Tric. 1 : P1 |
9.BE.50 | Shkatulkalite | Na5(Nb1-xTix)2(Ti1-yMn2+y)[Si2O7]2O2(OH)2 · nH2O | Mon. 2/m : P2/m |
9.BE.55 | Bafertisite | Ba2Fe2+4Ti2(Si2O7)2O2(OH)2F2 | Tric. |
9.BE.55 | Hejtmanite | Ba2Mn2+4Ti2(Si2O7)2O2(OH)2F2 | Tric. 1 |
9.BE.55 | Bykovaite | (Ba,Na,K)2(Na,Ti,Mn)4(Ti,Nb)2(Si2O7)2O2(H2O,F,OH)2 · 3.5H2O | Mon. 2/m |
9.BE.55 | Nechelyustovite | (Ba,Sr,K)2(Na,Ti,Mn)4(Ti,Nb)2(Si2O7)2O2(O,H2O,F)2 · 4.5H2O | Mon. 2/m : B2/m |
9.BE.60 | Delindeite | (Na,K)2(Ba,Ca)2(Ti,Fe,Al)3(Si2O7)2O2(OH)2 · 2H2O | Mon. |
9.BE.65 | Bussenite | Na2Ba2Fe2+Ti(Si2O7)(CO3)(OH)3F | Tric. 1 : P1 |
9.BE.67 | Jinshajiangite | BaNaFe2+4Ti2(Si2O7)2O2(OH)2F | Tric. 1 : P1 |
9.BE.67 | Perraultite | BaNaMn2+4Ti2(Si2O7)2O2(OH)2F | Mon. 2/m : B2/m |
9.BE.70 | Karnasurtite-(Ce) | (Ce,La,Th)(Ti,Nb)(Al,Fe)(Si2O7)(OH)4 · 3H2O | Amor. |
9.BE.70 | Perrierite-(Ce) | Ce4MgFe3+2Ti2(Si2O7)2O8 | Mon. 2/m : P21/b |
9.BE.70 | Strontiochevkinite | (Sr,La,Ce,Ca)4Fe2+(Ti,Zr)2Ti2(Si2O7)2O8 | Mon. |
9.BE.70 | Chevkinite-(Ce) | (Ce,La,Ca,Th)4(Fe2+,Mg)(Fe2+,Ti,Fe3+)2(Ti,Fe3+)2(Si2O7)2O8 | Mon. 2/m : P21/b |
9.BE.70 | Polyakovite-(Ce) | (Ce,Ca)4(Mg,Fe2+)(Cr3+,Fe3+)2(Ti,Nb)2(Si2O7)2O8 | Mon. 2/m : B2/m |
9.BE.70 | Rengeite | Sr4ZrTi4(Si2O7)2O8 | Mon. 2/m : P21/b |
9.BE.70 | Matsubaraite | Sr4Ti5(Si2O7)2O8 | Mon. 2/m : P21/b |
9.BE.70 | Dingdaohengite-(Ce) | (Ce,La)4Fe2+(Ti,Fe2+,Mg,Fe2+)2Ti2(Si2O7)2O8 | Mon. 2/m : P21/b |
9.BE.70 | Maoniupingite-(Ce) | (Ce,Ca)4(Fe3+,Ti,Fe2+,◻)(Ti,Fe3+,Fe2+,Nb)4(Si2O7)2O8 | Mon. 2/m : B2/m |
9.BE.70 | Perrierite-(La) | (La,Ce,Ca)4(Fe,Mn2+,Mg)Fe3+2(Ti,Fe3+)2(Si2O7)2O8 | Mon. 2/m : P21/b |
9.BE.70 | UM2008-53-SiO:SrTiZr | Sr4ZrTi4(Si2O7)2O8 | Orth. mmm (2/m 2/m 2/m) : Pbca |
9.BE.70 | Hezuolinite | (Sr,REE)4Zr(Ti,Fe3+)4(Si2O7)2O8 | Mon. 2/m : B2/m |
9.BE.72 | Fersmanite | Ca4(Na,Ca)4(Ti,Nb)4(Si2O7)2O8F3 | Tric. |
9.BE.75 | Belkovite | Ba3(Nb,Ti)6(Si2O7)2O12 | Hex. |
9.BE.77 | Nasonite | Pb6Ca4(Si2O7)3Cl2 | Hex. |
9.BE.80 | Kentrolite | Pb2Mn3+2(Si2O7)O2 | Orth. mmm (2/m 2/m 2/m) : Pbcm |
9.BE.80 | Melanotekite | Pb2Fe3+2(Si2O7)O2 | Orth. 2 2 2 : C2 2 21 |
9.BE.85 | Killalaite | Ca6.4(H0.6Si2O7)2(OH)2 | Mon. |
9.BE.87 | Stavelotite-(La) | (La,Nd,Ca)3Mn2+3Cu(Mn3+,Fe3+,Mn4+)26(Si2O7)6O30 | Trig. 3 : P31 |
9.BE.90 | Biraite-(Ce) | Ce2Fe2+(Si2O7)(CO3) | Mon. 2/m : P21/b |
9.BE.92 | Cervandonite-(Ce) | (Ce,Nd,La)(Fe3+,Fe2+,Ti,Al)3O2(Si2O7)(As3+O3)(OH) | Trig. 3m : R3m |
9.BE.95 | Batisivite | BaV3+8Ti6(Si2O7)O22 | Tric. 1 : P1 |
Related Minerals - Dana Grouping (8th Ed.)
56.2.9.2 | Killalaite | Ca6.4(H0.6Si2O7)2(OH)2 | Mon. |
56.2.9.3 | Foshallasite | Ca3[Si2O7] · 3H2O(?) |
Related Minerals - Hey's Chemical Index of Minerals Grouping
17.4.2 | Spurrite | Ca5(SiO4)2(CO3) | Mon. |
17.4.3 | Paraspurrite | Ca5(SiO4)2(CO3) | Mon. |
17.4.4 | Scawtite | Ca7(Si3O9)2CO3 · 2H2O | Mon. 2/m |
17.4.5 | Fukalite | Ca4[Si2O6][CO3](OH)2 | Mon. 2/m : P21/b |
17.4.6 | Meionite | Ca4Al6Si6O24CO3 | Tet. 4/m : I4/m |
17.4.7 | Cancrinite | (Na,Ca,◻)8(Al6Si6O24)(CO3,SO4)2 · 2H2O | Hex. 6 : P63 |
17.4.8 | Carletonite | KNa4Ca4Si8O18(CO3)4(OH,F) · H2O | Tet. 4/mmm (4/m 2/m 2/m) : P4/mbm |
17.4.9 | Iimoriite-(Y) | Y2[SiO4][CO3] | Tric. |
17.4.10 | Kainosite-(Y) | Ca2(Y,Ce)2(Si4O12)(CO3) · H2O | Orth. mmm (2/m 2/m 2/m) |
17.4.11 | Caysichite-(Y) | Ca2Y2Si4O10(CO3)3 · 4H2O | Orth. mm2 |
17.4.12 | Lepersonnite-(Gd) | Ca(Gd,Dy)2(UO2)24(SiO4)4(CO3)8(OH)24 · 48H2O | Orth. |
17.4.13 | Ashburtonite | Pb4Cu4(Si4O12)(HCO3)4(OH)3Cl · H2O | Tet. |
17.4.14 | Surite | (Pb,Ca)3(Al,Fe2+,Mg)2((Si,Al)4O10)(CO3)2(OH)2 | Mon. |
17.4.15 | Tundrite-(Ce) | Na2Ce2Ti(SiO4)(CO3)2O2 | Tric. 1 : P1 |
17.4.16 | Tundrite-(Nd) | Na2(Nd,Ce)2Ti(SiO4)(CO3)2O2 |
Other Information
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
References for Tilleyite
Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Larsen E.S., Dunham K.C. (1933), Tilleyite, a new mineral from the contact zone at Crestmore, California, American Mineralogist: 18: 469-473.
Harker, R. I. (1959), Synthesis and stability of tilleyite, Ca5Si2O7(CO3)2: American Journal of Science: 257: 656-667.
Louisnathan, S.J. & J.V. Smith (1970), Crystal structure of tilleyite: refinement and coordination: Zeitschrift für Kristallographie: 132: 288-306.
Grice, J.D. (2005) The structure of spurrite, tilleyite and scawtite, and relationships to other slicate-carbonate minerals. Canadian Mineralogist: 43: 1489-1500.
Internet Links for Tilleyite
mindat.org URL:
https://www.mindat.org/min-3964.html
Please feel free to link to this page.
Please feel free to link to this page.
Search Engines:
External Links:
Mineral Dealers:
Localities for Tilleyite
Locality List




All localities listed without proper references should be considered as questionable.
Australia | |
| Rubenach, M.J. and Cuff, C. (1985) Mineralogical Magazine 49, 71-75. |
Ireland | |
| S. R. Nockolds and H. G. C. Vincent (1947) On Tilleyite and Its Associated Minerals from Carlingford, Ireland. Mineralogical Magazine 28:151-158. |
Japan | |
| Kusachi et al (1971) Koubutsugaku Zasshi, 10, 170-180. |
Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.) | |
| Anthony, Bideaux, Bladh, Nichols: "Handbook of Mineralogy", Vol. 1, 1990 |
| Bunno, M., Shimazaki, H., Sato, K. (1982) Occurrence and genesis of bicchulite and tilleyite skarns at the Sakae adit, the Akagane mine, Iwate Prefecture. Mining Geology: 32(172): 141-150.; Dr. Matsuo Nambu ore collection (curated at Geological Survey of Japan). |
| P.M. Kartashov data; Henmi, C., Kusachi, I., Henmi, K., Sabine, P.A., Young, B.R. (1973) A new mineral bicchulite, the natural analogue of gehlenite hydrate, from Fuka, Okayama Prefecture, Japan and Carneal, County Antrim, Northern Ireland. Mineralogical Journal: 7: 243-251.; Henmi, C., Kusachi, I., Kawahara, A., & Henmi, K. (1978) 7T wollastonite from Fuka, Okayama Prefecture. Mineralogical Journal, 9(3), 169-181. |
Jordan | |
| Sokol, E.V.; Kokh, S.N.; Seryotkin, Y.V.; Deviatiiarova, A.S.; Goryainov, S.V.; Sharygin, V.V.; Khoury, H.N.; Karmanov, N.S.; Danilovsky, V.A.; Artemyev, D.A. Ultrahigh-Temperature Sphalerite from Zn-Cd-Se-Rich Combustion Metamorphic Marbles, Daba Complex, Central Jordan: Paragenesis, Chemistry, and Structure. Minerals 2020, 10, 822. |
Fleurance, S., Cuney, M., Malartre, F., & Reyx, J. (2013). Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 201-219. | |
Norway | |
| Jamtveit B., Dahlgren S. and Austrheim H. (1997): High-grade contact metamorphism of calcareous rocks from the Oslo Rift, Southern Norway. American Mineralogist. 82 : 1241 - 1254 |
Romania | |
| Constantinescu, E., Ilinca, G. & Ilinca, A. (1988b) Dări de Seamă ale Institutului de Geologie şi Geofizică, 72–73(2): 27–45.; Katona, I., Pascal, M.-L., Fonteilles, M. & Verkaeren, J. (2003) Canadian Mineralogist, 41: 1255–1270.; Marincea, S., Dumitraş, D-G., Ghinet, C, Fransolet, A.-M., Hatert, F. & Rondeaux, M. (2011) Gehlenite from three occurrences of high-temperature skarns, Romania: new mineralogical data. Canadian Mineralogist. 49, 1001-1014.; Ilinca, G. (2012) Upper Cretaceous contact metamorphism and related mineralization in Romania. Acta Mineralogica-Petrographica, Abstract Series, Szeged, Vol. 7. |
| The Canadian Mineralogist Vol. 39, pp. 1405-1434 (2001) |
| Canadian Mineralogist: 39: 1435-1453.; The Canadian Mineralogist Vol. 39, pp. 1405-1434 (2001); Marincea, Ş., Dumitraş, D. G., Călin, N., Anason, A. M., Fransolet, A. M., & Hatert, F. (2013). Spurrite, tilleyite and associated minerals in the exoskarn zone from Cornet Hill (Metaliferi Massif, Apuseni Mountains, Romania). The Canadian Mineralogist, 51(3), 359-375. |
Marincea, Ş., Bilal, E., Verkaeren, J., Pascal M.-L. & Fonteilles, M. (2001) Canadian Mineralogist, 39: 1435–1453.; Pascal, M.-L., Fonteilles, M., Verkaeren, J., Piret, R. & Marincea, Ş. (2001) Canadian Mineralogist, 39: 1405–1434.; Ilinca, G. (2012) Upper Cretaceous contact metamorphism and related mineralization in Romania. Acta Mineralogica-Petrographica, Abstract Series, Szeged, Vol. 7. | |
Russia | |
| Reverdatto, V. V., Pertsev, N. N., & Korolyuk, V. N. (1979). P_ {CO_2}-T-Evolution and origin of zoning in melilite during the regressive stage of contact metamorphism in carbonate-bearing rocks. Contributions to Mineralogy and Petrology, 70(2), 203-208 |
Tanzania | |
| Mineralogical Magazine 1997 61 : 779-789; Mitchell, R. H. (1997). Carbonate-carbonate immiscibility, neighborite and potassium iron sulphide in Oldoinyo Lengai natrocarbonatite. Mineralogical Magazine, 61(6), 779-789. |
Turkey | |
| Taner, M. F., Martin, R. F., & Gault, R. A. (2013). The Mineralogy of Skarns of the Spurrite–Merwinite Subfacies, Sanidinite Facies, Güneyce–Ikizdere Area, Eastern Black Sea, Turkey. The Canadian Mineralogist, 51(6), 893-911. |
UK | |
| Tilley, C.E. (1947) The gabbro-limestone contact zone of Camas Mor, Muck, Inverness-shire. Comptes Rendus de la Société geologique de Finlande, No. 140, 97–105. |
| Agrell, S.O. (1965) Polythermal metamorphism of limestones at Kilchoan, Ardnamurchan. Mineralogical Magazine: 34: 1-15. |
USA (TL) | |
| Larsen, E.S. and Dunham, K.C. (1933) Tilleyite, a new mineral from the contact zone at Crestmore, California. American Mineralogist: 18: 469-473. |
| Larsen, Esper Signius & Kingsley C. Dunham (1933), Tilleyite, a new mineral from the contact zone at Crestmore, California: American Mineralogist: 18: 469-473; Woodford, A.O., Crippen, R.A., and Garner, K.B. (1941), Section Across Commercial Quarry, Crestmore, California; American Mineralogist: 26: 367. |
| Minerals of New Mexico 3rd ed. |
| Rocks & Minerals (1991): 66:3: 196-224. |
| Rocks & Minerals: 66(3): 196-224. |
Crestmore quarries, Crestmore, Riverside Co., California, USA