SUPPORT US. If is important to you, click here to donate to our Fall 2019 fundraiser!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography


This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About VateriteHide

Heinrich A. Vater
Sub-Vitreous, Waxy
Specific Gravity:
Crystal System:
Named in honor of Heinrich August Vater [September 5, 1859 Bremen, Germany - February 10, 1930 Dresden, Germany], Professor of Mineralogy and Chemistry, Tharandt, Saxony (Germany). He was a pioneer in the areas of forest soil science, land evaluation, and forest fertilization.
Polymorph of:
A rare CaCO3 modification that is metastable below approx. 400°C. May be stabilised by sulphate (Fernández-Díaz et al., 2010).

Vaterite is actually composed of at least two different crystallographic structures that coexist within a pseudo–single crystal. The major structure (actually substructure) exhibits hexagonal symmetry; the minor structure, existing as nanodomains within the major matrix, is still unknown (Kabalah-Amitai et al., 2013). However, as suggested by Christy (2017) in his review, the most plausible polytypes to describe the structure, namely the 2M and 6H ones, actually "do not occur in their highest-symmetry forms", but are described by the space groups C121 and P3221, respectively.

The structure is disordered in terms of (1) different orientations of the carbonate groups, (2) different stacking sequences of the carbonate-comprising layers, and (3) possible chiral forms (Demichelis et al., 2013). The OD character leads to polytypism; the OD layer comprises Ca coordination polyhedra and halves of the carbonate groups, and the group symmetry of the layer is C2/m; the known stacking sequences include: P6122, P6522, C2/c, C2/c2/m21/m, and P312 or P322. The type of the OD layering is similar to those observed in bastnäsite-synchysite polysomatic series (Makovicky, 2016).

Not uncommon as a biomineral (other sources: rarely used in hard tissue). As such, it is formed from the precursor - Unnamed (Amorphous Calcium Carbonate) - via dehydration (Bots et al., 2012), the transformation process being inhibited in the presence of PO43- ions (Sugiura et al., 2016). Further dissolution-reprecipitation turns vaterite into calcite.

Classification of VateriteHide

Approved, 'Grandfathered' (first described prior to 1959)

A : Carbonates without additional anions, without H2O
B : Alkali-earth (and other M2+) carbonates

1 : A(XO3)

11 : Carbonates
4 : Carbonates of Ca

Physical Properties of VateriteHide

Sub-Vitreous, Waxy
Irregular/Uneven, Splintery
2.645 g/cm3 (Measured)    2.645 g/cm3 (Calculated)

Optical Data of VateriteHide

Uniaxial (+)
RI values:
nω = 1.550 nε = 1.650
Max Birefringence:
δ = 0.100
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
Optical Extinction:

Chemical Properties of VateriteHide

IMA Formula:
CAS Registry number:

CAS Registry numbers are published by the American Chemical Society

Crystallography of VateriteHide

Crystal System:
Class (H-M):
6/mmm (6/m 2/m 2/m) - Dihexagonal Dipyramidal
Space Group:
Cell Parameters:
a = 4.13 Å, c = 8.49 Å
a:c = 1 : 2.056
Unit Cell V:
125.41 ų (Calculated from Unit Cell)
Thin fibers, spherulitic aggregates.
Wang, J.W. & Becker, U. (2009): Structure and carbonate orientation of vaterite (CaCO3). Am. Mineral. 94, 380-386. Important note: Christy (2017) actually suggests, that the correct space groups to describe the polytypes constituting the vaterite crystals are C121 (monoclinic crystal system) and P3221 (trigonal crystal system)

X-Ray Powder DiffractionHide

Powder Diffraction Data:
3.57 Å(55)
3.30 Å(100)
2.73 Å(95)
2.065 Å(60)
1.858 Å(25)
1.823 Å(70)
1.647 Å(25)
See also 33-268; 13-192 (synthetic)

Synonyms of VateriteHide

Other Language Names for VateriteHide

Simplified Chinese:六方球方解石

Common AssociatesHide

Associated Minerals Based on Photo Data:
2 photos of Vaterite associated with ShortiteNa2Ca2(CO3)3
2 photos of Vaterite associated with RasvumiteKFe2S3
1 photo of Vaterite associated with PortlanditeCa(OH)2
1 photo of Vaterite associated with PericlaseMgO
1 photo of Vaterite associated with SpurriteCa5(SiO4)2(CO3)
1 photo of Vaterite associated with MckinstryiteAg5-xCu3+xS4

Related Minerals - Nickel-Strunz GroupingHide

5.AB.05CalciteCaCO3Trig. 3m (3 2/m) : R3c
5.AB.05MagnesiteMgCO3Trig. 3m (3 2/m) : R3c
5.AB.05OtaviteCdCO3Trig. 3m (3 2/m)
5.AB.05RhodochrositeMnCO3Trig. 3m (3 2/m) : R3c
5.AB.05SideriteFeCO3Trig. 3m (3 2/m) : R3c
5.AB.05SmithsoniteZnCO3Trig. 3m (3 2/m) : R3c
5.AB.05SpherocobaltiteCoCO3Trig. 3m (3 2/m) : R3c
5.AB.10AnkeriteCa(Fe2+,Mg)(CO3)2Trig. 3 : R3
5.AB.10DolomiteCaMg(CO3)2Trig. 3 : R3
5.AB.10KutnohoriteCaMn2+(CO3)2Trig. 3 : R3
5.AB.10MinrecorditeCaZn(CO3)2Trig. 3 : R3
5.AB.15AragoniteCaCO3Orth. mmm (2/m 2/m 2/m)
5.AB.15CerussitePbCO3Orth. mmm (2/m 2/m 2/m)
5.AB.15StrontianiteSrCO3Orth. mmm (2/m 2/m 2/m)
5.AB.15WitheriteBaCO3Orth. mmm (2/m 2/m 2/m)
5.AB.25HuntiteCaMg3(CO3)4Trig. 3 2 : R3 2
5.AB.30NorsethiteBaMg(CO3)2Trig. 3 2 : R3 2
5.AB.40OlekminskiteSr(Sr,Ca,Ba)(CO3)2Trig. 3 2 : P3 2 1
5.AB.45BarytocalciteBaCa(CO3)2Mon. 2/m : P21/m
5.AB.50Carbocernaite(Ca,Na)(Sr,Ce,Ba)(CO3)2Orth. mm2
5.AB.55BenstoniteBa6Ca6Mg(CO3)13Trig. 3 : R3
5.AB.60JuangodoyiteNa2Cu(CO3)2Mon. 2/m : P21/b

Related Minerals - Dana Grouping (8th Ed.)Hide,K2,Ca)CO3Hex.

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

11.4.1CalciteCaCO3Trig. 3m (3 2/m) : R3c
11.4.2AragoniteCaCO3Orth. mmm (2/m 2/m 2/m)
11.4.4MonohydrocalciteCaCO3 · H2OTrig. 3 : P31
11.4.5IkaiteCaCO3 · 6H2OMon.
11.4.6DolomiteCaMg(CO3)2Trig. 3 : R3
11.4.7HuntiteCaMg3(CO3)4Trig. 3 2 : R3 2

Fluorescence of VateriteHide

Not known to fluoresce.

Other InformationHide

Thermal Behaviour:
Dry crystals convert to calcite when heated to about 440°.
Converts to aragonite or calcite when boiled in water. Converts to calcite when boiled in NaCl solution.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for VateriteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Doelter, C. (1911) Handbuch der Mineral-chemie (in 4 volumes divided into parts): 1: 113.
Meigen, W. (1911) Über kohlensauren Kalk. Verhandl. Ges. Deut. Naturforscher u. Ärtzte, 82, 120-124.
Johnston, John, Merwin, H.E., Williamson, E.D. (1916) The several forms of calcium carbonate. American Journal of Science: 41: 473-512.
Gibson, Wyckoff, and Merwin (1925) American Journal of Science: 10: 325 (as Vaterite-B).
Heide (1925) Centralblatt für Mineralogie, Geologie und Paleontologie, Stuttgart: 198.
Hintze, Carl (1926) Handbuch der Mineralogie. Berlin and Leipzig. 6 volumes: 1 [3B]: 2883.
Yoshimura (1930) Japanese Journal of Geology and Geography: 7: 3.
American Mineralogist (1931) 16: 770-772.
Donnay (1936) Société géologique de Belgique, Liége, Bulletin: 59: 215.
Palache, C., Berman, H., Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: Halides, Nitrates, Borates, Carbonates, Sulfates, Phosphates, Arsenates, Tungstates, Molybdates, Etc. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged: 181-182.
McConnel, J.D.C. (1960) Vaterite from Ballycraigy, Larne, Northern Ireland. Mineralogical Magazine: 32: 534-544.
Fleischer, M. (1960) New Mineral Names; New data. American Mineralogist: 45: 1316.
Meyer, H.J. (1969) Struktur und Fehlordnung des Vaterits. Zeitschrift für Kristallographie: 128: 183–212.
Turnbull, A. G. (1973) Thermochemical study of vaterite. Geochimica et Cosmochimica Acta: 37: 1593-1601.
Plummer, L. N., Busenberg, E. (1982) The solubilities of calcite, aragonite, and vaterite in carbon dioxide-water solutions between 0 and 90° C, and an evaluation of the aqueous model for the system calcium carbonate-carbon dioxide-water. Geochimica et Cosmochimica Acta: 46: 1011-1040.
De Visscher, A., Vanderdeelen, J. (2003) Estimation of the Solubility Constant of Calcite, Aragonite, and Vaterite at 25° C Based on Primary Data Using the Pitzer Ion Interaction Approach. Monatshefte für Chemie: 134: 769-775.
Wang, J.W., Becker, U. (2009) Structure and carbonate orientation of vaterite (CaCO3). American Mineralogist: 94: 380-386.
Pouget, Emilie M., Bomans, Paul H. H., Dey, Archan, Frederik, Peter M., de With, Gijsbertus, Sommerdijk, Nico A. J. M. (2010) The Development of Morphology and Structure in Hexagonal Vaterite. Journal of the American Chemical Society: 132: 11560–11565.
Fernández-Díaz, Lurdes, Fernández-González, Ángeles, Prieto, Manuel (2010) The role of sulfate groups in controlling CaCO3 polymorphism. Geochimica et Cosmochimica Acta: 74: 6064-6076.
Wehrmeister, U., Soldati, A.L., Jacob, D., Häger, T., Hofmeister, W. (2010) Raman spectroscopy of synthetic, geological and biological vaterite: a Raman spectroscopic study. Journal of Raman Spectroscopy: 41: 193-201.
Bots, P., Rodriguez-Blanco, J.D., Roncal-Herrero, T., Benning, L.G., Shaw, S. (2012) Mechanistic insights into the crystallization of amorphous calcium carbonate to vaterite. Crystal Growth and Design: 12: 3806-3814.
Demichelis, R., Raiteri, P., Gale, J.D. (2013) The multiple structures of vaterite. Goldschmidt Conference 2013, Firenze, Italy.
Kabalah-Amitai, L., Mayzel, B., Kauffmann, Y., Fitch, A.N., Bloch, L., Gilbert, P.U.P.A., Pokroy, B. (2013) Vaterite Crystals Contain Two Interspersed Crystal Structures. Science: 340: 454-457.
Sugiura, Y., Onuma, K., Yamazaki, A. (2016) Growth dynamics of vaterite in relation to the physico-chemical properties of its precursor, amorphous calcium carbonate, in the Ca-CO3-PO4 system. American Mineralogist: 101: 289-296.
Makovicky, E. (2016) Vaterite: Interpretation in terms of OD theory and its next of kin. American Mineralogist: 101: 1636-1641; (2016)
Christy, A.G. (2017) A Review of the Structures of Vaterite: The Impossible, the Possible, and the Likely. Cryst. Growth Des.: 17(6): 3567-3578
Wightman, R., Wallis, S., Aston, P. (2018) Leaf margin organisation and the existence of vaterite-producing hydathodes in the alpine plant Saxifraga scardica. Flora: 241: 27-34. DOI: 10.1016/j.flora.2018.02.006 -

Internet Links for VateriteHide

Localities for VateriteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
  • Eastern Antarctica
    • Victoria Land
      • Ross Archipelago
        • Ross Island
Browne, P.R.L. 1973 Secondary minerals in cores from DVDP 1 and 2. Dry Valley Drilling Project bulletin 2: 83-93 Browne, P.R.L. 1974 Secondary minerals from Ross Island drillholes. Dry Valley Drilling Project bulletin 04:15
  • Tasmania
    • Central Highlands municipality
      • Liawenee
Bottrill & Baker (in prep) Catalogue of minerals of Tasmania
  • Salzburg
    • Zell am See District
      • Neukirchen am Großvenediger
        • Hopffeld area
Schebesta, K. (1986): Neue Mineralien vom Hopffeldboden im Obersulzbachtal. Lapis 11 (4), 9-18; 42; Kolitsch, U. (2011): 1688) „Vaterit“ vom Hopffeldboden, Obersulzbachtal: eine Fehlbestimmung. P. 155-156 in Niedermayr, G. et al. (2011): Neue Mineralfunde aus Österreich LX. Carinthia II, 201./121., 135-186.
  • Nunavut
    • Qikiqtaaluk Region
      • Ellesmere Island
Gleeson, D. F., Williamson, C., Grasby, S. E., Pappalardo, R. T., Spear, J. R., & Templeton, A. S. (2011). Low temperature S0 biomineralization at a supraglacial spring system in the Canadian High Arctic. Geobiology, 9(4), 360-375.
  • Québec
    • Montérégie
      • La Vallée-du-Richelieu RCM
        • Mont Saint-Hilaire
HORVÁTH, L. and HORVÁTH-PFENNINGER, E. (2000) Die Mineralien des Mont Saint-Hilaire. Lapis, 25, Nr. 7/8, 23-61 (in German). [p. 61]; HORVÁTH, L., and PFENNINGER‑HORVÁTH, E. (2000) I minerali di Mont-Saint-Hilaire (Québec, Canada) Rivista Mineralogica Italiana, XXIV, 140-202 (in Italian with English summary). [p. 146 & 152]
    • Saguenay-Lac-Saint-Jean
      • Le Fjord-du-Saguenay RCM
        • Saint-Honoré
Fournier, A. (1993)
FOURNIER, A. (1993) Magmat!c and hydrothermal controls of LREE mineralization of the St.-Honoré carbonatite, Québec. M.Sc. thesis, McGill University, Montreal, Canada. 95p.
  • Occitanie
    • Aveyron
Kruszewski, Ł., Gatel, P., Thiéry, V., Moszumańska, I., and Kusy, D. (2018) Crystallochemical Behavior of Slag Minerals and the Occurrence of Potentially New Mineral Species from Lapanouse-de-Sévérac, France. In: Stracher, G.B. (Ed.) Coal and Peat Fires: A Global Perspective, Vol. 5: Case Studies - Advances in Field and Laboratory Research, xx-xx (in press; publication date: November 2018).
  • Baden-Württemberg
    • Freiburg
      • Ortenaukreis
        • Oberwolfach
WALENTA, K. (1995): Neue Mineralfunde von der Grube Clara. 6. Folge, 2. Teil. - Lapis 20 (6), 41 und 46-49.
  • Lower Saxony
    • Goslar
      • Clausthal-Zellerfeld
        • Oberschulenberg
Schnorrer-Köhler, G. (1991): Mineralogische Notizen V, Der Aufschluss, Vol. 42, 155-171
  • Rhineland-Palatinate
    • Mayen-Koblenz
      • Mayen
        • Ettringen
          • Bellerberg volcano
[Hentschel, G., Seltene Minerale in Calcium-reichen Auswürflingen vom Bellerberg bei Mayen/Eifel, Aufschluß 29, 77-83, 1978] [Lapis, 15 (5), 9-36]
            • Southern lava flow
Hentschel, G., Dent Glasser, L.S., Lee, C.K. (1983): Jasmundite. Ca22(Si04)8O4S2. a new mineral, N. Jb. Mineral., Mh., 337-342.
      • Mendig
Hentschel, G., Die Mineralien der Eifelvulkane, Weise Verlag München, 1983
    • Vulkaneifel
      • Daun
        • Üdersdorf
Schüller, W., Betz, V., Die Mineralien vom Emmelberg, Lapis 12/1986
      • Hillesheim
        • Zilsdorf
Hentschel. G., Die Mineralien der Eifelvulkane, Weise Verlag München, 1983
  • Somogy County
Szakáll & Gatter: Hun. Min. Spec., 1993
  • Negev
Gross, S. (1977): The Mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel, Bulletin no. 70, 80 pp.
  • Campania
    • Naples
      • Somma-Vesuvius Complex
        • Monte Somma
          • Ercolano
            • San Vito
Pavel M. Kartashov analytical data, Luigi Chiappino material
  • Hokkaidō
    • Tokachi Subprefecture
      • Ashoro-cho (Asyoro-tyo)
Ito et al. (1999) Ganseki-Koubutsu-Koshogaku Zasshi, 94, 176-182.
  • Amman
Pitty, A. F., & Alexander, W. R. (2010). A natural analogue study of cement buffered, hyperalkaline groundwaters and their interaction with a repository host rock IV: an examination of the Khushaym Matruk (central Jordan) and Maqarin (northern Jordan) sites. NDA-RWMD Technical Report, NDA, Moors Row, UK.
  • Irbid
    • Maqarin area
Khoury, H. N., Salameh, E., & Abdul-Jaber, Q. (1985). Characteristics of an unusual highly alkaline water from the Maqarin area, northern Jordan. Journal of Hydrology, 81(1), 79-91.
  • South Governate
    • Jezzine District
Kruszewski, Ł., 2018/2019. Secondary sulfate minerals from Bhanine valley coals (South Lebanon) – a crystallochemical and geochemical study. Geological Quarterly (in press)
  • Otjozondjupa Region
    • Grootfontein
      • Kombat
ex J Lamond Micro Collection (ex Rob Sielecki)
  • West Bank
    • Hatrurim formation
Shulamit Gross (1977) The mineralogy of the Hatrurim Formation, Israel. Geol. Surv. of Israel, bull. # 70.
Sokol, E.V., Gaskova, O.L., Kokh, S.N., Kozmenko, O.A., Seryotkin, Y.V., Vapnik, Y., Murashko, M.N. (2011): Chromatite and its Cr3+- and Cr6+-bearing precursor minerals from the Nabi Musa Mottled Zone complex, Judean Desert. American Mineralogist 96, 659-674.
  • Silesian Voivodeship
    • Siemianowice Śląskie City Co.
Kruszewski L. 2006: Oldhamite-periclase-portlandite-fluorite assemblage and coexisting minerals of burnt dump in Siemianowice Śląskie - Dąbrówka Wielka area (Upper Silesia, Poland) - preliminary report. Mineralogia Polonica Special Papers, vol.28, 118-120
  • Brașov
    • Racoş Commune
Szakáll, S., Kristály, F., 2010. Mineralogy of Székelyland, Eastern Transylvania, Romania. Sfântu Gheorghe-Miercurea Ciuc-Târgu Mureş. 2010.
  • Harghita
    • Odorheiu Secuiesc (Székelyudvarhely; Oderhellen)
      • Racoş (Racoşu de Jos)
Szakáll, S. & Kristály, F., Eds. (2010): Mineralogy of Székelyland, Eastern Transylvania, Romania. Csík County Nature and Conservation Society, Miercurea-Ciuc, Romania, 321 pp.
  • Hunedoara
    • Hunedoara
      • Boșorod
Dumitras, D.-G., Constantinescu, E., Marincea, S., and Bourgier, V. (2005): Proceedings of the Annual Scientific Session of The Geological Society of Romania, Rosia Montana, 20-21 May 2005, 31-36.; D. Dumitras , Si. Marincea (2000) Phosphates In The Bat Guano Deposit From The "Dry" Cioclovina Cave, Sureanu Mountains, Romania. Romanian Journal of Mineral Devosits Vol 79 Suppl pp 43-45
  • Chelyabinsk Oblast
Cesnokov, B., Kotrly, M. and Nisanbajev, T. (1998): Brennende Abraumhalden und Aufschlüsse im Tscheljabinsker Kohlenbecken - eine reiche Mineralienküche. Mineralien-Welt, 9 (3), 54-63 (in German).
  • Murmansk Oblast
    • Northern Karelia
New Data on Minerals (2004): 39: 50-64
  • Banská Bystrica Region
    • Banská Bystrica Co.
      • Špania Dolina (Herrengrund)
Mikuš T., Patúš M., Luptáková J., Bancík T., Biroň A. (2017): Mineralogická charakteristika asociácie sekundárnych karbonátov vápnika zo Španej Doliny - prvý nález monohydrokalcitu z rudných ložísk na území Slovenska. Bull. Mineral. Petrolog., 25, 2, 318-326 (in Slovak with English abstract).
Mikuš T., Patúš M., Luptáková J., Bancík T., Biroň A., 2017: Mineralogická charakteristika asociácie sekundárnych karbonátov vápnika zo Španej Doliny - prvý nález monohydrokalcitu z rudných ložísk na území Slovenska. Bull. Mineral. Petrolog., 25, 2, 318-326 (in Slovak with English abstract).
South Africa
  • Northern Cape
    • Kalahari manganese field
      • Hotazel
Minerals of South Africa
  • England
    • Derbyshire
      • Peak Forest
Field, L.P., Milodowski, A.E., Shaw, R.P., Stevens, L.P., Hall, M.R., Kilpatrick, A., Gunn, J., Kemp, S.J., Ellis, M.A. (2016): Unusual morphologies and the occurrence of pseudomorphs after ikaite (CaCO3•6H2O) in fast growing, hyperalkaline speleothem. Mineralogical Magazine: 80 (in press); (2016)
  • Northern Ireland
    • Ulster
      • Co. Antrim
        • Larne
Peter G. Embrey (1978) Fourth Supplementary List of British Minerals. Mineralogical Magazine 42:169-177; McConnell J D C (1960) Vaterite from Ballycraigy, Larne, Northern Ireland. Mineralogical Magazine 32, 535-544
  • Arizona
    • Maricopa Co.
Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 412.
  • Michigan
    • Houghton Co.
      • Osceola
Mineralogy of Michigan (E. W. Heinrich & G. W. Robinson)
  • New Mexico
    • Otero Co.
      • Cornudas Mts
XRD - Laszlo Horvath collection
  • Tennessee
    • Smith Co.
      • Carthage
Mineral and/or Locality is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: December 8, 2019 15:55:58 Page generated: November 22, 2019 16:11:38
Go to top of page