SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Vauxite

This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About VauxiteHide

09590100014946703716761.jpg
George Vaux, Jr.
Formula:
Fe2+Al2(PO4)2(OH)2 · 6H2O
Colour:
Sky-blue, dark blue; pale blue in transmitted light.
Lustre:
Vitreous
Hardness:
Specific Gravity:
2.39 - 2.4
Crystal System:
Triclinic
Name:
Named in honor of George Vaux, Jr. (18 December 1863, Philadelphia, Pennsylvania, USA - 24 October 1927, Bryn Mawr, Pennsylvania, USA), attorney, photographer, and mineral collector of Bryn Mawr, Pennsylvania. He was nephew of mineral collector William S. Vaux (1811-1882). His collection, that reached about 10,000 specimens of 850 species, went to Bryn Mawr College after his death.
A secondary mineral derived from the alteration of apatite.

Compare also the higher hydrate paravauxite and its dimorph metavauxite.
Ferrivauxite is an oxidized equivalent of vauxite.


Classification of VauxiteHide

Approved, 'Grandfathered' (first described prior to 1959)
First published:
1922
8.DC.35

8 : PHOSPHATES, ARSENATES, VANADATES
D : Phosphates, etc. with additional anions, with H2O
C : With only medium-sized cations, (OH, etc.):RO4 = 1:1 and < 2:1
42.11.14.1

42 : HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
11 : (AB)3(XO4)2Zq·xH2O
19.14.23

19 : Phosphates
14 : Phosphates of Fe and other metals

Physical Properties of VauxiteHide

Vitreous
Transparency:
Transparent
Colour:
Sky-blue, dark blue; pale blue in transmitted light.
Streak:
White
Hardness:
3½ on Mohs scale
Tenacity:
Brittle
Cleavage:
None Observed
Density:
2.39 - 2.4 g/cm3 (Measured)    2.4 g/cm3 (Calculated)

Optical Data of VauxiteHide

Type:
Biaxial (+)
RI values:
nα = 1.551 nβ = 1.555 nγ = 1.562
2V:
Measured: 32°
Max Birefringence:
δ = 0.011
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
Low
Dispersion:
r > v weak
Pleochroism:
Strong
Comments:
X = Z = Colourless
Y = Blue

Chemical Properties of VauxiteHide

Formula:
Fe2+Al2(PO4)2(OH)2 · 6H2O

Crystallography of VauxiteHide

Crystal System:
Triclinic
Class (H-M):
1 - Pinacoidal
Space Group:
P1
Cell Parameters:
a = 9.142 Å, b = 11.599 Å, c = 6.158 Å
α = 98.29°, β = 91.93°, γ = 108.27°
Ratio:
a:b:c = 0.788 : 1 : 0.531
Unit Cell V:
611.42 ų (Calculated from Unit Cell)
Z:
2
Morphology:
Crystals tabular {010}, elongated [001] or [101]. May exhibit may forms, including {010}, {110}, {111}, {101}, {111}, {101}, and {140}. Forms radial to subparallel aggregates; nodular.
Twinning:
on {010}, twin and composition plane.

Crystal StructureHide

Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File    Best | x | y | z | a | b | c
Rotation
Stop | Start
Labels
Console Off | On | Grey | Yellow
IDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0000176VauxiteBaur W H, Rama Rao B (1968) The crystal structure and the chemical composition of vauxite American Mineralogist 53 1025-103319680293
CIF Raw Data - click here to close

Geological EnvironmentHide

Geological Setting:
Alteration of apatite.

Type Occurrence of VauxiteHide

Place of Conservation of Type Material:
U.S. National Museum of Natural History, Washington, D.C., USA: #97561, #103542.
Geological Setting of Type Material:
Hydrothermal tin veins.
Associated Minerals at Type Locality:

Other Language Names for VauxiteHide

German:Vauxit
Russian:Воксит
Spanish:Vauxita

Common AssociatesHide

WavelliteAl3(PO4)2(OH,F)3 · 5H2O
Associated Minerals Based on Photo Data:
569 photos of Vauxite associated with ParavauxiteFe2+Al2(PO4)2(OH)2 · 8H2O
323 photos of Vauxite associated with ChildreniteFe2+Al(PO4)(OH)2 · H2O
150 photos of Vauxite associated with MetavauxiteFe2+Al2(PO4)2(OH)2 · 8H2O
81 photos of Vauxite associated with QuartzSiO2
75 photos of Vauxite associated with SigloiteFe3+Al2(PO4)2(OH)3 · 7H2O
58 photos of Vauxite associated with WavelliteAl3(PO4)2(OH,F)3 · 5H2O
27 photos of Vauxite associated with PyriteFeS2
20 photos of Vauxite associated with FranckeiteFe2+(Pb,Sn2+)6Sn4+2Sb2S14
8 photos of Vauxite associated with GreenockiteCdS
5 photos of Vauxite associated with RömeriteFe2+Fe3+2(SO4)4 · 14H2O

Related Minerals - Nickel-Strunz GroupingHide

8.DC.CésarferreiraiteFe2+ Fe3+2(AsO4)2(OH)2 · 8H2OTric. 1 : P1
8.DC.05NissoniteCu2Mg2(PO4)2(OH)2 · 5H2OMon.
8.DC.07EuchroiteCu2(AsO4)(OH) · 3H2OOrth. 2 2 2 : P21 21 21
8.DC.10LegranditeZn2(AsO4)(OH) · H2OMon. 2/m : P21/b
8.DC.12StrashimiriteCu8(AsO4)4(OH)4 · 5H2OMon.
8.DC.15ArthuriteCuFe3+2(AsO4)2(OH)2 · 4H2OMon.
8.DC.15EarlshannoniteMn2+Fe3+2(PO4)2(OH)2 · 4H2OMon.
8.DC.15OjuelaiteZnFe3+2(AsO4)2(OH)2 · 4H2OMon.
8.DC.15WhitmoreiteFe2+Fe3+2(PO4)2(OH)2 · 4H2OMon. 2/m : P21/b
8.DC.15Cobaltarthurite(Co,Mg)Fe3+2(AsO4)2(OH)2 · 4H2OMon. 2/m : P21/b
8.DC.15BendadaiteFe2+Fe3+2(AsO4)2(OH)2 · 4H2OMon. 2/m : P21/b
8.DC.15KunatiteCuFe3+2(PO4)2(OH)2 · 4H2OMon. 2/m : P21/b
8.DC.15UM2006-27-PO:FeHZnZnFe3+2(PO4)2(OH)2 · 4H2OMon.
8.DC.15UKI-2006-(PO:AlCuFeH)Fe2+Al3+2(PO4)2(OH)2 · 4H2O
8.DC.17KleemaniteZnAl2(PO4)2(OH)2 · 3H2OMon.
8.DC.20BermaniteMn2+Mn3+2(PO4)2(OH)2 · 4H2OMon. 2/m : P2/b
8.DC.20CoralloiteMn2+Mn3+2(AsO4)2(OH)2 · 4H2OTric. 1 : P1
8.DC.22KovdorskiteMg2(PO4)(OH) · 3H2OMon.
8.DC.25FerristrunziteFe3+Fe3+2(PO4)2(OH)3 · 5H2OTric.
8.DC.25FerrostrunziteFe2+Fe3+2(PO4)2(OH)2 · 6H2OTric.
8.DC.25MetavauxiteFe2+Al2(PO4)2(OH)2 · 8H2OMon. 2/m : P21/b
8.DC.25MetavivianiteFe2+Fe3+2(PO4)2(OH)2 · 6H2OTric. 1 : P1
8.DC.25StrunziteMn2+Fe3+2(PO4)2(OH)2 · 6H2OTric. 1 : P1
8.DC.27BerauniteFe2+Fe3+5(PO4)4(OH)5 · 6H2OMon. 2/m : B2/b
8.DC.30GordoniteMgAl2(PO4)2(OH)2 · 8H2OTric. 1 : P1
8.DC.30LaueiteMn2+Fe3+2(PO4)2(OH)2 · 8H2OTric. 1 : P1
8.DC.30MangangordoniteMn2+Al2(PO4)2(OH)2 · 8H2OTric.
8.DC.30ParavauxiteFe2+Al2(PO4)2(OH)2 · 8H2OTric. 1 : P1
8.DC.30PseudolaueiteMn2+Fe3+2(PO4)2(OH)2 · 8H2OMon. 2/m : P21/b
8.DC.30SigloiteFe3+Al2(PO4)2(OH)3 · 7H2OTric.
8.DC.30StewartiteMn2+Fe3+2(PO4)2(OH)2 · 8H2OTric. 1 : P1
8.DC.30UshkoviteMgFe3+2(PO4)2(OH)2 · 8H2OTric.
8.DC.30FerrolaueiteFe2+Fe3+2(PO4)2(OH)2 · 8H2OTric. 1 : P1
8.DC.30Kastningite(Mn2+,Fe2+,Mg)Al2(PO4)2(OH)2 · 8H2OTric. 1 : P1
8.DC.30MaghrebiteMgAl2(AsO4)2(OH)2 · 8H2OTric. 1 : P1
8.DC.30NordgauiteMnAl2(PO4)2(F,OH)2 · 5H2OTric. 1 : P1
8.DC.32TinticiteFe3+3(PO4)2(OH)3 · 3H2OTric. 1 : P1
8.DC.37VantasseliteAl4(PO4)3(OH)3 · 9H2OOrth.
8.DC.40CacoxeniteFe3+24AlO6(PO4)17(OH)12 · 75H2OHex. 6/m : P63/m
8.DC.45Gormanite(Fe2+,Mg)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2OTric.
8.DC.45Souzalite(Mg,Fe2+)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2OTric.
8.DC.47KingiteAl3(PO4)2F2(OH) · 7H2OTric.
8.DC.50WavelliteAl3(PO4)2(OH,F)3 · 5H2OOrth. mmm (2/m 2/m 2/m)
8.DC.50AllanpringiteFe3+3(PO4)2(OH)3 · 5H2OMon. 2/m : P21/m
8.DC.52KribergiteAl5(PO4)3(SO4)(OH)4 · 4H2OTric. 1 : P1
8.DC.55MapimiteZn2Fe3+3(AsO4)3(OH)4 · 10H2OMon.
8.DC.57OgdensburgiteCa2Fe3+4(Zn,Mn2+)(AsO4)4(OH)6 · 6H2OOrth. mmm (2/m 2/m 2/m) : Cmmm
8.DC.60Nevadaite(Cu2+,Al,V3+)6Al8(PO4)8F8(OH)2 · 22H2OOrth. mmm (2/m 2/m 2/m)
8.DC.60CloncurryiteCu0.5(VO)0.5Al2(PO4)2F2 · 5H2OMon. 2/m : P21/b

Related Minerals - Dana Grouping (8th Ed.)Hide

42.11.14.2ParavauxiteFe2+Al2(PO4)2(OH)2 · 8H2OTric. 1 : P1
42.11.14.3SigloiteFe3+Al2(PO4)2(OH)3 · 7H2OTric.
42.11.14.4GordoniteMgAl2(PO4)2(OH)2 · 8H2OTric. 1 : P1
42.11.14.5MangangordoniteMn2+Al2(PO4)2(OH)2 · 8H2OTric.

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

19.14.1CyriloviteNaFe3+3(PO4)2(OH)4 · 2H2OTet. 4 2 2 : P41 21 2
19.14.2KidwelliteNaFe3+9+x(PO4)6(OH)11 · 3H2O, x = 0.33Mon. 2/m : P2/b
19.14.3Rosemaryite(Na,Ca,Mn)(Mn,Fe2+)(Fe3+,Mg)Al(PO4)3Mon. 2/m : P21/b
19.14.4Wyllieite(Na,Ca,Mn)(Mn,Fe)(Fe,Mg)Al(PO4)3Mon. 2/m
19.14.5Ferrowyllieite(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3Mon. 2/m : P21/b
19.14.6NatrodufréniteNaFe2+Fe3+5(PO4)4(OH)6 · 2H2OMon.
19.14.7LeucophosphiteKFe3+2(PO4)2(OH) · 2H2OMon. 2/m : P21/b
19.14.8Spheniscidite(NH4,K)(Fe3+,Al)2(PO4)2(OH) · 2H2OMon.
19.14.9BurangaiteNaFe2+Al5(PO4)4(OH)6 · 2H2OMon. 2/m : B2/b
19.14.10Satterlyite(Fe2+,Mg,Fe)12(PO4)5(PO3OH)(OH,O)6Trig. 3m (3 2/m) : P3 1m
19.14.11UshkoviteMgFe3+2(PO4)2(OH)2 · 8H2OTric.
19.14.12Garyansellite(Mg,Fe)3(PO4)2(OH,O) · 1.5H2OOrth. mmm (2/m 2/m 2/m)
19.14.13ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2Orth. 2 2 2 : C2 2 21
19.14.14AnapaiteCa2Fe2+(PO4)2 · 4H2OTric. 1 : P1
19.14.15XanthoxeniteCa4Fe3+2(PO4)4(OH)2 · 3H2OTric. 1 : P1
19.14.16CalcioferriteCa2Fe3+2(PO4)3(OH) · 7H2OMon. 2/m : B2/b
19.14.17MitridatiteCa2Fe3+3(PO4)3O2 · 3H2OMon. 2/m : B2/b
19.14.18MélonjosephiteCaFe2+Fe3+(PO4)2(OH)Orth. mmm (2/m 2/m 2/m) : Pbam
19.14.19DelvauxiteCaFe4(PO4,SO4)2(OH)8 · 4-6H2O not confirmedAmor.
19.14.20CollinsiteCa2Mg(PO4)2 · 2H2OTric. 1 : P1
19.14.21SegeleriteCa2 Mg2 Fe3+2(PO4)4(OH)2 · 8H2OOrth. mmm (2/m 2/m 2/m) : Pcca
19.14.22KingsmountiteCa3MnFeAl4(PO4)6(OH)4 · 12H2OTric. 1 : P1
19.14.24MetavauxiteFe2+Al2(PO4)2(OH)2 · 8H2OMon. 2/m : P21/b
19.14.25ParavauxiteFe2+Al2(PO4)2(OH)2 · 8H2OTric. 1 : P1
19.14.26SigloiteFe3+Al2(PO4)2(OH)3 · 7H2OTric.
19.14.27CacoxeniteFe3+24AlO6(PO4)17(OH)12 · 75H2OHex. 6/m : P63/m
19.14.28KoninckiteFe3+PO4 · 3H2OTet.
19.14.29LazuliteMgAl2(PO4)2(OH)2Mon. 2/m : P21/b
19.14.30ScorzaliteFe2+Al2(PO4)2(OH)2Mon. 2/m : P21/b
19.14.31Souzalite(Mg,Fe2+)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2OTric.
19.14.32Gormanite(Fe2+,Mg)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2OTric.
19.14.33ZaïriteBiFe3+3(PO4)2(OH)6Trig. 3m (3 2/m) : R3m

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for VauxiteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Gordon, S.G. (1922) Preliminary notes on vauxite and paravauxite. Science: 56: 50-50.
Newhouse, W.H. (1922) Notes and News. American Mineralogist: 7: 108-109.
Gordon (1923) Proceedings of the Academy of Sciences, Philadelphia: 75: 261.
Gordon (1944) Proceedings of the Academy of Sciences, Philadelphia: 96: 344.
Fleischer, M. (1945) New mineral names. American Mineralogist: 30: 548-550.
Palache, C., Berman, H., & Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged, 1124 pp.: 974-975.
Baur, W.H. and B. Rama Rao (1968) The crystal structure and the chemical composition of vauxite. American Mineralogist (1968): 53: 1025-1028.
Moore, P.B., Araki, T., Kampf, A.R., Steele, I.M. (1976) Olmsteadite, K2Fe2+2[Fe2+2(Nb,Ta)5+2O4(H2O)4(PO4)4], a new species, its crystal structure and relation to vauxite and montgomeryite. American Mineralogist: 61: 5-11.
Blanchard, F.N. and S.A. Abernathy (1980) X-ray powder diffraction data for phosphate minerals: vauxite, metavauxite, vivianite, Mn-heterosite, scorzalite, and lazulite. Florida Scientist, 43, 257–265.
Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (2000) Handbook of Mineralogy, Volume IV. Arsenates, Phosphates, Vanadates. Mineral Data Publishing, Tucson, AZ, 680pp.: 625.
Djordjević, T., Kolitsch, U. and Stojanovic, J. (2011) Crystal structure and hydrogen bonding in vauxite, Fe2+Al2(PO4)2(OH)2•6H2O from Vitlovac locality, Bosnia and Herzegovina. Joint Meeting of the DGK, DMG and ÖMG, Salzburg, Austria, September 20-24, 2011; Abstracts Volume, p. 136.
Ventruti, G., Schingaro, E., Monno, A., Lacalamita, M., Della Ventura, G., Bellatreccia, F., Cuocci, C., Rossi, M., Capitelli, F. (2016) Structure refinement and vibrational spectroscopy of vauxite from the type locality, Llallagua (Bolivia). Canadian Mineralogist: 54: 163-176.
Van Alboom, A., da Costa, G.M., De Grave, E. (2018) Deficiency of water molecules in the crystallographic structure of vauxite. Physics and Chemistry of Minerals: 45: 249-257.

Internet Links for VauxiteHide

Localities for VauxiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Argentina
 
  • Córdoba Province
    • Punilla Department
      • San Roque District
        • Tanti
Dina, H. (1993). Hentschelita en Cerro Blanco, Tanti, Córdoba. Informacion Tecnologica, 48(3-4), 277-282.
Bolivia
 
  • Oruro
    • Dalence Province
Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (2000) Handbook of Mineralogy, Volume IV. Arsenates, Phosphates, Vanadates. Mineral Data Publishing, Tucson, AZ, 680pp.: 625 (probably erroneous)
Kempff, O., Paar, W.H., Tawackoli, S.: "Minerales de Bolivia", 115pp (La Paz, 2009)
  • Potosí
    • Rafael Bustillo
Gordon, S. G. (1922). Preliminary Notes on Vauxite and Paravauxite. Science, 50.
American Mineralogist (1922) 7, 107-108.
Bosnia and Herzegovina
 
  • Federation of Bosnia and Herzegovina
    • Tuzla Canton
      • Srebrenica
T. Djordjević, U. Kolitsch and J. Stojanovic (2011): Crystal structure and hydrogen bonding in vauxite, Fe2+Al2(PO4)2(OH)2•6H2O from Vitlovac locality, Bosnia and Herzegovina. Joint Meeting of the DGK, DMG and ÖMG, Salzburg, Austria, September 20-24, 2011; Abstracts Volume, p. 136.; Radosavljević, S., Đorđević, D., Stojanović, J., Radosavljević-Mihajlović, A., & Kašić, V. (2014). Srebrenica Orefield, Podrinje Metallogenic District, Republic of Srpska, B&h: Hydrated Fe (Al)-phosphates and Their Parageneses Within the Pb-Zn Mineralization. Архив за техничке науке, 1(11), 1-6.
Canada
 
  • Northwest Territories
    • Fort Norman
Battler, M. M., Osinski, G. R., Lim, D. S., Davila, A. F., Michel, F. A., Craig, M. A., ... & Preston, L. J. (2013). Characterization of the acidic cold seep emplaced jarositic Golden Deposit, NWT, Canada, as an analogue for jarosite deposition on Mars. Icarus, 224(2), 382-398.
Germany
 
  • Bavaria
    • Upper Palatinate
      • Neustadt an der Waldnaab District
        • Waidhaus
          • Reinhardsrieth
Harald G. Dill and Radek Skoda (2015) The new Nb–P aplite at Reinhardsrieth: A keystone in the lateral and depth zonations of the Hagendorf–Pleystein Pegmatite Field, SE Germany. Ore Geology Reviews 70:208–227.
Italy
 
  • Sardinia
    • Metropolitan City of Cagliari
      • Sarroch
Stara, P., Tanca, G., Rizzo, R. and Ibba, A. (1996) Cacoxenite, wavellite ed altri fosfati in Sardegna. Rivista Mineralogica Italiana, 20, 4 (4-1996), 321-323.
Spain
 
  • Aragón
    • Teruel
      • Castellote
Bauluz, B., Gasca, J. M., Moreno‐Azanza, M., & Canudo, J. I. (2014). Unusual replacement of biogenic apatite by aluminium phosphate phases in dinosaur teeth from the Early Cretaceous of Spain. Lethaia, 47(4), 556-566.
USA
 
  • Pennsylvania
    • Snyder Co.
      • Perry Township
        • Mount Pleasant Mills
          • Lime Ridge
K. Cabaniss & L.E. Kearns (2011) The 38th Rochester Mineralogical Symposium, April 14-17, 2011, lecture abstracts, page 13.
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2021, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us - Report a bug/vulnerability Current server date and time: January 27, 2021 01:19:45 Page generated: January 3, 2021 14:02:58
Go to top of page