SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Wadsleyite

This page is currently not sponsored. Click here to sponsor this page.
02855290014946624928670.jpg
David A. Wadsley
Formula:
Mg4O(Si2O7)
although the formula is typically written as β-Mg2SiO4 to emphasize its polymorphic relationship to forsterite, wadsleyite is actually a sorosilicate and not a member of the olivine group. This formula format also better illustrates where hydration of the bridging O occurs in "hydrous wadsleyite".
Colour:
Light grayish brown
Specific Gravity:
3.84 (Calculated)
Crystal System:
Orthorhombic
Name:
It was proposed by Ringwood and Major (1970), who first made sythetic material, that if it was ever found in nature, it should be named after A.D. Wadsley.

Named by G.D. Price, A. Putnis, S.O. Agrell, and D.G.W. Smith in 1982 in honor of David Arthur Wadsley (1 August 1918, Hobart, Tasmania, Australia - 1969), Australian solid-state chemist and crystallographer, former research scientist of the Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia, for his significant contributions to crystallography, including the concept of crystallographic shearing.
The orthorhombic, high-pressure polymorph of Ringwoodite and Forsterite (a member of the Olivine group of minerals). Initially found in the Peace River meteroite (from Alberta, Canada), it is thought to be formed from the transformation of Olivine during an extraterrestrial shock event (eg meteorite impact). It is known to be a stable and probably the most abundant phase in the transition zone of the Earth's upper mantle (between 400 and 525km depth).

Recent lab experiments, published in 2009, led by Thomas Ahrens at the California Institute of Technology (Caltech) have been able to replicate the formation of Wadsleyite by launching a high-velocity tantalum projectile at a sample containing magnesium oxide and silicon dioxide (Quartz).

Coupled substitution of Fe3+ and H+ for Si is possible, as shown for a synthetic, hydrous material (Kawazoe et al., 2016).


Hide all sections | Show all sections

Classification of WadsleyiteHide

Approved
Approval Year:
1982
First Published:
1983
9.BE.02

9 : SILICATES (Germanates)
B : Sorosilicates
E : Si2O7 groups, with additional anions; cations in octahedral [6] and greater coordination
51.3.4.1

51 : NESOSILICATES Insular SiO4 Groups Only
3 : Insular SiO4 Groups Only with all cations in octahedral [6] coordination
14.21.3

14 : Silicates not Containing Aluminum
21 : Silicates of Fe and Mg

Physical Properties of WadsleyiteHide

Transparency:
Transparent
Colour:
Light grayish brown
Comment:
Color of polycrystalline aggregate
Density:
3.84 g/cm3 (Calculated)

Optical Data of WadsleyiteHide

Type:
Biaxial
Dispersion:
r > v

Chemical Properties of WadsleyiteHide

Formula:
Mg4O(Si2O7)

although the formula is typically written as β-Mg2SiO4 to emphasize its polymorphic relationship to forsterite, wadsleyite is actually a sorosilicate and not a member of the olivine group. This formula format also better illustrates where hydration of the bridging O occurs in "hydrous wadsleyite".
IMA Formula:
Mg2SiO4
Common Impurities:
Cr,Mn,Ni,Ca,Zn

Crystallography of WadsleyiteHide

Crystal System:
Orthorhombic
Cell Parameters:
a = 5.7 Å, b = 11.71 Å, c = 8.24 Å
Ratio:
a:b:c = 0.487 : 1 : 0.704
Unit Cell V:
550.00 ų (Calculated from Unit Cell)

Crystal StructureHide

Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File    Best | x | y | z | a | b | c
Rotation
Stop | Start
Labels
Console Off | On | Grey | Yellow
AMCSDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0000277WadsleyiteBaur W H (1972) Computer-simulated crystal structures of observed and hypothetical Mg2SiO4 Polymorphs of low and high density American Mineralogist 57 709-7311972hypothetical0293
0000834WadsleyiteHoriuchi H, Sawamoto H (1981) Beta-Mg2SiO4: Single-crystal X-ray diffraction study case 1 American Mineralogist 66 568-57519810293
0000835WadsleyiteHoriuchi H, Sawamoto H (1981) Beta-Mg2SiO4: Single-crystal X-ray diffraction study case 2 American Mineralogist 66 568-57519810293
0001873WadsleyiteSmyth J R, Kawamoto T, Jacobsen S D, Swope R J, Hervig R L, Holloway J R (1997) Crystal structure of monoclinic hydrous wadsleyite [beta-(Mg,Fe)2SiO4] American Mineralogist 82 270-27519970293
0001980WadsleyiteWoodland A B, Angel R J (1998) Crystal structure of a new spinelloid with the wadsleyite structure in the system Fe2SiO4-Fe3O4 and implications for the Earth's mantle Fe2.45Si.55O4 American Mineralogist 83 404-40819980293
0002439WadsleyiteHazen R M, Weinberger M B, Yang H, Prewitt C T (2000) Comparative high-pressure crystal chemistry of wadsleyite, beta-(Mg_1-xFe_x)2SiO4, with x=0 and 0.25 American Mineralogist 85 770-77720000293
0002440WadsleyiteHazen R M, Weinberger M B, Yang H, Prewitt C T (2000) Comparative high-pressure crystal chemistry of wadsleyite, beta-(Mg_1-xFe_x)2SiO4, with x=0 and 0.25 American Mineralogist 85 770-77720002.72293
0002441WadsleyiteHazen R M, Weinberger M B, Yang H, Prewitt C T (2000) Comparative high-pressure crystal chemistry of wadsleyite, beta-(Mg_1-xFe_x)2SiO4, with x=0 and 0.25 American Mineralogist 85 770-77720005.23293
0002442WadsleyiteHazen R M, Weinberger M B, Yang H, Prewitt C T (2000) Comparative high-pressure crystal chemistry of wadsleyite, beta-(Mg_1-xFe_x)2SiO4, with x=0 and 0.25 American Mineralogist 85 770-77720006.8293
0002443WadsleyiteHazen R M, Weinberger M B, Yang H, Prewitt C T (2000) Comparative high-pressure crystal chemistry of wadsleyite, beta-(Mg_1-xFe_x)2SiO4, with x=0 and 0.25 American Mineralogist 85 770-77720008.49293
0002444WadsleyiteHazen R M, Weinberger M B, Yang H, Prewitt C T (2000) Comparative high-pressure crystal chemistry of wadsleyite, beta-(Mg_1-xFe_x)2SiO4, with x=0 and 0.25 American Mineralogist 85 770-777200010.12293
0002445WadsleyiteHazen R M, Weinberger M B, Yang H, Prewitt C T (2000) Comparative high-pressure crystal chemistry of wadsleyite, beta-(Mg_1-xFe_x)2SiO4, with x=0 and 0.25 American Mineralogist 85 770-77720000293
0002446WadsleyiteHazen R M, Weinberger M B, Yang H, Prewitt C T (2000) Comparative high-pressure crystal chemistry of wadsleyite, beta-(Mg_1-xFe_x)2SiO4, with x=0 and 0.25 American Mineralogist 85 770-77720002.72293
0002447WadsleyiteHazen R M, Weinberger M B, Yang H, Prewitt C T (2000) Comparative high-pressure crystal chemistry of wadsleyite, beta-(Mg_1-xFe_x)2SiO4, with x=0 and 0.25 American Mineralogist 85 770-77720005.23293
0002448WadsleyiteHazen R M, Weinberger M B, Yang H, Prewitt C T (2000) Comparative high-pressure crystal chemistry of wadsleyite, beta-(Mg_1-xFe_x)2SiO4, with x=0 and 0.25 American Mineralogist 85 770-77720006.8293
0002449WadsleyiteHazen R M, Weinberger M B, Yang H, Prewitt C T (2000) Comparative high-pressure crystal chemistry of wadsleyite, beta-(Mg_1-xFe_x)2SiO4, with x=0 and 0.25 American Mineralogist 85 770-77720008.49293
0002450WadsleyiteHazen R M, Weinberger M B, Yang H, Prewitt C T (2000) Comparative high-pressure crystal chemistry of wadsleyite, beta-(Mg_1-xFe_x)2SiO4, with x=0 and 0.25 American Mineralogist 85 770-777200010.12293
0002451WadsleyiteHazen R M, Yang H, Prewitt C T (2000) High-pressure crystal chemistry of Fe3+-wadsleyite, beta-Fe2.33Si0.67O4 Pressure = 0.00 GPa American Mineralogist 85 778-78320000293
0002452WadsleyiteHazen R M, Yang H, Prewitt C T (2000) High-pressure crystal chemistry of Fe3+-wadsleyite, beta-Fe2.33Si0.67O4 Pressure = 1.95 GPa American Mineralogist 85 778-78320000293
0002453WadsleyiteHazen R M, Yang H, Prewitt C T (2000) High-pressure crystal chemistry of Fe3+-wadsleyite, beta-Fe2.33Si0.67O4 Pressure = 3.80 GPa American Mineralogist 85 778-78320000293
0002454WadsleyiteHazen R M, Yang H, Prewitt C T (2000) High-pressure crystal chemistry of Fe3+-wadsleyite, beta-Fe2.33Si0.67O4 Pressure = 5.45 GPa American Mineralogist 85 778-78320000293
0002455WadsleyiteHazen R M, Yang H, Prewitt C T (2000) High-pressure crystal chemistry of Fe3+-wadsleyite, beta-Fe2.33Si0.67O4 Pressure = 7.35 GPa American Mineralogist 85 778-78320000293
0002456WadsleyiteHazen R M, Yang H, Prewitt C T (2000) High-pressure crystal chemistry of Fe3+-wadsleyite, beta-Fe2.33Si0.67O4 Pressure = 8.95 GPa American Mineralogist 85 778-78320000293
0003663WadsleyiteJacobsen S D, Demouchy S, Frost D J, Ballaran T B, Kung J (2005) A systematic study of OH in hydrous wadsleyite from polarized FTIR spectroscopy and single-crystal X-ray diffraction: Oxygen sites for hydrogen storage in Earth's interior American Mineralogist 90 61-7020050293
0003664WadsleyiteJacobsen S D, Demouchy S, Frost D J, Ballaran T B, Kung J (2005) A systematic study of OH in hydrous wadsleyite from polarized FTIR spectroscopy and single-crystal X-ray diffraction: Oxygen sites for hydrogen storage in Earth's interior American Mineralogist 90 61-7020050293
0003665WadsleyiteJacobsen S D, Demouchy S, Frost D J, Ballaran T B, Kung J (2005) A systematic study of OH in hydrous wadsleyite from polarized FTIR spectroscopy and single-crystal X-ray diffraction: Oxygen sites for hydrogen storage in Earth's interior American Mineralogist 90 61-7020050293
0004543WadsleyiteHoll C M, Smyth J R, Jacobsen S D, Frost D J (2008) Effects of hydration on the structure and compressibility of wadsleyite, beta-(Mg2SiO4) American Mineralogist 93 598-6072008synthetic0293
0004544WadsleyiteHoll C M, Smyth J R, Jacobsen S D, Frost D J (2008) Effects of hydration on the structure and compressibility of wadsleyite, beta-(Mg2SiO4) American Mineralogist 93 598-6072008synthetic0293
0004545WadsleyiteHoll C M, Smyth J R, Jacobsen S D, Frost D J (2008) Effects of hydration on the structure and compressibility of wadsleyite, beta-(Mg2SiO4) American Mineralogist 93 598-6072008synthetic0293
0004546WadsleyiteHoll C M, Smyth J R, Jacobsen S D, Frost D J (2008) Effects of hydration on the structure and compressibility of wadsleyite, beta-(Mg2SiO4) American Mineralogist 93 598-60720080293
0019743WadsleyiteTrots D M, Kurnosov A, Ballaran T F, Frost D J (2012) High-temperature structural behaviors of anhydrous wadsleyite and forsterite American Mineralogist 97 1582-15902012synthetic0297
0019744WadsleyiteTrots D M, Kurnosov A, Ballaran T F, Frost D J (2012) High-temperature structural behaviors of anhydrous wadsleyite and forsterite American Mineralogist 97 1582-15902012synthetic0728
0019745WadsleyiteTrots D M, Kurnosov A, Ballaran T F, Frost D J (2012) High-temperature structural behaviors of anhydrous wadsleyite and forsterite American Mineralogist 97 1582-15902012synthetic0929
0019746WadsleyiteTrots D M, Kurnosov A, Ballaran T F, Frost D J (2012) High-temperature structural behaviors of anhydrous wadsleyite and forsterite American Mineralogist 97 1582-15902012synthetic01084
0007489WadsleyiteSawamoto H, Horiuchi H (1990) Beta (Mg0.9Fe0.1)2SiO4: single crystal structure, cation distribution, and properties of coordination polyhedra Physics and Chemistry of Minerals 17 293-30019900293
0007734WadsleyiteFinger L W, Hazen R M, Zhang J, Ko J, Navrotsky A (1993) The effect of Fe on the crystal structure of wadsleyite beta-(Mg1-xFex)2SiO4, 0.00<=x<=0.40 Physics and Chemistry of Minerals 19 361-36819930293
0007735WadsleyiteFinger L W, Hazen R M, Zhang J, Ko J, Navrotsky A (1993) The effect of Fe on the crystal structure of wadsleyite beta-(Mg1-xFex)2SiO4, 0.00<=x<=0.40 Physics and Chemistry of Minerals 19 361-36819930293
0007736WadsleyiteFinger L W, Hazen R M, Zhang J, Ko J, Navrotsky A (1993) The effect of Fe on the crystal structure of wadsleyite beta-(Mg1-xFex)2SiO4, 0.00<=x<=0.40 Physics and Chemistry of Minerals 19 361-36819930293
0007737WadsleyiteFinger L W, Hazen R M, Zhang J, Ko J, Navrotsky A (1993) The effect of Fe on the crystal structure of wadsleyite beta-(Mg1-xFex)2SiO4, 0.00<=x<=0.40 Physics and Chemistry of Minerals 19 361-36819930293
0007738WadsleyiteFinger L W, Hazen R M, Zhang J, Ko J, Navrotsky A (1993) The effect of Fe on the crystal structure of wadsleyite beta-(Mg1-xFex)2SiO4, 0.00<=x<=0.40 Physics and Chemistry of Minerals 19 361-36819930293
0007971WadsleyiteKudoh Y, Inoue T, Arashi H (1996) Structure and crystal chemistry of hydrous wadsleyite, Mg1.75SiH0.5O4: possible hydrous magnesium silicate in the mantle transition zone Physics and Chemistry of Minerals 23 461-4691996synthetic0293
0008218WadsleyiteKudoh Y, Inoue T (1999) Mg-vacant structural modules and dilution of the symmetry of hydrous wadsleyite, beta-Mg2-xSiH2xO4 with 0.00<=x<=0.25 Physics and Chemistry of Minerals 26 382-38819990293
0008219WadsleyiteKudoh Y, Inoue T (1999) Mg-vacant structural modules and dilution of the symmetry of hydrous wadsleyite, beta-Mg2-xSiH2xO4 with 0.00<=x<=0.25 Physics and Chemistry of Minerals 26 382-38819990293
CIF Raw Data - click here to close

X-Ray Powder DiffractionHide

Powder Diffraction Data:
d-spacingIntensity
2.452 Å(100)
2.038 Å(80)
1.441 Å(80)
2.886 Å(50)
2.691 Å(40)
2.637 Å(30)
1.567 Å(30)

Type Occurrence of WadsleyiteHide

General Appearance of Type Material:
Fine-grained aggregates with a grain size of 5 um.
Place of Conservation of Type Material:
Department of Geology, University of Alberta, Edmonton, Canada.
Geological Setting of Type Material:
Found in vein in the Peace River meteorite, believed to have formed from an extraterrestrial shock event.
Associated Minerals at Type Locality:

Synonyms of WadsleyiteHide

Other Language Names for WadsleyiteHide

Related Minerals - Nickel-Strunz GroupingHide

9.BE.BetalomonosoviteNa64Ti4(Si2O7)2[PO3OH][PO2(OH)2]O2(OF)Tric. 1 : P1
9.BE.Batievaite-(Y)Y2Ca2Ti(Si2O7)2(OH)2(H2O)4Tric. 1 : P1
9.BE.Delhuyarite-(Ce)Ce4Mg(Fe3+,W)3□(Si2O7)2O6(OH)2Mon. 2/m : B2/m
9.BE.XAsimowiteFe2+4O(Si2O7)Orth. mmm (2/m 2/m 2/m) : Imma
9.BE.05HennomartiniteSrMn3+2(Si2O7)(OH)2 · H2OOrth.
9.BE.05LawsoniteCaAl2(Si2O7)(OH)2 · H2OOrth. mmm (2/m 2/m 2/m) : Cmcm
9.BE.05NoelbensoniteBaMn3+2(Si2O7)(OH)2 · H2OOrth.
9.BE.05ItoigawaiteSrAl2(Si2O7)(OH)2 · H2OOrth.
9.BE.07IlvaiteCaFe3+Fe2+2(Si2O7)O(OH)Orth. mmm (2/m 2/m 2/m)
9.BE.07ManganilvaiteCaFe2+Fe3+Mn2+(Si2O7)O(OH)Mon. 2/m : P21/b
9.BE.10SuoluniteCa2(H2Si2O7) · H2OOrth.
9.BE.12JaffeiteCa6(Si2O7)(OH)6Trig. 3 : P3
9.BE.15FresnoiteBa2Ti(Si2O7)OTet. 4mm : P4bm
9.BE.17BaghdaditeCa3(Zr,Ti)(Si2O7)O2Mon.
9.BE.17BurpaliteNa2CaZr(Si2O7)F2Mon.
9.BE.17CuspidineCa4(Si2O7)(F,OH)2Mon. 2/m : P21/b
9.BE.17Hiortdahlite(Na,Ca)2Ca4Zr(Mn,Ti,Fe)(Si2O7)2(F,O)4Tric. 1 : P1
9.BE.17Janhaugite(Na,Ca)3(Mn2+,Fe2+)3(Ti,Zr,Nb)2(Si2O7)2O2(OH,F)2Mon. 2/m : P21/m
9.BE.17Låvenite(Na,Ca)2(Mn2+,Fe2+)(Zr,Ti)(Si2O7)(O,OH,F)2Mon. 2/m : P21/b
9.BE.17Niocalite(Ca,Nb)4(Si2O7)(O,OH,F)2Mon.
9.BE.17NormanditeNaCa(Mn,Fe)(Ti,Nb,Zr)(Si2O7)OFMon. 2/m : P21/b
9.BE.17WöhleriteNaCa2(Zr,Nb)(Si2O7)(O,OH,F)2Mon. 2 : P21
9.BE.17Hiortdahlite INa4Ca8Zr2(Nb,Mn,Ti,Fe,Mg,Al)2(Si2O7)4O3F5
9.BE.17MarianoiteNa2Ca4(Nb,Zr)2(Si2O7)2(O,F)4Mon. 2 : P21
9.BE.20Mosandrite-(Ce)(Ca3REE)[(H2O)2Ca0.50.5]Ti(Si2O7)2(OH)2(H2O)2Mon. 2/m : P21/b
9.BE.20Nacareniobsite-(Ce)NbNa3Ca3(Ce,REE )(Si2O7)2OF3Mon.
9.BE.22GötzeniteNaCa6Ti(Si2O7)2OF3Tric. 1 : P1
9.BE.22Hainite-(Y)Na2Ca4(Y,REE)Ti(Si2O7)2OF3Tric. 1 : P1
9.BE.22RosenbuschiteNa6Ca6Zr3Ti(Si2O7)4O2F6Tric. 1 : P1
9.BE.22KochiteNa3Ca2MnZrTi(Si2O7)2OF3Tric. 1 : P1
9.BE.23DovyreniteCa6Zr(Si2O7)2(OH)4Orth. mmm (2/m 2/m 2/m) : Pnnm
9.BE.25Barytolamprophyllite(Ba,Na)2(Na,Ti,Fe3+)4Ti2(Si2O7)2O(OH,F)Mon.
9.BE.25EricssoniteBaMn2+2Fe3+(Si2O7)O(OH)Mon. 2/m : B2/m
9.BE.25Lamprophyllite(Na,Mn2+)3(Sr,Na)2(Ti,Fe3+)3(Si2O7)2O2(OH,O,F)2Mon.
9.BE.25Ericssonite-2OBaMn2+2Fe3+(Si2O7)O(OH)Orth.
9.BE.25SeidozeriteNa4MnZr2Ti(Si2O7)2O2F2Mon.
9.BE.25NabalamprophylliteNa3(Ba,Na)2Ti3(Si2O7)2O2(OH,F)2Mon. 2/m
9.BE.25GrenmariteNa4MnZr3(Si2O7)2O2F2Mon. 2/m : P2/b
9.BE.25SchülleriteBa2Na(Mn,Ca)(Fe3+,Mg,Fe2+)2Ti2(Si2O7)2(O,F)4Tric. 1 : P1
9.BE.25LileyiteBa2(Na,Fe,Ca)3MgTi2(Si2O7)2O2F2Mon. 2/m : B2/m
9.BE.25EmmerichiteBa2Na(Na,Fe2+)2(Fe3+,Mg)Ti2(Si2O7)2O2F2Mon. 2/m : B2/m
9.BE.25Fluorbarytolamprophyllite(Ba,Sr)2[(Na,Fe2+)3(Ti,Mg)F2][Ti2(Si2O7)2O2]Mon. 2/m : B2/m
9.BE.27MurmaniteNa2Ti2(Si2O7)O2 · 2H2OTric.
9.BE.30EpistoliteNa2(Nb,Ti)2(Si2O7)O2 · nH2OTric.
9.BE.32LomonosoviteNa5Ti2(Si2O7)(PO4)O2Tric. 1 : P1
9.BE.35VuonnemiteNa11Ti4+Nb2(Si2O7)2(PO4)2O3(F,OH)Tric.
9.BE.37SoboleviteNa13Ca2Mn2Ti3(Si2O7)2(PO4)4O3F3Mon. m : Pb
9.BE.40InneliteNa2CaBa4Ti3(Si2O7)2(SO4)2O4Tric. 1 : P1
9.BE.40PhosphoinneliteNa3Ba4Ti3(Si2O7)2(PO4,SO4)2O2FTric.
9.BE.42YoshimuraiteBa2Mn2Ti(Si2O7)(PO4)O(OH)Tric. 1 : P1
9.BE.45QuadruphiteNa14Ca2Ti4(Si2O7)2(PO4)2O2FTric.
9.BE.47PolyphiteNa5(Na4Ca2)Ti2(Si2O7)(PO4)3O2F2Tric. 1 : P1
9.BE.50BornemaniteNa6BaTi2Nb(Si2O7)2(PO4)O2(OH)F Tric. 1 : P1
9.BE.50ShkatulkaliteNa5(Nb1−xTix)2(Ti1−yMn2+y)[Si2O7]2O2(OH)2·nH2O (x + y = 0.5; n <= 10)Mon. 2/m : P2/m
9.BE.55BafertisiteBa2Fe2+4Ti2(Si2O7)2O2(OH)2F2Tric.
9.BE.55HejtmaniteBa2(Mn2+,Fe2+)4Ti2(Si2O7)2O2(OH)2F2Tric. 1
9.BE.55Bykovaite(Ba,Na,K)2(Na,Ti,Mn)4(Ti,Nb)2(Si2O7)2O2(H2O,F,OH)2 · 3.5H2OMon. 2/m
9.BE.55Nechelyustovite(Ba,Sr,K)2(Na,Ti,Mn)4(Ti,Nb)2(Si2O7)2O2(O,H2O,F)2 · 4.5H2OMon. 2/m : B2/m
9.BE.60Delindeite(Na,K)2(Ba,Ca)2(Ti,Fe,Al)3(Si2O7)2O2(OH)2 · 2H2OMon.
9.BE.65BusseniteNa2Ba2Fe2+Ti(Si2O7)(CO3)(OH)3FTric. 1 : P1
9.BE.67JinshajiangiteBaNaFe2+4Ti2(Si2O7)2O2(OH)2FTric. 1 : P1
9.BE.67PerraultiteBaNaMn2+4Ti2(Si2O7)2O2(OH)2FMon. 2/m : B2/m
9.BE.70Karnasurtite-(Ce)(Ce,La,Th)(Ti,Nb)(Al,Fe)(Si2O7)(OH)4 · 3H2OAmor.
9.BE.70Perrierite-(Ce)Ce4MgFe3+2Ti2(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70Strontiochevkinite(Sr,La,Ce,Ca)4Fe2+(Ti,Zr)2Ti2(Si2O7)2O8Mon.
9.BE.70Chevkinite-(Ce)(Ce,La,Ca,Th)4(Fe2+,Mg)(Fe2+,Ti,Fe3+)2(Ti,Fe3+)2(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70Polyakovite-(Ce)(Ce,Ca)4(Mg,Fe2+)(Cr3+,Fe3+)2(Ti,Nb)2(Si2O7)2O8Mon. 2/m : B2/m
9.BE.70RengeiteSr4ZrTi4(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70MatsubaraiteSr4Ti5(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70Dingdaohengite-(Ce)(Ce,La)4Fe2+(Ti,Fe2+,Mg,Fe2+)2Ti2(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70Maoniupingite-(Ce)(Ce,Ca)4(Fe3+,Ti,Fe2+,◻)(Ti,Fe3+,Fe2+,Nb)4(Si2O7)2O8Mon. 2/m : B2/m
9.BE.70Perrierite-(La)(La,Ce,Ca)4(Fe,Mn2+,Mg)Fe3+2(Ti,Fe3+)2(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70UKI-2008-(SiO:SrTiZr)Sr4ZrTi4(Si2O7)2O8Orth. mmm (2/m 2/m 2/m) : Pbca
9.BE.70Hezuolinite(Sr,REE)4Zr(Ti,Fe3+)4(Si2O7)2O8Mon. 2/m : B2/m
9.BE.72FersmaniteCa4(Na,Ca)4(Ti,Nb)4(Si2O7)2O8F3Tric.
9.BE.75BelkoviteBa3(Nb,Ti)6(Si2O7)2O12Hex.
9.BE.77NasonitePb6Ca4(Si2O7)3Cl2Hex.
9.BE.80KentrolitePb2Mn3+2(Si2O7)O2Orth. mmm (2/m 2/m 2/m) : Pbcm
9.BE.80MelanotekitePb2Fe3+2(Si2O7)O2Orth. 2 2 2 : C2 2 21
9.BE.82TilleyiteCa5(Si2O7)(CO3)2Mon.
9.BE.85KillalaiteCa6.4(H0.6Si2O7)2(OH)2Mon.
9.BE.87Stavelotite-(La)(La,Nd,Ca)3Mn2+3Cu(Mn3+,Fe3+,Mn4+)26(Si2O7)6O30Trig. 3 : P31
9.BE.90Biraite-(Ce)Ce2Fe2+(Si2O7)(CO3)Mon. 2/m : P21/b
9.BE.92Cervandonite-(Ce)(Ce,Nd,La)(Fe3+,Fe2+,Ti,Al)3O2(Si2O7)(As3+O3)(OH)Trig. 3m : R3m
9.BE.95BatisiviteBaV3+8Ti6(Si2O7)O22Tric. 1 : P1

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

14.21.1OlivineOrth.
14.21.2Ringwoodite(Mg,Fe2+)2SiO4Iso. m3m (4/m 3 2/m) : Fd3m
14.21.4ClinoferrosiliteFe2+SiO3Mon. 2/m : P21/b
14.21.5Anthophyllite☐{Mg2}{Mg5}(Si8O22)(OH)2Orth. mmm (2/m 2/m 2/m) : Pnma
14.21.6Cummingtonite☐{Mg2}{Mg5}(Si8O22)(OH)2Mon.
14.21.7 Magnesiocummingtonite☐{Mg2}{Mg5}(Si8O22)(OH)2
14.21.8Grunerite☐{Fe2+2}{Fe2+5}(Si8O22)(OH)2Mon. 2/m : B2/m
14.21.9MinnesotaiteFe2+3Si4O10(OH)2Tric. 1 : P1
14.21.10Chesterite(Mg,Fe)17Si20O54(OH)6Orth.
14.21.11Jimthompsonite(Mg,Fe)5Si6O16(OH)2Orth. mmm (2/m 2/m 2/m) : Pbca
14.21.12Clinojimthompsonite(Mg,Fe)5Si6O16(OH)2Mon. 2/m : B2/b
14.21.13MajoriteMg3(MgSi)(SiO4)3Iso.
14.21.14Balangeroite(Mg,Fe2+,Fe3+,Mn2+)42Si16O54(OH)40Mon.

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for WadsleyiteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Ringwood, A.F., Major, A. (1966) Synthesis of Mg2SiO4-Fe2SiO4 spinel solid solutions. Earth and Planetary Science Letters: 1: 241-245.
Akimoto, S. (1968) High-pressure transformations in Co2SiO4 olivine and some geohysical implications. Physics of the Earth and Planetary Interiors: 1: 498-504.
Ringwood, A.F., Major, A. (1970) The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures. Physics of the Earth and Planetary Interiors: 3: 89-108.
Akimoto, S. (1970) High pressure synthesis of a "modified" spinel and some geophysical implications. Physics of the Earth and Planetary Interiors: 3: 189-195.
Price, G.D., Putnis, A., Agrell, S.O., Smith, D.G.W. (1983) Wadsleyite, natural ß-(Mg,Fe)2SiO4 from the Peace River meteorite. Canadian Mineralogist: 21: 29-35.
Dunn, P.J., Grice, J.D., Fleischer, M., Pabst, A. (1983) New mineral names. American Mineralogist: 68: 1038-1041.
Kudoh, Y., Inoue, T., Arashi, H. (1996) Structure and crystal chemistry of hydrous wadsleyite Mg1.75SiH0.5O4: possible hydrous magnesium silicate in the mantle transition zone. Physics and Chemistry of Minerals: 23: 461-469.
Reynard, B., Takir, F., Guyot, F., Gwanmesia, G.D., Liebermann, R.C., Gillet, P. (1996) High-temperature Raman spectroscopic and X-ray diffraction study of β–Mg2SiO4: Insights into its high-temperature thermodynamic properties and the β– to α– phase-transformation mechanism and kinetics. American Mineralogist: 81: 585-594.
Smyth, J.R., Kawamoto, T., Jacobsen, S.D., Swope, R.J., Hervig, R.L., Holloway, J.R. (1997) Crystal structure of monoclinic hydrous wadsleyite β-(Mg,Fe)2SiO4. American Mineralogist: 82: 270-275.
Sinogeikin, S.V., Katsura, T., Bass, J.D. (1998) Sound velocities and elastic properties of Fe-bearing wadsleyite and ringwoodite. Journal of Geophysical Research: 103: 20819-20825.
Demouchy, S., Deloule, E., Frost, D.J., Keppler, H. (2005) Pressure and temperature-dependence of water solubility in Fe-free wadsleyite. American Mineralogist: 90: 1084-1091.
Kleppe, A.K., Jephcoat, A.P., Smyth, J.R. (2006) High-pressure Raman spectroscopic studies of hydrous wadsleyite II. American Mineralogist: 91: 1102-1109.
Holl, C.M., Smyth, J.R., Jacobsen, S.D., Frost, D.J. (2008) Effects of hydration on the structure and compressibility of wadsleyite, β-(Mg2SiO4). American Mineralogist: 93: 598-607.
Nishihara, Y., Shinmei, T., Karato, S.I. (2008) Effect of chemical environment on the hydrogen-related defect chemistry in wadsleyite. American Mineralogist: 93: 831-843.
Tschauner, O., Asimow, P.D., et al. (2009) Ultrafast growth of wadsleyite in shock-produced melts and its implications for early solar system impact processes. PNAS 2009: 0905751106v1-pnas.0905751106.
Sano-Furukawa, A., Kuribayashi, T., Komatsu, K., Yagi, T., Ohtani, E. (2011) Investigation of hydrogen sites of wadsleyite: a neutron diffraction study. Physics of The Earth and Planetary Interiors: 189: 56-62.
Trots, D.M., Kurnosov, A., Ballaran, T.F., Frost, D.J. (2012) High-temperature structural behaviors of anhydrous wadsleyite and forsterite. American Mineralogist: 97: 1582-1590.
Blanchard, M., Roberge, M., Balan, E., Fiquet, G., Bureau, H. (2013) Infrared signatures of OH-defects in wadsleyite: A first-principles study. American Mineralogist: 98: 2132-2143.
Yang, X., Keppler, H., Dubrovinsky, L., Kurnosov, A. (2014) In-situ infrared spectra of hydroxyl in wadsleyite and ringwoodite at high pressure and high temperature. American Mineralogist: 99: 724-729.
Kawazoe, T., Buchen, J., Marquardt, H. (2015) Synthesis of large wadsleyite single crystals by solid-state recrystallization. American Mineralogist: 100: 2336-2339.
Kawazoe, T., Chaudhari, A., Smyth, J.R., McCammon, C. (2016) Coupled substitution of Fe3+ and H+ for Si in wadsleyite: a study by polarized infrared and Mössbauer spectroscopies and single-crystal X-ray diffraction. American Mineralogist: 101: 1236-1239.
Zhang, L., Smyth, J.R., Allaz, J., Kawazoe, T., Jacobsen, S.D., Jin, Z. (2016) Transition Metals in the Transition Zone: Crystal Chemistry of Minor Element Substitution in Wadsleyite. American Mineralogist: 101: 2322-2330.
Gwanmesia, G.D.; Whitaker, M.L.; Dai, L.; James, A.; Chen, H.; Triplett, R.S.; Cai, N. (2020) The Elastic Properties of β-Mg2SiO4 Containing 0.73 wt.% of H2O to 10 GPa and 600 K by Ultrasonic Interferometry with Synchrotron X-Radiation. Minerals 10, 209.

Internet Links for WadsleyiteHide

Localities for WadsleyiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Antarctica
 
  • Eastern Antarctica
    • American Highland
      • Grove Mountains
https://www.lpi.usra.edu/meteor/metbull.php?sea=Grove+Mountains+052049&sfor=names&ants=&falls=&valids=&stype=contains&lrec=50&map=ll&browse=&country=All&srt=name&categ=All&mblist=All&rect=&phot=&snew=0&pnt=Normal%20table&code=44887
    • Queen Maud Land
      • Queen Fabiola Mts (Yamato Mts)
Ozawa, S., Ohtani, E., Suzuki, A., Miyahara, M., Terada, K., & Kimura, M. (2007, December). Shock metamorphism of L6 chondrites Sahara 98222 and Yamato 74445: the PT conditions and the shock age. In AGU Fall Meeting Abstracts.
Australia
 
  • Queensland
    • Barcoo Shire
      • Windorah
        • Tenham Station
Tomioka, N. and Fujino, K. (1997) Natural (Mg,Fe)SiO3-ilmenite and -perovskite in the Tenham meteorite. Science: 277: 1084–1086.; Jambor, J.L. and Roberts, A.C. (1998) New mineral names. American Mineralogist: 83: 400-403.; Lunar and Planetary Science XXXIV (2003).
Canada (TL)
 
  • Alberta
    • Peace River
PRICE, G.D., PUTNIS, A., AGRELL, S.O. & SMITH, D.G.W. (1983): Wadsleyite, natural bbb-(Mg,Fe)2SiO4 from the Peace River meteorite. Canadian Mineralogist 21, 29-35.; Grady, M.M., Pratesi, G. & Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge University Press: Cambridge, United Kingdom. 373 pages.
China
 
  • Anhui
    • Anqing
      • Qianshan City
Am. Min. , V 84, pp. 564-569, 1999.
    • Bozhou
      • Qiaocheng District
        • Xiaoyanzhuang
Kuiren Wang, Ji'an Hong, and Meyer, H.O.A. (1995): Acta Mineralogica Sinica 15(1), 9-14
  • Jiangsu
    • Taizhou
      • Gaogang District
        • Sixiangkou
Chen, M., El Goresy, A. & Gillet, P. Ringwoodite lamellae in olivine: clues to olivine–ringwoodite phase transition mechanisms in shocked meteorites and subducting slabs. Proc. Natl Acad. Sci. USA 101, 15033–15037 (2004)
France
 
  • Centre-Val de Loire
    • Loiret
      • Montargis
Baziotis, I., Asimow, P. D., Hu, J., Ferrière, L., Ma, C., Cernok, A., ... & Topa, D. (2018). High pressure minerals in the Château-Renard (L6) ordinary chondrite: implications for collisions on its parent body. Scientific reports, 8(1), 9851.
  • Grand Est
    • Haute-Marne
      • Chassigny
Malavergne, V., Guyot, F., Benzerara, K., & Martinez, I. (2001). Description of new shock‐induced phases in the Shergotty, Zagami, Nakhla and Chassigny meteorites. Meteoritics & Planetary Science, 36(10), 1297-1305.
Germany
 
  • Hesse
    • Kassel Region
      • Hersfeld-Rotenburg
        • Nentershausen
          • Süß
            • Richelsdorf Smelter
S. Weiß: "Mineralfundstellen, Deutschland West", Weise (Munich), 1992
Nigeria
 
  • Yobe
    • Bogga Dingare
Weisberg, M.K. & Kimura, M. (2010). Petrology and Raman spectroscopy of high pressure phases in the Gujba CB chondrite and the shock history of the CB parent body. Meteoritics & Planetary Science Volume 45, Issue 5, pages 873–884. (May 2010)
North Africa
 
  • Sahara Desert
Ozawa, S., Ohtani, E., Suzuki, A., Miyahara, M., Terada, K., & Kimura, M. (2007, December). Shock metamorphism of L6 chondrites Sahara 98222 and Yamato 74445: the PT conditions and the shock age. In AGU Fall Meeting Abstracts.
Oman
 
  • Dhofar Governorate
Litasov, K. D., Badyukov, D. D., & Pokhilenko, N. P. (2019, March). Formation parameters of high-pressure minerals in the Dhofar 717 AND 864 chondrite meteorites. In Doklady Earth Sciences (Vol. 485, No. 1, pp. 327-330). Pleiades Publishing.
Litasov, K. D., Badyukov, D. D., & Pokhilenko, N. P. (2019, March). Formation parameters of high-pressure minerals in the Dhofar 717 AND 864 chondrite meteorites. In Doklady Earth Sciences (Vol. 485, No. 1, pp. 327-330). Pleiades Publishing.
D.D. Badjukov et al. , Lunar and Planetary Science, XXXVI (2005), 1684.pdf
Russia
 
  • Chelyabinsk Oblast
Nakamura, E., Kunihiro, T., Ota, T., Sakaguchi, C., Tanaka, R., Kitagawa, H., ... & Miura, H. (2019). Hypervelocity collision and water-rock interaction in space preserved in the Chelyabinsk ordinary chondrite. Proceedings of the Japan Academy, Series B, 95(4), 165-177.
USA
 
  • New Mexico
    • De Baca Co.
Acosta, T.E., Scott, E.R.D. & Sharma, S.K. (2012) Micro-Raman Mapping of Mineral Phases in the Strongly Shocked Taiban Ordinary Chondrite: 43rd Lunar and Planetary Science Conference. LPI Contribution No. 1659, id.2725.
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2020, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: August 4, 2020 03:40:18 Page generated: July 10, 2020 15:32:20
Go to top of page