Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery


This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About BernaliteHide

John Desmond Bernal
Fe(OH)3 · nH2O (n = 0.0 to 0.25)
Dark bottle-green to yellow-green; yellowish bottle-green in thin section
Adamantine, Vitreous, Resinous
Specific Gravity:
Crystal System:
Named in honor of John Desmond Bernal (10 May 1901, Nenagh, County Tipperary, Ireland - 15 September 1971, London, England), eminent crystallographer and historian of science. He pioneered the use of X-ray crystallography in molecular biology and determined the structure of graphite. He also investigated the crystal chemistry of iron oxides and hydroxides.
Söhngeite Group.
A highly unusual, pseudo-cubic, bottle-green iron hydroxide. In bernalite, the iron containing octahedra units only share corners, while other iron hydroxides share both corners and edges, resulting in Fe-O distances in bernalite that are more consistent than other iron hydroxides. This causes a low crystal field stabilization energy which results in a green color as compared to the red yellow of other iron hydroxides.

Classification of BernaliteHide

First Published:

4 : OXIDES (Hydroxides, V[5,6] vanadates, arsenites, antimonites, bismuthites, sulfites, selenites, tellurites, iodates)
F : Hydroxides (without V or U)
C : Hydroxides with OH, without H2O; corner-sharing octahedra

3 : X(OH)3

Physical Properties of BernaliteHide

Adamantine, Vitreous, Resinous
Transparent, Opaque
Dark bottle-green to yellow-green; yellowish bottle-green in thin section
None Observed
Irregular/Uneven, Conchoidal
3.32 g/cm3 (Measured)    3.35 g/cm3 (Calculated)

Optical Data of BernaliteHide

RI values:
n = 1.92 - 1.94
Max Birefringence:
δ = 0.000
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
Very High
r > v, strong

Chemical Properties of BernaliteHide

Fe(OH)3 · nH2O (n = 0.0 to 0.25)
IMA Formula:
Common Impurities:

Crystallography of BernaliteHide

Crystal System:
Class (H-M):
mmm (2/m 2/m 2/m) - Dipyramidal
Space Group:
Cell Parameters:
a = 7.544 Å, b = 7.56 Å, c = 7.558 Å
a:b:c = 0.998 : 1 : 1
Unit Cell V:
431.05 ų (Calculated from Unit Cell)
Flattened pyramidal crystals, pseudo-octahedral to pseudo-cubic, with slightly concave faces; also skeletal aggregates.
Polysynthetic, crosshatched, observed in thin section, probably pinacoidal.
Pseudocubic. Originally described with space group Immm.

X-Ray Powder DiffractionHide

Powder Diffraction Data:
3.784 (100)
1.692 (17)
2.393 (16)
2.676 (15)
1.892 (10)
1.545 (9)
2.023 (6)
Recorded on type material

Type Occurrence of BernaliteHide

General Appearance of Type Material:
Flattened pyramidal crystals and pseudo-octahedra, to 3 mm.
Place of Conservation of Type Material:
Museum of Victoria, Melbourne, Australia;
South Australian Museum, Adelaide, Australia (No. G17627)
Geological Setting of Type Material:
On a museum specimen from a metamorphosed Pb-Zn deposit, probably from the surface oxidation zone
Associated Minerals at Type Locality:
Birch, W. D., Pring, A., Reller, A. and Schmalle, H. W. (1992) Bernalite: a new ferric hydroxide with perovskite structure. Naturwissenschaften: 79: 509-511.

Synonyms of BernaliteHide

Other Language Names for BernaliteHide


Relationship of Bernalite to other SpeciesHide

Other Members of this group:

Common AssociatesHide

Associated Minerals Based on Photo Data:
Goethite1 photo of Bernalite associated with Goethite on mindat.org.

Related Minerals - Nickel-Strunz GroupingHide

4.FC.10NataniteFe2+[Sn(OH)6]Iso. m3m (4/m 3 2/m) : Pn3m
4.FC.10SchoenfliesiteMg[Sn(OH)6]Iso. m3 (2/m 3) : Pn3
4.FC.10WickmaniteMn2+[Sn(OH)6]Iso. m3 (2/m 3) : Pn3
4.FC.15JeanbandyiteFe3+xFe2+1-xSn(OH)6-xOx (1 ≥ x > 0.5)Tet. 4/m : P42/n
4.FC.15MopungiteNa[Sb5+(OH)6]Tet. 4/m : P42/n
4.FC.15TetrawickmaniteMn2+[Sn4+(OH)6]Tet. 4/m : P42/n
4.FC.20Ferronigerite-2N1S(Al,Fe,Zn)2(Al,Sn)6O11(OH)Trig. 3m (3 2/m) : P3m1
4.FC.20Magnesionigerite-6N6S(Mg,Al,Zn)3(Al,Sn,Fe)8O15(OH)Trig. 3m (3 2/m) : R3m
4.FC.20Magnesionigerite-2N1S(Mg,Al,Zn)2(Al,Sn)6O11(OH)Trig. 3m (3 2/m) : P3m1
4.FC.20Ferronigerite-6N6S(Al,Fe,Zn)3(Al,Sn,Fe)8O15(OH)Trig. 3m (3 2/m) : R3m
4.FC.20Zinconigerite-2N1S(Zn,Al,Mg)2(Al,Sn)6O11(OH)Trig. 3m (3 2/m) : P3m1
4.FC.20Zinconigerite-6N6S(Zn,Mg,Al)3(Al,Sn,Fe)8O15(OH)Trig. 3m (3 2/m) : R3m
4.FC.25Magnesiotaaffeite-2N’2SMg3Al8BeO16Hex. 6/mmm (6/m 2/m 2/m)

Related Minerals - Dana Grouping (8th Ed.)HideöhngeiteGa(OH)3Tet.

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Industrial Uses:

References for BernaliteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Birch, W. D., Pring, A., Reller, A. and Schmalle, H. W. (1992) Bernalite: a new ferric hydroxide with perovskite structure. Naturwissenschaften: 79: 509-511.
Birch, W. D., Pring, A., Reller, A. and Schmalle, H. W. (1993) Bernalite, Fe(OH)3, a new mineral from Broken Hill, New South Wales: Description and structure. American Mineralogist: 78: 827-834.
McCammon, C. A., Pring, A., Keppler, H. and Sharp, T. (1995) A study of bernalite, Fe(OH)3, using Mössbauer spectroscopy, optical spectroscopy and transmission electron microscopy. Physical Chemistry of Minerals: 22: 11-20.
Anthony, Bideaux, Bladh & Nichols (1997) Handbook of Mineralogy, Vol. III, Mineral Data Publishing: 53.
Kolitsch, U. (1998) Bernalite from the Clara mine, Germany, and the incorporation of tungsten in minerals containing ferric iron. Canadian Mineralogist: 36: 1211-1216.
Welch, M. D.; Crichton, W. A.; Ross, N. L. (2005) Compression of the perovskite-related mineral bernalite Fe(OH)3 to 9 GPa and a reappraisal of its structure. Mineralogical Magazine: 69: 309-315.

Internet Links for BernaliteHide

Localities for BernaliteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
Australia (TL)
  • New South Wales
    • Yancowinna Co.
      • Broken Hill district
Naturwiss.(1992) 79, 509-511
R&M. 71:160-161 (1996); Australian Min. 3:1 (1997)
  • Baden-Württemberg
    • Black Forest
      • St Blasien
        • Urberg
Lapis 33 (10), 62-63
    • Ortenaukreis
      • Wolfach
        • Oberwolfach
          • Rankach valley
Walenta, K. (1992): Die Mineralien des Schwarzwaldes. Chr. Weise Verlag, München, 336 pp. (in German); Walenta, K. (1995): Neue Mineralfunde von der Grube Clara. 6. Folge, 1. Teil. Lapis 20 (5), 33-38 (in German); Kolitsch, U. (1997): Uranosphärit und weitere neue Mineralfunde von der Grube Clara im Schwarzwald. Mineralien-Welt 8 (3), 18-26 (in German) ; Kolitsch, U. (1998): Bernalite from the Clara mine, Germany, and the incorporation of tungsten in minerals containing ferric iron. Can. Mineral. 36, 1211-1216; KOLITSCH, U. (1997): Uranosphärit und weitere neue Mineralfunde von der Grube Clara im Schwarzwald. - Mineralien-Welt 8 (3), 18-26.
  • Saxony
    • Vogtland
      • Oelsnitz
        • Schönbrunn
Thalheim, K. & Kaden, M. (2006): Die Sammlung Sachsen - Interessante Neubestimmungen. Pp. 154-155 in: Lange, J. M. & Kühne, E., Eds. (2006): Das Museum für Mineralogie und Geologie in den Staatlichen Naturhistorischen Sammlungen Dresden. Von der kurfürstlichen Kunstkammer zum staatlichen Forschungsmuseum. Museum für Mineralogie und Geologie, Staatliche Naturhistorische Sammlungen Dresden, Dresden, Germany, 200 pp.
  • Kerman
    • Rafsanjan County
      • Pariz
Khorasanipour, M. (2015). Environmental mineralogy of Cu-porphyry mine tailings, a case study of semi-arid climate conditions, Sarcheshmeh mine, SE Iran. Journal of Geochemical Exploration, 153, 40-52.
  • Liguria
    • Genova Province
      • Sestri Levante
Dott. Cristina Carbone-Dipteris-Genova: analysis June 2007 (paper in preparation); Carbone, C. (2008). Crystallochemical and minerogenetic study of oxide and oxy-hydroxides related to AMD (acid mine drainage) processes in Libiola mine (Sestri Levante). Plinius No. 34
  • Yamaguchi
    • Mine city
Nagashima, M., Akasaka, M., & Morifuku, Y. (2016). Ore and Skarn Mineralogy of the Yamato Mine, Yamaguchi Prefecture, Japan, with Emphasis on Silver‐, Bismuth‐, Cobalt‐, and Tin‐bearing Sulfides. Resource Geology, 66(1), 37-54.
  • Guerrero
    • Mun. de Taxco
      • Taxco de Alarcón (Taxco; Tasco)
Yta, M., Mundo, N. F., Gutiérrez, C. D., Tovar, R. M., Almazán, A. D., & Mendoza, O. T. (2005). Mineralogy and geochemistry of sulfide-bearing tailings from silver mines in the Taxco, Mexico area to evaluate their potential environmental impact. Geofísica internacional, 44(1), 49-64.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: February 19, 2019 07:31:32 Page generated: January 19, 2019 16:10:53
Go to top of page