Help|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on Mindat
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralSearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery


This page is currently not sponsored. Click here to sponsor this page.
Jean Baptiste Biot [April 21, 1774 Paris, France - February 3, 1862 Paris, France]
Member of:
Named in 1847 by Johann Friedrich Ludwig Hausmann in honour of the French physicist, mathematician, meteoriticist, astronomer, and mineralogist, Jean-Baptiste Biot [April 21, 1774, Paris, France - February 3, 1862, Paris, France], who studied the optical properties of the micas. Biot and his associate, Félix Savart, discovered that an electric current in a wire produced a magnetic field. Biot received many awards in his lifetime in recognition of the value of his scientific researches.
A series or subgroup of the Mica Group.

The CNMMN Subcommittee on Nomenclature of the Micas (1998, 1999) has recommended that the name biotite be used for a series between the joins Annite-Phlogopite and Siderophyllite-Eastonite, and is therefore no longer to be regarded as a species name. Fluorophlogopite and Fluorotetraferriphlogopite should be included. The name is most commonly used for the micas on the Fe-rich end of the series, including Annite, Fluorannite, Tetra-ferri-annite and Siderophyllite.

The name "biotite" is also used as a generic field term for any incompletely analysed dark mica.

Hide all sections | Show all sections

Classification of BiotiteHide

Redefined by the IMA

Pronounciation of BiotiteHide

PlayRecorded byCountry
Jolyon & Katya RalphUnited Kingdom

Age informationHide

Age range:
Paleoarchean to Quaternary : 3366 Ma to 1.34 ± 0.05 Ma - based on data given below.
Sample ages:
Sample IDRecorded ageGeologic TimeDating method
11.34 ± 0.05 MaPleistoceneK-Ar
216.2 ± 0.4 MaMioceneK-Ar
320.4 ± 0.6 MaMioceneK-Ar
425.2 ± 0.8 MaOligoceneK-Ar
530.09 ± 0.17 MaOligocene40Ar/39Ar
632.31 ± 0.09 MaOligocene40Ar/39Ar
735.1 ± 1 MaEoceneK-Ar
869.2 ± 1.4 MaLate CretaceousK-Ar
989 ± 4 MaLate CretaceousK-Ar
10102 ± 8 MaEarly CretaceousRb-Sr
11129.5 MaEarly CretaceousK-Ar
12133.1 ± 1.1 MaEarly CretaceousAr-Ar
13137.2 ± 8.5 MaEarly CretaceousAr-Ar
14245.5 ± 1.2 MaMiddle TriassicAr-Ar
15301 ± 5 MaPennsylvanianK-Ar
16366.9 ± 0.9 MaLate DevonianAr-Ar
17377 ± 19 MaLate DevonianK-Ar
18383 ± 7 MaMiddle DevonianU-Pb
19414 ± 12 MaEarly DevonianK-Ar
201493 ± 2 MaCalymmian40Ar/30Ar
213366 MaPaleoarchean207Pb/206Pb
Sample references:
1Far Southeast Cu-Au deposit, Bato Tabio, Mancayan mineral district, Benguet Province, Cordillera Administrative Region, Luzon, PhilippinesArribas, A., Hedenquist, J. W., Itaya, T., Okada, T., Concepción, R. A., & Garcia, J. S. (1995) Contemporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300 ka in northern Luzon, Philippines. Geology,23(4), 337-340.
2Tonopah District, San Antonio Mts, Nye Co., Nevada, USASilberman, M. L., Bonham, H. F. Jr., Garside, L. J., Ashley, R. P. (1978) Radiometric ages of volcanic and plutonic rocks and hydrothermal alteration-mineralization in the Tonopah Mining District and vicinity, Nye and Esmerelda Counties, Nevada. United States Department of the Interior Geological Survey Open-File Report 78-841. 1-48.
3  "  "  "  "
4  "  "  "  "
5Molly Kathleen Mine, Cripple Creek, Cripple Creek District, Teller Co., Colorado, USAKelley K D, Romberger S B, Beaty D W, Pontius J A, Snee L W, Stein H J, Thompson T B (1998) Geochemical and geochronological constraints on the genesis of Au-Te deposits at Cripple Creek, Colorado. Economic Geology (93) 981-1012.
6Cripple Creek, Cripple Creek District, Teller Co., Colorado, USA  "  "
7Huitzuco de los Figueroa, Mun. de Huitzuco, Guerrero, MexicoMorán-Zenteno D J, Alba-Aldave L A, Solé J, Iriondo A (2004) A major resurgent caldera in southern Mexico: the source of the late Eocene Tilzapotla ignimbrite, Journal of Volcanology and Geothermal Research, 136, 97-119 
8Lone Mountain District, Esmeralda Co., Nevada, USASilberman, M. L., Bonham, H. F. Jr., Garside, L. J., Ashley, R. P. (1978) Radiometric ages of volcanic and plutonic rocks and hydrothermal alteration-mineralization in the Tonopah Mining District and vicinity, Nye and Esmerelda Counties, Nevada. United States Department of the Interior Geological Survey Open-File Report 78-841. 1-48.
9Granite Mountain area, Little Rock, Pulaski Co., Arkansas, USAZartman, R.E., Brock, M.R., Heyl, A.V., and Thomas, H.H. (1967) K-Ar and Rb-Sr ages of some alkalic intrusive rocks from central and eastern United States. American Journal of Science, vol. 265, pp. 848-870.
10Magnet Cove, Hot Spring Co., Arkansas, USA  "  "
11Itanhaém, São Paulo, BrazilOrris, G. J., Grauch, R. I. (2002) Rare Earth element mines, deposits, and occurenes. USGS Open-File Report 02-189, 1-174.
12Erongo Mountain, Erongo Region, NamibiaWigand, M., Schmitt, A. K., Trumbull, R. B., Villa, I. M., Emmermann, R. (2004) Short-liived magmatic activity in an anorogenic subvolcanic complex: 40Ar/39Ar and ion microprobe U-Pb zircon dating of the Erongo, Damaraland, Namibia. Journal of Volcanology and Geothermal Research 130 (3-4) 285-305.
13  "  "  "  "
14Gulinskii massif, Maimecha and Kotui Rivers Basin, Krasnoyarsk Territory, Eastern-Siberian Region, RussiaDalrymple, G.B., Czamanske, G. K., Fedorenko, V. A., Simonov, O. N., Lanphere, M. A., & Likhachev, A. P. (1995) A reconnaissance 40Ar39Ar geochronologic study of ore-bearing and related rocks, Siberian Russia. Geochimica et cosmochimica acta, 59(10), 2071-2083.
15Seiffen, Erzgebirge, Saxony, GermanyFörster, H. -J., Rhede, D., (2006) The Be-Ta-rich granite of Seifen (Eastern Erzgebirge, Germany): accessory mineral chemistry, composition and age of a late-Variscan Li-F granite of A-type affinity. Neues Jahrbuch für Mineralogie, Abhandlungen 182, 307-321.
16Lake Boga granite quarry, Lake Boga, Swan Hill Rural City, Victoria, AustraliaMills, S. J., Birch, W. D., Maas, R., Phillips, D., Plimer, I. R. (2008) Lake Boga Granite, northerwestern Victoria: mineralogy, geochemistry and geochronology. Australian Journal of Earth Sciences 55(3), 281-299.
17Avon diatreme, St. Genevieve Co., Missouri, USAZartman, R.E., Brock, M.R., Heyl, A.V., and Thomas, H.H. (1967) K-Ar and Rb-Sr ages of some alkalic intrusive rocks from central and eastern United States. American Journal of Science, vol. 265, pp. 848-870.
18Khibiny Massif, Kola Peninsula, Murmanskaja Oblast', Northern Region, RussiaArzamastsev, A. A., & Wu, F. Y. (2014) U-Pb geochronology and Sr-Nd isotopic systematics of minerals from the ultrabasic-alkaline massifs of the Kola province. Petrology, 22(5), 462-479.
19Nueva Esperanza vein, Capillitas Mine, Andalgalá Department, Catamarca, ArgentinaMcBride, S. L., Caelles, J. C., Clark, A. H., & Farrar, E. (1976) Palaeozoic radiometric age provinces in the Andean basement, latitudes 25°–30° S. Earth and Planetary Science Letters, 29(2), 373-383.
20Ernest Henry Cu-Au deposit, Cloncurry, Cloncurry Shire, Queensland, AustraliaPerkins C, Wyborn L A I (1998): Age of Cu-Au mineralisation, Cloncurry district, eastern Mt Isa Inlier, Queensland, as determined by 40Ar/39Ar dating. Australian Journal of Earth Sciences 45 (2), 233-246.
21Watersmeet, Gogebic Co., Michigan, USAPeterman, Z. E., Zartman, R. E., & Sims, P. K. (1980) Tonalitic gneiss of early Archean age from northern Michigan. Geological Society of America Special Papers, 182, 125-134.

Crystallographic forms of BiotiteHide

Crystal Atlas:
Image Loading
Click on an icon to view
Biotite no.7 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by

Edge Lines | Miller Indicies | Axes

Opaque | Translucent | Transparent

Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

X-Ray Powder DiffractionHide

Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.

Synonyms of BiotiteHide

Other Language Names for BiotiteHide

Serbian (Cyrillic Script):Биотит
Simplified Chinese:黑云母

Varieties of BiotiteHide

AnomiteMica group. A variety of Biotite which has its optic axial plane perpendicular to (010).
Barian-Titanian BiotiteA barium- and titanium-bearing biotite mica.
Chromian BiotiteA Chromian Biotite
Eastonite (of Winchell)A name for the Biotite end-member.
HeterophylliteDesignation for a uniaxial biotite from Mangualde, Portugal.
ManganophylliteA Mn-rich variety of Biotite.
Mg(T) MicaAn Aluminium-poor Biotite group mica.
NatronbiotiteA biotite with Na partially replacing K
OxybiotiteAn oxidized biotite (?). Name not mentioned in the mica report.
RubellanOxidized and dehydrogenated Biotite.
TitanbiotiteTi-bearing variety of biotite; occurs in volcanic rocks.
Titanian BiotiteTi variety of Biotite

Relationship of Biotite to other SpeciesHide

Member of:
Other Members of this group:
Anandite(Ba,K)(Fe2+,Mg)3((Si,Al,Fe)4O10)(S,OH)2Mon. 2/m : B2/b
AnniteKFe2+3(AlSi3O10)(OH)2Mon. 2/m : B2/m
AspidoliteNaMg3(AlSi3O10)(OH)2Mon. 2/m : B2/m
BalestraiteKLi2V5+Si4O12Mon. 2 : B2
BityiteLiCaAl2(AlBeSi2O10)(OH)2Mon. 2/m : B2/b
CeladoniteK(Mg,Fe2+)Fe3+(Si4O10)(OH)2Mon. 2/m : B2/m
ChromphylliteK(Cr,Al)2(AlSi3O10)(OH,F)2Mon. 2/m : B2/b
ClintoniteCa(Mg,Al)3(Al3SiO10)(OH)2Mon. 2/m : B2/m
FerroaluminoceladoniteK(Fe2+,Mg)(Al,Fe3+)(Si4O10)(OH)2Mon. 2/m : B2/m
FerroceladoniteK(Fe2+,Mg)(Fe3+,Al)(Si4O10)(OH)2Mon. 2/m : B2/m
FluorophlogopiteKMg3(AlSi3O10)(F,OH)2Mon. 2/m : B2/m
Glauconite(K,Na)(Mg,Fe2+,Fe3+)(Fe3+,Al)(Si,Al)4O10(OH)2Mon. 2/m : B2/m
HendricksiteK(Zn,Mg,Mn2+)3(AlSi3O10)(OH)2Mon. 2/m : B2/m
IlliteK0.65Al2.0[Al0.65Si3.35O10](OH)2Mon. 2/m : B2/m
LepidoliteA Li-rich mica in, or close to, the so-called Polylithionite-Trilithionite series.Mon.
LuanshiweiiteKLiAl1.50.5(Si3.5Al0.5)O10(OH,F)2 Mon. 2/m : B2/b
MuscoviteKAl2(AlSi3O10)(OH)2Mon. 2/m : B2/b
NorrishiteKLiMn3+2(Si4O10)O2Mon. 2/m : B2/m
Oxykinoshitalite(Ba,K)(Mg,Ti,Fe3+,Fe2+)3((Si,Al)4O10)(O,OH,F)2Mon. 2/m : B2/m
OxyphlogopiteK(Mg,Ti,Fe)3[(Si,Al)4O10](O,F)2Mon. 2/m : B2/m
PhlogopiteKMg3(AlSi3O10)(OH)2Mon. 2/m : B2/m
PolylithioniteKLi2Al(Si4O10)(F,OH)2Mon. 2/m : B2/b
RoscoeliteK(V3+,Al)2(AlSi3O10)(OH)2Mon. 2/m : B2/b
ShirokshiniteKNaMg2(Si4O10)F2Mon. 2/m : B2/m
ShirozuliteK(Mn2+,Mg)3(AlSi3O10)(OH)2Mon. 2/m : B2/m
Suhailite(NH4)Fe2+3(AlSi3O10)(OH)2Mon. 2/m : B2/m
TrilithioniteK(Li1.5Al1.5)(AlSi3O10)(F,OH)2Mon. 2/m : B2/b
VoloshiniteRb(LiAl1.51.5)(Al0.5Si3.5)O10F2Mon. 2/m : B2/b
Wonesite(Na,K)(Mg,Fe,Al)6((Al,Si)4O10)2(OH,F)4Mon. 2/m : B2/m
YangzhumingiteKMg2.5(Si4O10)F2Mon. 2/m : B2/m

Common AssociatesHide

Associated Minerals Based on Photo Data:
Quartz97 photos of Biotite associated with Quartz on
Almandine75 photos of Biotite associated with Almandine on
Corundum53 photos of Biotite associated with Corundum on
Microcline53 photos of Biotite associated with Microcline on
Calcite50 photos of Biotite associated with Calcite on
Albite-Anorthite Series31 photos of Biotite associated with Albite-Anorthite Series on
Feldspar Group30 photos of Biotite associated with Feldspar Group on
Muscovite30 photos of Biotite associated with Muscovite on
Zircon29 photos of Biotite associated with Zircon on
Kyanite28 photos of Biotite associated with Kyanite on

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Biotite in petrologyHide

An essential component of (items highlighted in red)
Common component of (items highlighted in red)
Accessory component of (items highlighted in red)

References for BiotiteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Parry, W.T., Nackowski, M.P. (1963) Copper, lead, and zinc in biotites from Basin and Range quartz monzonites. Economic Geology: 58: 1126-1144.
Dodge, F.C.W., Smith, V.C., May, R.E. (1969) Biotites from the granitic rocks of the central Sierra Nevada batholith. Journal of Petrology: 10: 250-271.
Lovering, T.G., Cooper, J.R., Drewes, H.D., Cone, G.C. (1970) Copper in biotite from igneous rocks in southern Arizona as an ore indicator. USGS Professional Paper 700-B: 1-8.
Giardini, A.A., Hurst, V.J., Melton, C.E., John, C., Stormer, J. (1974) Biotite as a primary inclusion in diamond: Its nature and significance. American Mineralogist: 59: 783-789.
Kesler, S.E., Issigonis, M.J., Brownlow, A.H., Damon, P.E., Moore, W.J., Northcote, K.E., Preto, V.A. (1975) Geochemistry of biotites from mineralized and barren intrusive systems. Economic Geology: 70: 559-567.
Rehrig, W.A., McKinney, C.N. (1976) The distribution and origin of anomalous copper in biotite. Mining Engineering: 27, 68 pp.
Ohta, T., Takeda, H., Takéuchi, Y. (1982) Mica polytypism: similarities in the crystal structures of coexisting 1M and 2M 1 oxybiotite. American Mineralogist: 67: 298-310.
Dymek, R.F. (1983) Titanium, aluminium and interlayer cation substitution in biotite from high-grade gneisses, West Greenland. American Mineralogist: 68: 880-899.
Banfield, J.F., Eggleton, R.A. (1988) Transmission electron microscope study of biotite weathering. Clays and Clay Minerals: 36: 47-60.
Walmsley, J.C., Lang, A.R. (1992) Oriented biotite inclusions in diamond coat. Mineralogical Magazine: 56: 108-111.
Rieder, M., Cavazzani, G., D'Yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Müller, G., Neiva, A.M.R., Radaslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z., Wones, D.R. (1998) Nomenclature of the micas. The Canadian Mineralogist: 36: 905-912.
Rieder, M., Cavazzani, G., D'Yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Müller, G., Neiva, A.M.R., Radaslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z., Wones, D.R.(1999) Nomenclature of the Micas. Mineralogical Magazine: 63: 267-267.
Li, G., Peacor, D.R., Essene, E.J. (1998) The formation of sulfides during alteration of biotite to chlorite-corrensite. Clays and Clay Minerals: 46: 649-657.
Ibhi, A., Nachit, H (2000) The substitution mechanism of Ba and Ti into phyllosilicate phases: the example of barium-titanium biotite. Annals of Chim. Sci. Mat. 25, 627-634.
Parry, W.T., Wilson, P.N., Moser, D., Heizler, M.T. (2001) U-Pb dating of zircon and 40Ar/39Ar dating of biotite at Bingham, Utah. Economic Geology: 96: 1671-1683.
Machev, P., Klain, L., Hecht, L. (2004) Mineralogy and chemistry of biotites from the Belogradchik pluton - some petrological implications for granitoid magmatism in north west Bulgaria. Bulgarian Geological Society conference paper, Annual Scientific Conference “Geology 2004”, pp. 48-50. (

Internet Links for BiotiteHide

Localities for BiotiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListShow