Bornite
This page kindly sponsored by Mark Kucera
About Bornite
Formula:
Cu5FeS4
Colour:
Copper-red to pinchbeck-brown, quickly tarnishing to an iridescent purplish surface.
Lustre:
Metallic
Hardness:
3
Specific Gravity:
5.06 - 5.09
Crystal System:
Orthorhombic
Name:
Originally included with kupferkies in 1725 by Johann Friedrich Henckel. Later assigned various multi-word Latin names by Johan Gottschalk Wallerius in 1747 and variously further translated including "purple copper ore" and "variegated copper ore" in 1802 by Rene Just Haüy. Also called as buntkupfererz by Abraham Gottlieb Werner in 1791. Named "phillipsite" in 1832 by Wilhelm Sulpice Beudant. Renamed 1845 by Wilhelm Karl von Haidinger in honor of Ignaz von Born (1742-1791), Austrian mineralogist and invertebrate zoologist.
Important copper ore.
Typically found as massive metallic material, it has a copper-red color on fresh exposures which quickly tarnishes to an iridescent purple after exposure to air and moisture.
May be confused with tarnished chalcopyrite.
In the Zechstein deposits of Poland there are six varieties: pink-orange, pink-violet, pink-gray, pink-creamy, half-bornite and quatr-bornite.
Typically found as massive metallic material, it has a copper-red color on fresh exposures which quickly tarnishes to an iridescent purple after exposure to air and moisture.
May be confused with tarnished chalcopyrite.
In the Zechstein deposits of Poland there are six varieties: pink-orange, pink-violet, pink-gray, pink-creamy, half-bornite and quatr-bornite.
Classification of Bornite
Approved, 'Grandfathered' (first described prior to 1959)
2/B.02-30
2.BA.15
2 : SULFIDES and SULFOSALTS (sulfides, selenides, tellurides; arsenides, antimonides, bismuthides; sulfarsenites, sulfantimonites, sulfbismuthites, etc.)
B : Metal Sulfides, M: S > 1: 1 (mainly 2: 1)
A : With Cu, Ag, Au
2 : SULFIDES and SULFOSALTS (sulfides, selenides, tellurides; arsenides, antimonides, bismuthides; sulfarsenites, sulfantimonites, sulfbismuthites, etc.)
B : Metal Sulfides, M: S > 1: 1 (mainly 2: 1)
A : With Cu, Ag, Au
Dana 7th ed.:
2.5.2.1
2.5.2.1
2 : SULFIDES
5 : AmBnXp, with (m+n):p = 3:2
2 : SULFIDES
5 : AmBnXp, with (m+n):p = 3:2
3.1.23
3 : Sulphides, Selenides, Tellurides, Arsenides and Bismuthides (except the arsenides, antimonides and bismuthides of Cu, Ag and Au, which are included in Section 1)
1 : Sulphides etc. of Cu
3 : Sulphides, Selenides, Tellurides, Arsenides and Bismuthides (except the arsenides, antimonides and bismuthides of Cu, Ag and Au, which are included in Section 1)
1 : Sulphides etc. of Cu
Physical Properties of Bornite
Metallic
Transparency:
Opaque
Colour:
Copper-red to pinchbeck-brown, quickly tarnishing to an iridescent purplish surface.
Streak:
Grey-Black
Hardness:
3 on Mohs scale
Hardness:
VHN100=92 kg/mm2 - Vickers
Hardness Data:
Measured
Tenacity:
Brittle
Cleavage:
Poor/Indistinct
In traces on {111}.
In traces on {111}.
Parting:
None.
Fracture:
Irregular/Uneven
Density:
5.06 - 5.09 g/cm3 (Measured) 5.09 g/cm3 (Calculated)
Optical Data of Bornite
Anisotropism:
Weak
Colour in reflected light:
Copper-red.
Internal Reflections:
Purplish iridescence.
Pleochroism:
Weak
Chemical Properties of Bornite
Formula:
Cu5FeS4
Elements listed:
Common Impurities:
Ag,Ge,Bi,In,Pb
Crystallography of Bornite
Crystal System:
Orthorhombic
Class (H-M):
mmm (2/m 2/m 2/m) - Dipyramidal
Space Group:
Pbca
Cell Parameters:
a = 10.95 Å, b = 21.862 Å, c = 10.95 Å
Ratio:
a:b:c = 0.501 : 1 : 0.501
Unit Cell V:
2621.31 ų
Z:
16
Morphology:
Crystals rare, usually blocky with rough curved faces, pseudo-cubic, pseudo-dodecohedral and rarely pseudo-octahedral. Forms noted: {001}, {011}, {111}, {112}, {223} and {335}.
Bornite is orthorhombic at 10 degrees K up to 275 degrees K (~ 2 degrees Celsius).
Bornite is orthorhombic at 10 degrees K up to 275 degrees K (~ 2 degrees Celsius).
Twinning:
On {111}, often as penetration twins.
Comment:
Various, mostly temperature-dependent supercells are known.
Crystallographic forms of Bornite
Crystal Atlas:
Image Loading
Click on an icon to view
3d models and HTML5 code kindly provided by
www.smorf.nl.
Toggle
Edge Lines | Miller Indices | Axes
Transparency
Opaque | Translucent | Transparent
View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation
Toggle
Edge Lines | Miller Indices | Axes
Transparency
Opaque | Translucent | Transparent
View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation
Crystal Structure
Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File Best | x | y | z | a | b | c
CIF File Best | x | y | z | a | b | c
Rotation
Stop | Start
Stop | Start
Labels
Console Off | On | Grey | Yellow
Console Off | On | Grey | Yellow
Data courtesy of the American Mineralogist Crystal Structure Database. Click on an AMCSD ID to view structure
ID | Species | Reference | Link | Year | Locality | Pressure (GPa) | Temp (K) |
---|---|---|---|---|---|---|---|
0000048 | Bornite | Tunell G, Adams C E (1949) On the symmetry and crystal structure of bornite American Mineralogist 34 824-829 | ![]() | 1949 | 0 | 293 | |
0003821 | Bornite | Ding Y, Veblen D R, Prewitt C T (2005) High-resolution transmission electron microscopy (HRTEM) study of the 4a and 6a superstructure of bornite Cu5FeS4 American Mineralogist 90 1256-1264 | ![]() | 2005 | 0 | 293 | |
0003822 | Bornite | Ding Y, Veblen D R, Prewitt C T (2005) Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4) American Mineralogist 90 1265-1269 | ![]() | 2005 | 0 | 293 | |
0003823 | Bornite | Ding Y, Veblen D R, Prewitt C T (2005) Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4) American Mineralogist 90 1265-1269 | ![]() | 2005 | 0 | 293 | |
0003824 | Bornite | Ding Y, Veblen D R, Prewitt C T (2005) Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4) American Mineralogist 90 1265-1269 | ![]() | 2005 | 0 | 293 | |
0003825 | Bornite | Ding Y, Veblen D R, Prewitt C T (2005) Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4) American Mineralogist 90 1265-1269 | ![]() | 2005 | 0 | 293 | |
0005156 | Bornite | Kanazawa Y, Koto K, Morimoto N (1978) Bornite (Cu5FeS4): Stability and crystal structure of the intermediate form The Canadian Mineralogist 16 397-404 | ![]() | 1978 | 0 | 293 | |
0009281 | Bornite | Morimoto N (1964) Structures of two polymorphic forms of Cu5FeS4 Acta Crystallographica 17 351-360 | ![]() | 1964 | synthetic | 0 | 293 |
0009542 | Bornite | Koto K, Morimoto N (1975) Superstructure investigation of bornite, Cu5FeS4, by the modified partial Patterson function Acta Crystallographica B31 2268-2273 | ![]() | 1975 | Cornwall, England | 0 | 293 |
CIF Raw Data - click here to close
X-Ray Powder Diffraction
Image Loading
Radiation - Copper Kα
Data courtesy of RRUFF project at University of Arizona, used with permission.
Powder Diffraction Data:
d-spacing | Intensity |
---|---|
3.31 Å | (40) |
3.18 Å | (60) |
2.74 Å | (50) |
2.50 Å | (40) |
1.94 Å | (100) |
1.65 Å | (30) |
1.26 Å | (50) |
1.12 Å | (5) |
Geological Environment
Geological Setting:
Common and widespread in copper ore deposits. It also occurs in basic intrusives, in dikes, in contact metamorphic deposits, in quartz veins, and in pegmatites.
Type Occurrence of Bornite
Synonyms of Bornite
Other Language Names for Bornite
Basque:Bornita
Catalan:Bornita
Czech:Bornit
Dutch:Borniet
French:Cuivre Panaché
German:Bornit
Buntkupfererz
Buntkupferkies
Chalcomiklit
Erubescit
Kupferlasurerz
Kupferlazuerz
Kupfer-Lazul
Kupferlazurerz
Leberschlag
Poikilit
Buntkupfererz
Buntkupferkies
Chalcomiklit
Erubescit
Kupferlasurerz
Kupferlazuerz
Kupfer-Lazul
Kupferlazurerz
Leberschlag
Poikilit
Japanese:斑銅鉱
Lithuanian:Bornitas
Low Saxon/Low German:Bornit
Norwegian:Broket kobber
Broket kopper
Broket kopper
Polish:Bornit
Portuguese:Bornite
Russian:Борнит
Serbian:Борнит
Slovak:Bornit
Spanish:Bornita
Erubescita
Pecho de Paloma
Erubescita
Pecho de Paloma
Swedish:Brokig kopparmalm
Traditional Chinese:斑銅礦
Ukrainian:Борніт
Varieties of Bornite
Half-Bornite | A variety from Zechstein copper deposits of the Fore-Sudetic Monocline, Poland; characterized by a 50% deficit in Fe. Compare the variety Quatr-Bornite. |
Quatr-Bornite | A variety from Zechstein copper deposits of the Fore-Sudetic Monocline, Poland; characterized by a 75% deficit in Fe. Compare the variety Half-Bornite. |
Silver-bearing Bornite | A silver-bearing variety of bornite. |
Common Associates
Associated Minerals Based on Photo Data:
187 photos of Bornite associated with Quartz | SiO2 |
159 photos of Bornite associated with Chalcopyrite | CuFeS2 |
92 photos of Bornite associated with Chalcocite | Cu2S |
75 photos of Bornite associated with Pyrite | FeS2 |
72 photos of Bornite associated with Calcite | CaCO3 |
63 photos of Bornite associated with Silver | Ag |
40 photos of Bornite associated with Malachite | Cu2(CO3)(OH)2 |
35 photos of Bornite associated with Covellite | CuS |
35 photos of Bornite associated with Tennantite Subgroup | Cu6(Cu4 C2+2)As4S12S |
31 photos of Bornite associated with Sphalerite | ZnS |
Related Minerals - Nickel-Strunz Grouping
2.BA. | Alburnite | Ag8GeTe2S4 | Iso. |
2.BA. | Dzierżanowskite | CaCu2S2 | Trig. 3m (3 2/m) : P3m1 |
2.BA.05 | Chalcocite | Cu2S | Mon. 2/m : P21/b |
2.BA.05 | Djurleite | Cu31S16 | Orth. mmm (2/m 2/m 2/m) : Pnnm |
2.BA.05 | Geerite | Cu8S5 | Trig. 3 |
2.BA.05 | Roxbyite | Cu9S5 | Tric. 1 : P1 |
2.BA.10 | Anilite | Cu7S4 | Orth. mmm (2/m 2/m 2/m) : Pnma |
2.BA.10 | Digenite | Cu9S5 | Trig. 3m (3 2/m) : R3m |
2.BA.20 | Bellidoite | Cu2Se | Tet. 4/m : P42/n |
2.BA.20 | Berzelianite | Cu2Se | Iso. m3m (4/m 3 2/m) : Fm3m |
2.BA.25 | Athabascaite | Cu5Se4 | Orth. |
2.BA.25 | Umangite | Cu3Se2 | Tet. |
2.BA.30 | Rickardite | Cu7Te5 | Orth. |
2.BA.30 | Weissite | Cu2-xTe | Hex. |
2.BA.35 | Acanthite | Ag2S | Mon. 2/m : P21/m |
2.BA.40 | Mckinstryite | Ag5-xCu3+xS4 | Orth. mmm (2/m 2/m 2/m) : Pnma |
2.BA.40 | Stromeyerite | AgCuS | Orth. mmm (2/m 2/m 2/m) |
2.BA.40d | UM2003-13-S:AgAuCu | Ag6AuCu2S5 | |
2.BA.45 | Jalpaite | Ag3CuS2 | Tet. |
2.BA.45 | Selenojalpaite | Ag3CuSe2 | Tet. 4/mmm (4/m 2/m 2/m) : I41/amd |
2.BA.50 | Eucairite | AgCuSe | Orth. |
2.BA.55 | Aguilarite | Ag4SeS | Mon. 2/m |
2.BA.55 | Naumannite | Ag2Se | Orth. 2 2 2 : P21 21 21 |
2.BA.60 | Cervelleite | Ag4TeS | Mon. 2/m |
2.BA.60 | Hessite | Ag2Te | Mon. 2/m : P21/b |
2.BA.60 | Chenguodaite | Ag9Fe3+Te2S4 | Orth. |
2.BA.65 | Henryite | (Cu,Ag)3+xTe2 , with x ~ 0.40 | Iso. m3m (4/m 3 2/m) : Fd3c |
2.BA.65 | Stützite | Ag5-xTe3, x = 0.24-0.36 | Hex. 6 : P6 |
2.BA.70 | Argyrodite | Ag8GeS6 | Orth. mm2 : Pna21 |
2.BA.70 | Canfieldite | Ag8SnS6 | Orth. mm2 |
2.BA.70 | Putzite | (Cu4.7Ag3.3)GeS6 | Iso. 4 3m : F4 3m |
2.BA.75 | Fischesserite | Ag3AuSe2 | Iso. 4 3 2 : I41 3 2 |
2.BA.75 | Penzhinite | (Ag,Cu)4Au(S,Se)4 | Hex. |
2.BA.75 | Petrovskaite | AuAgS | Mon. |
2.BA.75 | Petzite | Ag3AuTe2 | Iso. 4 3 2 : I41 3 2 |
2.BA.75 | Uytenbogaardtite | Ag3AuS2 | Trig. 3m (3 2/m) : R3c |
2.BA.80 | Bezsmertnovite | (Au,Ag)4Cu(Te,Pb) | Orth. |
2.BA.80 | Bilibinskite | PbCu2Au3Te2 | Iso. |
2.BA.80 | Bogdanovite | (Au,Te,Pb)3(Cu,Fe) | Iso. |
Related Minerals - Dana Grouping (8th Ed.)
2.5.2.2 | Calvertite | Cu5Ge0.5S4 | Iso. 4 3m : F4 3m |
Related Minerals - Hey's Chemical Index of Minerals Grouping
3.1.1 | Chalcocite | Cu2S | Mon. 2/m : P21/b |
3.1.2 | Djurleite | Cu31S16 | Orth. mmm (2/m 2/m 2/m) : Pnnm |
3.1.3 | Digenite | Cu9S5 | Trig. 3m (3 2/m) : R3m |
3.1.4 | Anilite | Cu7S4 | Orth. mmm (2/m 2/m 2/m) : Pnma |
3.1.5 | Roxbyite | Cu9S5 | Tric. 1 : P1 |
3.1.6 | Spionkopite | Cu39S28 | Hex. 6 2 2 |
3.1.7 | Geerite | Cu8S5 | Trig. 3 |
3.1.8 | Covellite | CuS | Hex. 6/mmm (6/m 2/m 2/m) : P63/mmc |
3.1.9 | Berzelianite | Cu2Se | Iso. m3m (4/m 3 2/m) : Fm3m |
3.1.10 | Bellidoite | Cu2Se | Tet. 4/m : P42/n |
3.1.11 | Umangite | Cu3Se2 | Tet. |
3.1.12 | Yarrowite | Cu9S8 | Trig. 3m (3 2/m) : P3m1 |
3.1.13 | Athabascaite | Cu5Se4 | Orth. |
3.1.14 | Klockmannite | CuSe | Hex. 6/mmm (6/m 2/m 2/m) : P63/mmc |
3.1.15 | Krut'aite | CuSe2 | Iso. m3 (2/m 3) : Pa3 |
3.1.16 | Weissite | Cu2-xTe | Hex. |
3.1.17 | Rickardite | Cu7Te5 | Orth. |
3.1.18 | Vulcanite | CuTe | Orth. |
3.1.19 | Bambollaite | Cu(Se,Te)2 | Tet. |
3.1.20 | Lautite | CuAsS | Orth. mmm (2/m 2/m 2/m) : Pnma |
3.1.21 | Mgriite | Cu3AsSe3 | Iso. m3m (4/m 3 2/m) |
3.1.22 | Cubanite | CuFe2S3 | Orth. mmm (2/m 2/m 2/m) |
3.1.24 | Fukuchilite | Cu3FeS8 | Iso. m3 (2/m 3) : Pa3 |
3.1.25 | Chalcopyrite | CuFeS2 | Tet. 4 2m : I4 2d |
3.1.26 | Mooihoekite | Cu9Fe9S16 | Tet. |
3.1.27 | Haycockite | Cu4Fe5S8 | Orth. 2 2 2 |
3.1.28 | Isocubanite | CuFe2S3 | Iso. m3m (4/m 3 2/m) : Fm3m |
3.1.29 | Idaite | Cu5FeS6 | Hex. |
3.1.30 | Nukundamite | Cu3.33Fe0.66S4 | Trig. 3m (3 2/m) : P3m1 |
3.1.31 | Putoranite | Cu1.1Fe1.2S2 | Iso. |
3.1.32 | Orickite | 2CuFeS2 · H2O | Hex. |
3.1.33 | Eskebornite | CuFeSe2 | Tet. |
3.1.34 | Chaméanite | (Cu,Fe)4As(Se,S)4 | Iso. |
3.1.35 | Talnakhite | Cu9(Fe,Ni)8S16 | Iso. 4 3m : I4 3m |
Other Information
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Industrial Uses:
A major ore of copper.
Bornite in petrology
An essential component of rock names highlighted in red, an accessory component in rock names highlighted in green.
References for Bornite
Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Haidinger, W. (1845) Zweite Klasse: Geogenide. XIII. Ordnung. Kiese. V. Kupperkies. Bornit.. in Handbuch der Bestimmenden Mineralogie, Bei Braumüller and Seidel (Wien): 559-562.
Jackson, C. (1859) On Bornite from Dahlonega, Georgia. American Journal of Science and Arts: 27(81): 366.
Harrington, B.J. (1903) On the Formula of Bornite. American Journal of Science: 16(92): 151.
Laney, F.B. (1911) The relation of bornite and chalcocite in the copper ores of the Virgilina district of North Carolina and Virginia. Proceedings of the U.S. National Museum: 40: 513-524.
Mennell, F.P. (1914) On the occurrence of Bornite nodules in shale from Mashonaland. Mineralogical Magazine: 17(79): 111-113.
Kraus, E.H., Goldsberry, J.P. (1914) The chemical composition of bornite and its relation to other sulpho-minerals. American Journal of Science: 4(222): 539-553.
Rogers, A.F. (1915) The chemical composition of bornite. Science: 42(1081): 386-388.
Wherry, E.T. (1915) The chemical composition of bornite. Science: 42(1086): 570-571.
Allen, E.T. (1916) The composition of natural bornite. American Journal of Science: 4(245): 409-413.
Walker, T.L. (1921) Cleavable bornite from Usk, BC. American Mineralogist: 6(1): 3-4.
Palache, Charles, Harry Berman & Clifford Frondel (1944) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Volume I: Elements, Sulfides, Sulfosalts, Oxides. John Wiley and Sons, Inc., New York. 7th edition, revised and enlarged, 834pp.: 195-197.
Adams, C.E. (1949) An Investigation of the X-ray Crystallography of Bornite (Cu5FeS4). Doctoral dissertation, University of California, Los Angeles, Geology.
Fruch Jr., A.J. (1950) Disorder in the mineral bornite. American Mineralogist: 35(3-4): 185-192.
Tunell, G., Adams, C.E. (1950) On the crystal structure of bornite from Illogan, Cornwall. American Mineralogist: 35(3-4): 289-289.
Takeuchi, T., Nambu, M. (1952) Thermal study of bornite. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists: 36(2): 33-42.
Kullerud, G., Donnay, G., Donnay, J.D.H. (1960) A second find of euhedral bornite crystals on barite. American Mineralogist: 45(9-10): 1062-1068.
Morimoto, N., Greig, J.W., Tunnel, J. (1960) Re-Examination of a Bornite from the Carn Brea Mine, Cornwall. Carnegie Inst Washington Yearbook: 59: 122-126.
International Mineralogical Association (1962) International Mineralogical Association: Commission on new minerals and mineral names. Mineralogical Magazine: 33: 260-263.
Cuthbert, M.E. (1962) Formation of bornite at atmospheric temperature and pressure. Economic Geology: 57: 38-41.
Morimoto, N. (1964) Structures of two polymorphic forms of Cu5FeS4. Acta Crystallographica: 17: 351-360.
Manning, P.G. (1967) A study of the bonding properties of sulphur in bornite. The Canadian Mineralogist: 9: 85-94.
Ramdohr, Paul (1969) The Ore Minerals and their Intergrowths, Pergamon Press, pp. 1174.
Koto, K. and Morimoto, N. (1975) Superstructure investigation of bornite, Cu5FeS4, by the modified partial Patterson function. Acta Crystallographica: B31: 2268-2273.
Kanazawa, Y., Koto, K., Morimoto, N. (1978) Bornite (Cu5FeS4): stability and crystal structure of the intermediate form. The Canadian Mineralogist: 16: 397-404.
Pierce, L., Buseck, P.R. (1978) Superstructuring in the bornite-digenite series: a high-resolution electron microscopy study. American Mineralogist: 63: 1-16.
International Mineralogical Association (1980) International Mineralogical Association: Commission on new minerals and mineral names. Mineralogical Magazine: 43: 1053-1055.
Jagadeesh, M.S., Nagarathna, H.M., Montano, P.A., and Seehra, M.S. (1981) Magnetic and Mössbauer studies of phase transitions and mixed valences in bornite (Cu4.5Fe1.2S4.7). Physical Review: B23: 2350-2356.
Buckley, A.N. and Woods, R. (1983) An X-ray photoelectron spectroscopic investigation of the tarnishing of bornite. Australian Journal of Chemistry: 36: 1793-1804.
Robie, R.A., Wiggins, L.B., Barton, P.B., Jr., and Hemingway, B.S. (1985) Low-temperature heat capacity and entropy of chalcopyrite (CuFeS2): estimates of the standard molar enthalpy and Gibbs free energy of formation of chalcopyrite and bornite (Cu5FeS4). Journal of Chemical Thermodynamics: 17: 481-488.
Vaughan, D.J., Tossell, J.A., and Stanley, C.J. (1987) The surface properties of bornite. Mineralogical Magazine: 51: 285-293.
Kratz, T., Fuess, H. (1989) Simultane Strukturbestimmung von Kupferkies und Bornit an einem Kristall. Zeitschrift für Kristallographie: 186: 167-169.
Piestrzyński, A. (Main Ed.), Zaleska-Kuczmierczyk, M., Jasiński, A.W., Kotarski, J., Maślanka, W., Siewierski, S., Speczik, S., Śmieszek, Z. (1996) Monografia KGHM Polska Miedź S.A. Lubin.: 1204 pp.
Gaines, Richard V., H. Catherine, W. Skinner, Eugene E. Foord, Brian Mason, Abraham Rosenzweig (1997) Dana's New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, 8th. edition: 52.
Grguric, B.A., Putnis, A. (1998) Compositional controls on phase-transition temperatures in bornite: a differential scanning calorimetry study. The Canadian Mineralogist: 36: 215-227.
Ding, Y., Veblen, D. R., Prewitt, C. T. (2005) High-resolution transmission electron microscopy (HRTEM) study of the 4a and 6a superstructure of bornite Cu5FeS4. American Mineralogist: 90: 1256-1264.
Harmer, S.L., Pratt, A.R., Nesbitt, H.W., and Fleet, M.E. (2005) Reconstruction of fracture surfaces on bornite. The Canadian Mineralogist: 43: 1619-1630.
Ding, Y., Veblen, D.R., Prewitt, C.T. (2005) Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4). American Mineralogist: 90: 1265-1269.
Goh, S.W., Buckley, A.N., Lamb, R.N., Rosenberg, R.A., Moran, D. (2006) The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air. Geochimica et Cosmochimica Acta: 70: 2210-2228.
Cook, N. J., Ciobanu, C. L., Danyushevsky, L. V., Gilbert, S. (2011) Minor and trace elements in bornite and associated Cu-(Fe)-sulfides: A LA-ICP-MS study. Geochimica et Cosmochimica Acta: 75: 6473-6496.
Ciobanu, C. L., Cook, N. J., Ehrig, K. (2017) Ore minerals down to the nanoscale: Cu-(Fe)-sulphides from the iron oxide copper gold deposit at Olympic Dam, South Australia. Ore Geology Review: 81: 1218-1235. [on non-stoichiometry].
Zhao, J., Brugger, J., Grguric, B.A., Ngothai, Y., Pring, A. (2017) Fluid-enhanced coarsening of mineral microstructures in hydrothermally synthesized bornite-digenite solid solution. ACS Earth and Space Chemistry: 1: 465-474.
Li, K., Brugger, J., Pring, A. (2018) Exsolution of chalcopyrite from bornite-digenite solid solution: an example of a fluid-driven back-replacement reaction. Mineralium Deposita: 53: 903-908.
Borgheresi, M., Di Benedetto, F., Romanelli, M., Reissner, M., Lottermoser, W., Gainov, R.R., Khassanov, R.R., Tippelt, G., Giaccherini, A., Sorace, L., Montegrossi, G., Wagner, R., Amthauer, G. (2018) Mössbauer study of bornite and chemical bonding in Fe-bearing sulphides. Physics and Chemistry of Minerals: 45: 227-235.
Internet Links for Bornite
mindat.org URL:
https://www.mindat.org/min-727.html
Please feel free to link to this page.
Please feel free to link to this page.
Search Engines:
External Links:
Mineral Dealers:
Localities for Bornite
Locality List
This section is currently hidden. Click the show button to view.
Dzhezkazgan mining district, Karaganda Region, Kazakhstan