SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography


This page kindly sponsored by Mark Kucera
Hide all sections | Show all sections

About BorniteHide

Ignaz von Born
Copper-red to pinchbeck-brown, quickly tarnishing to an iridescent purplish surface.
Specific Gravity:
5.06 - 5.09
Crystal System:
Originally included with kupferkies in 1725 by Johann Friedrich Henckel. Later assigned various multi-word Latin names by Johan Gottschalk Wallerius in 1747 and variously further translated including "purple copper ore" and "variegated copper ore" in 1802 by Rene Just Haüy. Also called as buntkupfererz by Abraham Gottlieb Werner in 1791. Named "phillipsite" in 1832 by Wilhelm Sulpice Beudant. Renamed 1845 by Wilhelm Karl von Haidinger in honor of Ignaz von Born (1742-1791), Austrian mineralogist and invertebrate zoologist.
Important copper ore.
Typically found as massive metallic material, it has a copper-red color on fresh exposures which quickly tarnishes to an iridescent purple after exposure to air and moisture.
May be confused with tarnished chalcopyrite.

In the Zechstein deposits of Poland there are six varieties: pink-orange, pink-violet, pink-gray, pink-creamy, half-bornite and quatr-bornite.

Classification of BorniteHide

Approved, 'Grandfathered' (first described prior to 1959)

2 : SULFIDES and SULFOSALTS (sulfides, selenides, tellurides; arsenides, antimonides, bismuthides; sulfarsenites, sulfantimonites, sulfbismuthites, etc.)
B : Metal Sulfides, M: S > 1: 1 (mainly 2: 1)
A : With Cu, Ag, Au
Dana 7th ed.:

5 : AmBnXp, with (m+n):p = 3:2

3 : Sulphides, Selenides, Tellurides, Arsenides and Bismuthides (except the arsenides, antimonides and bismuthides of Cu, Ag and Au, which are included in Section 1)
1 : Sulphides etc. of Cu

Physical Properties of BorniteHide

Copper-red to pinchbeck-brown, quickly tarnishing to an iridescent purplish surface.
VHN100=92 kg/mm2 - Vickers
Hardness Data:
In traces on {111}.
5.06 - 5.09 g/cm3 (Measured)    5.09 g/cm3 (Calculated)

Optical Data of BorniteHide

Colour in reflected light:
Internal Reflections:
Purplish iridescence.

Chemical Properties of BorniteHide

Common Impurities:

Crystallography of BorniteHide

Crystal System:
Class (H-M):
mmm (2/m 2/m 2/m) - Dipyramidal
Space Group:
Cell Parameters:
a = 10.95 Å, b = 21.862 Å, c = 10.95 Å
a:b:c = 0.501 : 1 : 0.501
Unit Cell V:
2621.31 ų
Crystals rare, usually blocky with rough curved faces, pseudo-cubic, pseudo-dodecohedral and rarely pseudo-octahedral. Forms noted: {001}, {011}, {111}, {112}, {223} and {335}.

Bornite is orthorhombic at 10 degrees K up to 275 degrees K (~ 2 degrees Celsius).
On {111}, often as penetration twins.
Various, mostly temperature-dependent supercells are known.

Crystallographic forms of BorniteHide

Crystal Atlas:
Image Loading
Click on an icon to view
Bornite no.1 - Goldschmidt (1913-1926)
Bornite no.5 - Goldschmidt (1913-1926)
Bornite no.7 - Goldschmidt (1913-1926)
Bornite no.10 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by

Edge Lines | Miller Indices | Axes

Opaque | Translucent | Transparent

Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

Crystal StructureHide

Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
CIF File    Best | x | y | z | a | b | c
Stop | Start
Console Off | On | Grey | Yellow
IDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0000048BorniteTunell G, Adams C E (1949) On the symmetry and crystal structure of bornite American Mineralogist 34 824-82919490293
0003821BorniteDing Y, Veblen D R, Prewitt C T (2005) High-resolution transmission electron microscopy (HRTEM) study of the 4a and 6a superstructure of bornite Cu5FeS4 American Mineralogist 90 1256-126420050293
0003822BorniteDing Y, Veblen D R, Prewitt C T (2005) Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4) American Mineralogist 90 1265-126920050293
0003823BorniteDing Y, Veblen D R, Prewitt C T (2005) Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4) American Mineralogist 90 1265-126920050293
0003824BorniteDing Y, Veblen D R, Prewitt C T (2005) Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4) American Mineralogist 90 1265-126920050293
0003825BorniteDing Y, Veblen D R, Prewitt C T (2005) Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4) American Mineralogist 90 1265-126920050293
0005156BorniteKanazawa Y, Koto K, Morimoto N (1978) Bornite (Cu5FeS4): Stability and crystal structure of the intermediate form The Canadian Mineralogist 16 397-40419780293
0009281BorniteMorimoto N (1964) Structures of two polymorphic forms of Cu5FeS4 Acta Crystallographica 17 351-3601964synthetic0293
0009542BorniteKoto K, Morimoto N (1975) Superstructure investigation of bornite, Cu5FeS4, by the modified partial Patterson function Acta Crystallographica B31 2268-22731975Cornwall, England0293
CIF Raw Data - click here to close

X-Ray Powder DiffractionHide

Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
Powder Diffraction Data:
3.31 Å(40)
3.18 Å(60)
2.74 Å(50)
2.50 Å(40)
1.94 Å(100)
1.65 Å(30)
1.26 Å(50)
1.12 Å(5)

Geological EnvironmentHide

Geological Setting:
Common and widespread in copper ore deposits. It also occurs in basic intrusives, in dikes, in contact metamorphic deposits, in quartz veins, and in pegmatites.

Type Occurrence of BorniteHide

Synonyms of BorniteHide

Other Language Names for BorniteHide

Varieties of BorniteHide

Half-BorniteA variety from Zechstein copper deposits of the Fore-Sudetic Monocline, Poland; characterized by a 50% deficit in Fe.
Compare the variety Quatr-Bornite.
Quatr-BorniteA variety from Zechstein copper deposits of the Fore-Sudetic Monocline, Poland; characterized by a 75% deficit in Fe.
Compare the variety Half-Bornite.
Silver-bearing BorniteA silver-bearing variety of bornite.

Common AssociatesHide

Associated Minerals Based on Photo Data:
187 photos of Bornite associated with QuartzSiO2
159 photos of Bornite associated with ChalcopyriteCuFeS2
92 photos of Bornite associated with ChalcociteCu2S
75 photos of Bornite associated with PyriteFeS2
72 photos of Bornite associated with CalciteCaCO3
63 photos of Bornite associated with SilverAg
40 photos of Bornite associated with MalachiteCu2(CO3)(OH)2
35 photos of Bornite associated with CovelliteCuS
35 photos of Bornite associated with Tennantite SubgroupCu6(Cu4 C2+2)As4S12S
31 photos of Bornite associated with SphaleriteZnS

Related Minerals - Nickel-Strunz GroupingHide

2.BA.DzierżanowskiteCaCu2S2Trig. 3m (3 2/m) : P3m1
2.BA.05ChalcociteCu2SMon. 2/m : P21/b
2.BA.05DjurleiteCu31S16Orth. mmm (2/m 2/m 2/m) : Pnnm
2.BA.05GeeriteCu8S5Trig. 3
2.BA.05RoxbyiteCu9S5Tric. 1 : P1
2.BA.10AniliteCu7S4Orth. mmm (2/m 2/m 2/m) : Pnma
2.BA.10DigeniteCu9S5Trig. 3m (3 2/m) : R3m
2.BA.20BellidoiteCu2SeTet. 4/m : P42/n
2.BA.20BerzelianiteCu2SeIso. m3m (4/m 3 2/m) : Fm3m
2.BA.35AcanthiteAg2SMon. 2/m : P21/m
2.BA.40MckinstryiteAg5-xCu3+xS4Orth. mmm (2/m 2/m 2/m) : Pnma
2.BA.40StromeyeriteAgCuSOrth. mmm (2/m 2/m 2/m)
2.BA.45SelenojalpaiteAg3CuSe2Tet. 4/mmm (4/m 2/m 2/m) : I41/amd
2.BA.55AguilariteAg4SeSMon. 2/m
2.BA.55NaumanniteAg2SeOrth. 2 2 2 : P21 21 21
2.BA.60CervelleiteAg4TeSMon. 2/m
2.BA.60HessiteAg2TeMon. 2/m : P21/b
2.BA.65Henryite(Cu,Ag)3+xTe2 , with x ~ 0.40 Iso. m3m (4/m 3 2/m) : Fd3c
2.BA.65StütziteAg5-xTe3, x = 0.24-0.36Hex. 6 : P6
2.BA.70ArgyroditeAg8GeS6Orth. mm2 : Pna21
2.BA.70CanfielditeAg8SnS6Orth. mm2
2.BA.70Putzite(Cu4.7Ag3.3)GeS6Iso. 4 3m : F4 3m
2.BA.75FischesseriteAg3AuSe2Iso. 4 3 2 : I41 3 2
2.BA.75PetziteAg3AuTe2Iso. 4 3 2 : I41 3 2
2.BA.75UytenbogaardtiteAg3AuS2Trig. 3m (3 2/m) : R3c

Related Minerals - Dana Grouping (8th Ed.)Hide 4 3m : F4 3m

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

3.1.1ChalcociteCu2SMon. 2/m : P21/b
3.1.2DjurleiteCu31S16Orth. mmm (2/m 2/m 2/m) : Pnnm
3.1.3DigeniteCu9S5Trig. 3m (3 2/m) : R3m
3.1.4AniliteCu7S4Orth. mmm (2/m 2/m 2/m) : Pnma
3.1.5RoxbyiteCu9S5Tric. 1 : P1
3.1.6SpionkopiteCu39S28Hex. 6 2 2
3.1.7GeeriteCu8S5Trig. 3
3.1.8CovelliteCuSHex. 6/mmm (6/m 2/m 2/m) : P63/mmc
3.1.9BerzelianiteCu2SeIso. m3m (4/m 3 2/m) : Fm3m
3.1.10BellidoiteCu2SeTet. 4/m : P42/n
3.1.12YarrowiteCu9S8Trig. 3m (3 2/m) : P3m1
3.1.14KlockmanniteCuSeHex. 6/mmm (6/m 2/m 2/m) : P63/mmc
3.1.15Krut'aiteCuSe2Iso. m3 (2/m 3) : Pa3
3.1.20LautiteCuAsSOrth. mmm (2/m 2/m 2/m) : Pnma
3.1.21MgriiteCu3AsSe3Iso. m3m (4/m 3 2/m)
3.1.22CubaniteCuFe2S3Orth. mmm (2/m 2/m 2/m)
3.1.24FukuchiliteCu3FeS8Iso. m3 (2/m 3) : Pa3
3.1.25ChalcopyriteCuFeS2Tet. 4 2m : I4 2d
3.1.27HaycockiteCu4Fe5S8Orth. 2 2 2
3.1.28IsocubaniteCuFe2S3Iso. m3m (4/m 3 2/m) : Fm3m
3.1.30NukundamiteCu3.33Fe0.66S4Trig. 3m (3 2/m) : P3m1
3.1.32Orickite2CuFeS2 · H2OHex.
3.1.35TalnakhiteCu9(Fe,Ni)8S16Iso. 4 3m : I4 3m

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Industrial Uses:
A major ore of copper.

Bornite in petrologyHide

An essential component of rock names highlighted in red, an accessory component in rock names highlighted in green.

References for BorniteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Haidinger, W. (1845) Zweite Klasse: Geogenide. XIII. Ordnung. Kiese. V. Kupperkies. Bornit.. in Handbuch der Bestimmenden Mineralogie, Bei Braumüller and Seidel (Wien): 559-562.
Jackson, C. (1859) On Bornite from Dahlonega, Georgia. American Journal of Science and Arts: 27(81): 366.
Harrington, B.J. (1903) On the Formula of Bornite. American Journal of Science: 16(92): 151.
Laney, F.B. (1911) The relation of bornite and chalcocite in the copper ores of the Virgilina district of North Carolina and Virginia. Proceedings of the U.S. National Museum: 40: 513-524.
Mennell, F.P. (1914) On the occurrence of Bornite nodules in shale from Mashonaland. Mineralogical Magazine: 17(79): 111-113.
Kraus, E.H., Goldsberry, J.P. (1914) The chemical composition of bornite and its relation to other sulpho-minerals. American Journal of Science: 4(222): 539-553.
Rogers, A.F. (1915) The chemical composition of bornite. Science: 42(1081): 386-388.
Wherry, E.T. (1915) The chemical composition of bornite. Science: 42(1086): 570-571.
Allen, E.T. (1916) The composition of natural bornite. American Journal of Science: 4(245): 409-413.
Walker, T.L. (1921) Cleavable bornite from Usk, BC. American Mineralogist: 6(1): 3-4.
Palache, Charles, Harry Berman & Clifford Frondel (1944) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Volume I: Elements, Sulfides, Sulfosalts, Oxides. John Wiley and Sons, Inc., New York. 7th edition, revised and enlarged, 834pp.: 195-197.
Adams, C.E. (1949) An Investigation of the X-ray Crystallography of Bornite (Cu5FeS4). Doctoral dissertation, University of California, Los Angeles, Geology.
Fruch Jr., A.J. (1950) Disorder in the mineral bornite. American Mineralogist: 35(3-4): 185-192.
Tunell, G., Adams, C.E. (1950) On the crystal structure of bornite from Illogan, Cornwall. American Mineralogist: 35(3-4): 289-289.
Takeuchi, T., Nambu, M. (1952) Thermal study of bornite. The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists: 36(2): 33-42.
Kullerud, G., Donnay, G., Donnay, J.D.H. (1960) A second find of euhedral bornite crystals on barite. American Mineralogist: 45(9-10): 1062-1068.
Morimoto, N., Greig, J.W., Tunnel, J. (1960) Re-Examination of a Bornite from the Carn Brea Mine, Cornwall. Carnegie Inst Washington Yearbook: 59: 122-126.
International Mineralogical Association (1962) International Mineralogical Association: Commission on new minerals and mineral names. Mineralogical Magazine: 33: 260-263.
Cuthbert, M.E. (1962) Formation of bornite at atmospheric temperature and pressure. Economic Geology: 57: 38-41.
Morimoto, N. (1964) Structures of two polymorphic forms of Cu5FeS4. Acta Crystallographica: 17: 351-360.
Manning, P.G. (1967) A study of the bonding properties of sulphur in bornite. The Canadian Mineralogist: 9: 85-94.
Ramdohr, Paul (1969) The Ore Minerals and their Intergrowths, Pergamon Press, pp. 1174.
Koto, K. and Morimoto, N. (1975) Superstructure investigation of bornite, Cu5FeS4, by the modified partial Patterson function. Acta Crystallographica: B31: 2268-2273.
Kanazawa, Y., Koto, K., Morimoto, N. (1978) Bornite (Cu5FeS4): stability and crystal structure of the intermediate form. The Canadian Mineralogist: 16: 397-404.
Pierce, L., Buseck, P.R. (1978) Superstructuring in the bornite-digenite series: a high-resolution electron microscopy study. American Mineralogist: 63: 1-16.
International Mineralogical Association (1980) International Mineralogical Association: Commission on new minerals and mineral names. Mineralogical Magazine: 43: 1053-1055.
Jagadeesh, M.S., Nagarathna, H.M., Montano, P.A., and Seehra, M.S. (1981) Magnetic and Mössbauer studies of phase transitions and mixed valences in bornite (Cu4.5Fe1.2S4.7). Physical Review: B23: 2350-2356.
Buckley, A.N. and Woods, R. (1983) An X-ray photoelectron spectroscopic investigation of the tarnishing of bornite. Australian Journal of Chemistry: 36: 1793-1804.
Robie, R.A., Wiggins, L.B., Barton, P.B., Jr., and Hemingway, B.S. (1985) Low-temperature heat capacity and entropy of chalcopyrite (CuFeS2): estimates of the standard molar enthalpy and Gibbs free energy of formation of chalcopyrite and bornite (Cu5FeS4). Journal of Chemical Thermodynamics: 17: 481-488.
Vaughan, D.J., Tossell, J.A., and Stanley, C.J. (1987) The surface properties of bornite. Mineralogical Magazine: 51: 285-293.
Kratz, T., Fuess, H. (1989) Simultane Strukturbestimmung von Kupferkies und Bornit an einem Kristall. Zeitschrift für Kristallographie: 186: 167-169.
Piestrzyński, A. (Main Ed.), Zaleska-Kuczmierczyk, M., Jasiński, A.W., Kotarski, J., Maślanka, W., Siewierski, S., Speczik, S., Śmieszek, Z. (1996) Monografia KGHM Polska Miedź S.A. Lubin.: 1204 pp.
Gaines, Richard V., H. Catherine, W. Skinner, Eugene E. Foord, Brian Mason, Abraham Rosenzweig (1997) Dana's New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, 8th. edition: 52.
Grguric, B.A., Putnis, A. (1998) Compositional controls on phase-transition temperatures in bornite: a differential scanning calorimetry study. The Canadian Mineralogist: 36: 215-227.
Ding, Y., Veblen, D. R., Prewitt, C. T. (2005) High-resolution transmission electron microscopy (HRTEM) study of the 4a and 6a superstructure of bornite Cu5FeS4. American Mineralogist: 90: 1256-1264.
Harmer, S.L., Pratt, A.R., Nesbitt, H.W., and Fleet, M.E. (2005) Reconstruction of fracture surfaces on bornite. The Canadian Mineralogist: 43: 1619-1630.
Ding, Y., Veblen, D.R., Prewitt, C.T. (2005) Possible Fe/Cu ordering schemes in the 2a superstructure of bornite (Cu5FeS4). American Mineralogist: 90: 1265-1269.
Goh, S.W., Buckley, A.N., Lamb, R.N., Rosenberg, R.A., Moran, D. (2006) The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air. Geochimica et Cosmochimica Acta: 70: 2210-2228.
Cook, N. J., Ciobanu, C. L., Danyushevsky, L. V., Gilbert, S. (2011) Minor and trace elements in bornite and associated Cu-(Fe)-sulfides: A LA-ICP-MS study. Geochimica et Cosmochimica Acta: 75: 6473-6496.
Ciobanu, C. L., Cook, N. J., Ehrig, K. (2017) Ore minerals down to the nanoscale: Cu-(Fe)-sulphides from the iron oxide copper gold deposit at Olympic Dam, South Australia. Ore Geology Review: 81: 1218-1235. [on non-stoichiometry].
Zhao, J., Brugger, J., Grguric, B.A., Ngothai, Y., Pring, A. (2017) Fluid-enhanced coarsening of mineral microstructures in hydrothermally synthesized bornite-digenite solid solution. ACS Earth and Space Chemistry: 1: 465-474.
Li, K., Brugger, J., Pring, A. (2018) Exsolution of chalcopyrite from bornite-digenite solid solution: an example of a fluid-driven back-replacement reaction. Mineralium Deposita: 53: 903-908.
Borgheresi, M., Di Benedetto, F., Romanelli, M., Reissner, M., Lottermoser, W., Gainov, R.R., Khassanov, R.R., Tippelt, G., Giaccherini, A., Sorace, L., Montegrossi, G., Wagner, R., Amthauer, G. (2018) Mössbauer study of bornite and chemical bonding in Fe-bearing sulphides. Physics and Chemistry of Minerals: 45: 227-235.

Internet Links for BorniteHide

Localities for BorniteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListShow

This section is currently hidden. Click the show button to view.