Help|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery


This page kindly sponsored by Mariusz Oleszczuk
Colourless, white, gray, ...
Adamantine, Vitreous, Resinous, Pearly, Dull, Earthy
3 - 3½
Member of:
Named in 1845 by Wilhelm Karl von Haidinger from the Latin, cerussa, meaning "white lead."
Aragonite Group.

Cerussite is a lead carbonate mineral, usually found in the oxidized zone of lead ore deposits. It is a very common weathering product of galena and other lead ore minerals.

Visit for gemological information about Cerussite.

Classification of Cerussite

Approved, 'Grandfathered' (first described prior to 1959)

A : Carbonates without additional anions, without H2O
B : Alkali-earth (and other M2+) carbonates

1 : A(XO3)

11 : Carbonates
9 : Carbonates of Pb, Zr and Th

Physical Properties of Cerussite

Adamantine, Vitreous, Resinous, Pearly, Dull, Earthy
Diaphaneity (Transparency):
Transparent, Translucent
Colourless, white, gray, blue, or green; colourless in transmitted light
Hardness (Mohs):
3 - 3½
Very brittle
On {110} and {021} distinct; on {010} and {012} in traces.
6.53 - 6.57 g/cm3 (Measured)    6.558 g/cm3 (Calculated)

Optical Data of Cerussite

Biaxial (-)
RI values:
nα = 1.803 nβ = 2.074 nγ = 2.076
Measured: 8° to 14°, Calculated: 8°
Max Birefringence:
δ = 0.273
Image shows birefringence interference colour range (at 30µm thickness) and does not take into account mineral colouration.
Surface Relief:
Very High
relatively strong

Chemical Properties of Cerussite

Elements listed in formula:

Crystallography of Cerussite

Crystal System:
Class (H-M):
mmm (2/m 2/m 2/m) - Dipyramidal
Cell Parameters:
a = 5.179(1) Å, b = 8.492(3) Å, c = 6.141(2) Å
a:b:c = 0.61 : 1 : 0.723
Unit Cell Volume:
V 270.08 ų (Calculated from Unit Cell)
Crystal morphology extremely varied. Simple crystals often tabular {010} and elongated [001] or [100]. Also equant or dipyramidal and then pseudo-hexagonal. Rarely acicular [001] or very thin tabular {001}. {010} and {0kl} usually striated [100]; {111} often striated [110] or [112]. Reticular twin aggregates common. Massive, granular, dense, compact. Stalactitic at times; pulverulent to earthy. Fibrous rare.
Almost universal. Most commonly on {110}, as twin lamellae or as contact twin types producing stellate pseudo-hexagonal groups or reticulated aggregates. On {130} less common, mainly as contact twins with a heart-shaped outline. Both laws may occur simultaneously.
Non-standard space group setting (Pmcn). Other source gives cell parameters 5.173, 8.48, 6.13 A.

Crystallographic forms of Cerussite

Crystal Atlas:
Image Loading
Click on an icon to view
Cerussite no.48 - Goldschmidt (1913-1926)
Cerussite no.63 - Goldschmidt (1913-1926)
Cerussite no.140 - Goldschmidt (1913-1926)
Cerussite no.157 - Goldschmidt (1913-1926)
Cerussite no.261 - Goldschmidt (1913-1926)
Cerussite no.460 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by

Edge Lines | Miller Indicies | Axes

Opaque | Translucent | Transparent

Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation
X-Ray Powder Diffraction:
Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
X-Ray Powder Diffraction Data:
3.593 (100)
3.498 (43)
3.074 (24)
2.522 (20)
2.487 (32)
2.081 (27)
1.859 (21)

Occurrences of Cerussite

Type Occurrence of Cerussite

Relationship of Cerussite to other Species

Forms a series with Strontianite (see here)
Member of:
Other Members of Group:
11.9.3DundasitePbAl2(CO3)2(OH)4 · H2O
11.9.4Gysinite-(Nd)PbNd(CO3)2(OH) · H2O
11.9.5Schuilingite-(Nd)PbCu(Nd,Gd,Sm,Y)(CO3)3(OH) · 1.5H2O
11.9.6TuliokiteNa6BaTh(CO3)6 · 6H2O
11.9.7WeloganiteNa2Sr3Zr(CO3)6 · 3H2O

Other Names for Cerussite

Other Information

Yellow to golden-yellow, white (best LW UV), also under X-rays.
Thermal Behaviour:
Breaks down to a basic carbonate at about 300°, which, in turn, decomposes to PbO at about 500° (?).
Other Information:
Soluble in dilute HNO3 with effervescence.

Occurs as alteration pseudomorphs after anglesite, phosgenite, leadhillite, caledonite, hydrocerussite, bournonite, linarite, pyromorphite, vanadinite. Also occurs as incrustation or substitution pseudomorphs after calcite and sphalerite.
Pseudomorphs of pyromorphite, minium, malachite, quartz, galena, limonite, calcite, siderite, phosgenite, dolomite and chrysocolla after crystals of cerussite have been observed.
Health Risks:
Contains lead - wash hands after handling, avoid inhaling dust when breaking.
Industrial Uses:
Ore of lead, and often also of silver.

Cerussite in petrology

Common component of (items highlighted in red)

References for Cerussite

Reference List:
Conrad Gesner (1565) De Omni Rervm Fossilivm Genere.

Wallerius, J.G (1747) Mineralogia, eller Mineralriket. Stockholm: 295 (as Minera Plumbi spathacea).

Wallerius, J.G. (1753) French edition of “Mineralogia, eller Mineralriket.” 2 volumes, Paris: 1: 536 (as Plomb spathique).

Bergmann, T. (1780) Opuscula of Tobernus Bergmann: 2: 426 (as Plumbum acido aero mineralisatum).

Beudant, F.S. (1832) Traité élémentaire de Minéralogie, second edition, 2 volumes: 2: 363 (as Céruse).

Karsten (1832) Journal für Chemie und Physik, Nuremberg: 45: 365.

Haidinger, Wm. (1845) Handbuch der bestimmenden Mineralogie. Vienna: 503 (as Cerussit).

Schrauf (1860) Sitzber. Ak. Wien: 42: 120.

Des Cloizeaux, A. (1867) Nouvelles recherches sur les propriétés optique des cristaux, naturels ou artificiels, et sur les variations que ces propriétés éprouvent sous l’influence de la chaleur. 222pp., Paris. (Institut imperial de France, Mémoires 18): 49.

Koksharov, N. von (1870) Materialien zur Mineralogie Russlands. 11 volumes with atlas, vol. 6: 100.

Joulin (1873) Bull. Soc. chim. phys.: 19[2]: 345.

de Luca (1877) Comptes rendus de l’Académie des sciences de Paris: 84: 1457.

Brown (1886) American Journal of Science: 32: 377.

Fletcher (1887) Mineralogical Magazine: 7: 187.

Negri (1889) Rivista di mineralogia e cristallografia italiana, Padua: 4: 53.

Traube (1894) Zeitschrift der Deutschen Geologische Gesellschaft, Berlin: 46: 50.

Hobbs (1895) American Journal of Science: 50: 121.

Ohm (1899) Jb. Min., Beil.-Bd.: 13: 31.

Mügge (1901) Jb. Min., Beil.-Bd.: 14: 259.

Panichi (1902) Reale accademia nazionale dei Lincei, Rome, Mem: 4[5a]: 419.

Rogers (1903) American Geologist, Minneapolis: 31: 45.

Warren (1903) American Journal of Science: 16: 337.

Colson (1905) Comptes rendus de l’Académie des sciences de Paris: 140: 865.

Lacroix (1909): 3: 727.

Doelter, C. (1911) Handbuch der Mineral-chemie (in 4 volumes divided into parts): 1: 510.

Boutwell (1912) USGS Professional Paper 77: 111.

Friedrich (1912) Centralblatt für Mineralogie, Geologie und Paleontologie, Stuttgart: 621.

Dübigk (1913) Neues Jahrbuch für Mineralogie, Geologie und Paleontologie, Beil.-Bd., Heidelberg, Stuttgart: 36: 214.

Goldschmidt, V. (1913) Atlas der Krystallformen. 9 volumes, atlas, and text, vol. 2: 107.

Pilipenko (1915) Bulletin of the Imperial Tomsk University: no. 63 [Min. Abs.: 2: 111 (1923)].

Schrader (1917) USGS Bulletin 624.

Ledoux and Walker (1918) Ottawa Nat.: 32: 7.

Buttgenbach (1920) Bulletin de la Société française de Minéralogie: 43: 24.

Stevanovic (1922) Ann. géol. pénin. Balkan.: 7: 85.

Billows (1923) Att. Accad. Veneto.: 14[3]: 89.

Maier (1923) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 58: 75.

Sève (1923) Bulletin de la Société française de Minéralogie: 46: 34.

Barthoux (1924) Bulletin de la Société française de Minéralogie: 47: 36.

Hintze, Carl (1926) Handbuch der Mineralogie. Berlin and Leipzig. 6 volumes: 1[3A]: 3045.

Shannon (1926) U.S. National Museum Bulletin 131: 240.

Smith (1926) New South Wales Department of Mines, Mineral Resources, no. 34: 93.

Tokody (1926) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 63: 385.

O'Daniel (1930) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 74: 333.

Laskiewicz (1931) Archiwum Mineralogiczne (Towarzystwo Naukowe Warszawsie): 7: 147.

Colby and La Coste (1933) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 84: 300.

Garrido (1934) Bol. Soc. espan. Hist. nat.: 34: 301.

Vavrinecz (1934) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 89: 521.

Rottenbach (1937) Inaugural Dissertaton, Bonn.

Tokody (1937) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 96: 325.

Lindsay and Hoyt (1938) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 100: 360.

Tokody (1942) Magyar Tudom. Akad. Mat. Termeszett. Ertisitö, Budapest: 61: 1116.

Amaral (1948) Min. e met., Rio de Janeiro: 13: 59.

Palache, C., Berman, H., & Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: Halides, Nitrates, Borates, Carbonates, Sulfates, Phosphates, Arsenates, Tungstates, Molybdates, Etc. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged: 200-207.

Reviews in Mineralogy, Mineralogical Society of America: 11.

Sahl, K. (1974) Verfeinerung der Kristallstruktur von Cerussit, PbCO3. Zeitschrift für Kristallographie, 139, 215-222.

Chevrier, G., G. Giester, G. Heger, D. Jarosch, M. Wildner, and J. Zemann (1992) Neutron single-crystal refinement of cerussite, PbCO3, and comparison with other aragonite-type carbonates. Zeitschrift für Kristallographie 199, 67-74.

Martens, W. N.; Rintoul, L.; Kloprogge, J. T.; Frost, R. L. (2004) Single crystal Raman spectroscopy of cerussite. American Mineralogist 89, 352-358.

Alexander A. Kaminskii, Ladislav Bohatý, Hanjo Rhee, André Kaltenbach, Oliver Lux, Hans J. Eichler, Reinhard Rückamp and Petra Becker (2013) Cerussite, PbCO3 - a new Stimulated Raman Scattering (SRS)-active crystal with high-order Stokes and anti-Stokes lasing. Laser Photonics Rev. 7, 425-431.

Internet Links for Cerussite URL:
Please feel free to link to this page.
The following Cerussite specimens are currently listed for sale on

Localities for Cerussite

Mineral and/or Locality is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © and the Hudson Institute of Mineralogy 1993-2017, except where stated. relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: June 29, 2017 11:49:01 Page generated: June 23, 2017 14:29:10
Go to top of page