Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Predictive Mineralogy

Possible unrecorded species at Ophir Hill Consolidated Mine, Ophir, Ophir Mining District, Tooele County, Utah, USA

This table is based on statistical analysis of other localities containing similar species to the ones found at this locality.

Possible missing speciesFormulaMatch %Due to recorded presence of
AnglesitePbSO499.68%Linarite (63.68 %), Orthoserpierite (57.45 %), Plumbojarosite (56.75 %), Rosasite (54.03 %), Schulenbergite (69.81 %), Serpierite (65.51 %)
CupriteCu2O99.56%Carbonatecyanotrichite (55.95 %), Chalcoalumite (66.67 %), Orthoserpierite (53.19 %), Schulenbergite (64.15 %), Serpierite (55.36 %), Spangolite (60.47 %)
GoethiteΞ±-Fe3+O(OH)98.00%Chalcoalumite (53.33 %), Orthoserpierite (55.32 %), Schulenbergite (55.97 %), Serpierite (51.59 %), Spangolite (55.04 %)
CovelliteCuS90.86%Orthoserpierite (55.32 %), Schulenbergite (57.23 %), Serpierite (52.17 %)
CopperCu80.18%Chalcoalumite (58.10 %), Spangolite (52.71 %)
AragoniteCaCO379.37%Orthoserpierite (51.06 %), Schulenbergite (57.86 %)
LangiteCu4(SO4)(OH)6 Β· 2H2O60.37%Schulenbergite (60.38 %)
MagnetiteFe2+Fe3+2O457.68%Andradite (57.68 %)
ArsenopyriteFeAsS55.79%Bournonite (55.79 %)
SilverAg50.31%Acanthite (50.32 %)

Key: Mineral matches key element mineralogy of deposit Key element(s) in mineral not listed for deposit (-20% score)


Predicting paragenetic modes of deposit

Green indicates almost certain match based on minerals unique to a certain deposit type. Yellow indicates a possibly poor match, but should not be entirely discounted. Scores > 100 indicate strong confidence.

Paragenetic ModeScore
47a : Low-𝑇 subaerial oxidative hydration, weathering (see also #16 and #23) - [Near-surface hydration of prior minerals]

Unique: Tungstite
164
47c : Low-𝑇 subaerial oxidative hydration, weathering (see also #16 and #23) - [Carbonates, phosphates, borates, nitrates]

Unique: Smithsonite
125
33 : Minerals deposited by hydrothermal metal-rich fluids (see also [#12])

Unique: Bournonite
110
47g : Low-𝑇 subaerial oxidative hydration, weathering (see also #16 and #23) - [Halogen-bearing surface weathering minerals]

Unique: Chlorargyrite
100
47b : Low-𝑇 subaerial oxidative hydration, weathering (see also #16 and #23) - [Sulfates and sulfites]30
31 : Thermally altered carbonate, phosphate, and iron formations19
40 : Regional metamorphism (greenschist, amphibolite, granulite facies)15
47e : Low-𝑇 subaerial oxidative hydration, weathering (see also #16 and #23) - [Vanadates, chromates, manganates]14
49 : Oxic cellular biomineralization (see also #44)14
55 : Anthropogenic mine minerals10
53 : Other minerals with taphonomic origins9
50 : Coal and/or oil shale minerals7
54 : Coal and other mine fire minerals (see also #51 and #56)7
45b : Oxidized fumarolic minerals (see also [#11]) - [Other oxidized fumarolic minerals]7