Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery


This page is currently not sponsored. Click here to sponsor this page.
David A. Wadsley
Light grayish brown
Specific Gravity:
3.84 (Calculated)
Crystal System:
It was proposed by Ringwood and Major (1970), who first made sythetic material, that if it was ever found in nature, it should be named after A.D. Wadsley.

Named by G.D. Price, A. Putnis, S.O. Agrell, and D.G.W. Smith in 1982 in honor of David Arthur Wadsley (1 August 1918, Hobart, Tasmania, Australia - 1969), Australian solid-state chemist and crystallographer, former research scientist of the Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia, for his significant contributions to crystallography, including the concept of crystallographic shearing.
Polymorph of:
Olivine Group.

The orthorhombic, high-pressure polymorph of Ringwoodite and Forsterite (a member of the Olivine group of minerals). Initially found in the Peace River meteroite (from Alberta, Canada), it is thought to be formed from the transformation of Olivine during an extraterrestrial shock event (eg meteorite impact). It is known to be a stable and probably the most abundant phase in the transition zone of the Earth's upper mantle (between 400 and 525km depth).

Recent lab experiments, published in 2009, led by Thomas Ahrens at the California Institute of Technology (Caltech) have been able to replicate the formation of Wadsleyite by launching a high-velocity tantalum projectile at a sample containing magnesium oxide and silicon dioxide (Quartz).

Coupled substitution of Fe3+ and H+ for Si is possible, as shown for a synthetic, hydrous material (Kawazoe et al., 2016).

Hide all sections | Show all sections

Classification of WadsleyiteHide

Approval Year:
First Published:

9 : SILICATES (Germanates)
B : Sorosilicates
E : Si2O7 groups, with additional anions; cations in octahedral [6] and greater coordination

51 : NESOSILICATES Insular SiO4 Groups Only
3 : Insular SiO4 Groups Only with all cations in octahedral [6] coordination

14 : Silicates not Containing Aluminum
21 : Silicates of Fe and Mg

Physical Properties of WadsleyiteHide

Light grayish brown
Color of polycrystalline aggregate
3.84 g/cm3 (Calculated)

Optical Data of WadsleyiteHide

r > v

Chemical Properties of WadsleyiteHide

IMA Formula:
Common Impurities:

Crystallography of WadsleyiteHide

Crystal System:
Cell Parameters:
a = 5.7 Å, b = 11.71 Å, c = 8.24 Å
a:b:c = 0.487 : 1 : 0.704
Unit Cell V:
550.00 ų (Calculated from Unit Cell)

X-Ray Powder DiffractionHide

Powder Diffraction Data:
2.452 (100)
2.038 (80)
1.441 (80)
2.886 (50)
2.691 (40)
2.637 (30)
1.567 (30)

Type Occurrence of WadsleyiteHide

General Appearance of Type Material:
Fine-grained aggregates with a grain size of 5 um.
Place of Conservation of Type Material:
Department of Geology, University of Alberta, Edmonton, Canada.
Geological Setting of Type Material:
Found in vein in the Peace River meteorite, believed to have formed from an extraterrestrial shock event.
Associated Minerals at Type Locality:

Synonyms of WadsleyiteHide

Other Language Names for WadsleyiteHide

Related Minerals - Nickel-Strunz GroupingHide

9.BE.05HennomartiniteSrMn3+2(Si2O7)(OH)2 · H2OOrth.
9.BE.05LawsoniteCaAl2(Si2O7)(OH)2 · H2OOrth. mmm (2/m 2/m 2/m) : Cmcm
9.BE.05NoelbensoniteBaMn3+2(Si2O7)(OH)2 · H2OOrth.
9.BE.05ItoigawaiteSrAl2(Si2O7)(OH)2 · H2OOrth.
9.BE.07IlvaiteCaFe3+Fe2+2(Si2O7)O(OH)Orth. mmm (2/m 2/m 2/m)
9.BE.07ManganilvaiteCaFe2+Fe3+Mn2+(Si2O7)O(OH)Mon. 2/m : P21/b
9.BE.10SuoluniteCa2(H2Si2O7) · H2OOrth.
9.BE.12JaffeiteCa6(Si2O7)(OH)6Trig. 3 : P3
9.BE.15FresnoiteBa2Ti(Si2O7)OTet. 4mm : P4bm
9.BE.17CuspidineCa4(Si2O7)(F,OH)2Mon. 2/m : P21/b
9.BE.17Hiortdahlite(Na,Ca)2Ca4Zr(Mn,Ti,Fe)(Si2O7)2(F,O)4 Tric.
9.BE.17Janhaugite(Na,Ca)3(Mn2+,Fe2+)3(Ti,Zr,Nb)2(Si2O7)2O2(OH,F)2Mon. 2/m : P21/m
9.BE.17Låvenite(Na,Ca)2(Mn2+,Fe2+)(Zr,Ti)(Si2O7)(O,OH,F)2Mon. 2/m : P21/b
9.BE.17NormanditeNaCa(Mn,Fe)(Ti,Nb,Zr)(Si2O7)OFMon. 2/m : P21/b
9.BE.17WöhleriteNaCa2(Zr,Nb)(Si2O7)(O,OH,F)2Mon. 2 : P21
9.BE.17Hiortdahlite INa4Ca8Zr2(Nb,Mn,Ti,Fe,Mg,Al)2(Si2O7)4O3F5
9.BE.17MarianoiteNa2Ca4(Nb,Zr)2(Si2O7)2(O,F)4Mon. 2 : P21
9.BE.20Mosandrite-(Ce)(Ca3REE)[(H2O)2Ca0.50.5]Ti(Si2O7)2(OH)2(H2O)2Mon. 2/m : P21/b
9.BE.20Nacareniobsite-(Ce)NbNa3Ca3(Ce,REE )(Si2O7)2OF3Mon.
9.BE.22GötzeniteNaCa6Ti(Si2O7)2OF3Tric. 1 : P1
9.BE.22Hainite-(Y)Na2Ca4(Y,REE)Ti(Si2O7)2OF3Tric. 1 : P1
9.BE.22RosenbuschiteNa6Ca6Zr3Ti(Si2O7)4O2F6Tric. 1 : P1
9.BE.22KochiteNa3Ca2MnZrTi(Si2O7)2OF3Tric. 1 : P1
9.BE.23DovyreniteCa6Zr(Si2O7)2(OH)4Orth. mmm (2/m 2/m 2/m) : Pnnm
9.BE.25EricssoniteBaMn2+2Fe3+(Si2O7)O(OH)Mon. 2/m : B2/m
9.BE.25NabalamprophylliteNa3(Ba,Na)2Ti3(Si2O7)2O2(OH,F)2Mon. 2/m
9.BE.25GrenmariteNa4MnZr3(Si2O7)2O2F2Mon. 2/m : P2/b
9.BE.25SchülleriteBa2Na(Mn,Ca)(Fe3+,Mg,Fe2+)2Ti2(Si2O7)2(O,F)4Tric. 1 : P1
9.BE.25LileyiteBa2(Na,Fe,Ca)3MgTi2(Si2O7)2O2F2Mon. 2/m : B2/m
9.BE.25EmmerichiteBa2Na(Na,Fe2+)2(Fe3+,Mg)Ti2(Si2O7)2O2F2Mon. 2/m : B2/m
9.BE.25Fluorbarytolamprophyllite(Ba,Sr)2[(Na,Fe2+)3(Ti,Mg)F2][Ti2(Si2O7)2O2]Mon. 2/m : B2/m
9.BE.27MurmaniteNa2Ti2(Si2O7)O2 · 2H2OTric.
9.BE.30EpistoliteNa2(Nb,Ti)2(Si2O7)O2 · nH2OTric.
9.BE.37SoboleviteNa13Ca2Mn2Ti3(Si2O7)2(PO4)4O3F3Mon. m : Pb
9.BE.40InneliteNa2CaBa4Ti3(Si2O7)2(SO4)2O4Tric. 1 : P1
9.BE.42YoshimuraiteBa2Mn2Ti(Si2O7)(PO4)O(OH)Tric. 1 : P1
9.BE.47PolyphiteNa5(Na4Ca2)Ti2(Si2O7)(PO4)3O2F2Tric. 1 : P1
9.BE.50BornemaniteNa6BaTi2Nb(Si2O7)2(PO4)O2(OH)F Tric. 1 : P1
9.BE.50ShkatulkaliteNa5(Nb1−xTix)2(Ti1−yMn2+y)[Si2O7]2O2(OH)2·nH2O (x + y = 0.5; n ≤ 10)Mon. 2/m : P2/m
9.BE.55HejtmaniteBa2(Mn2+,Fe2+)4Ti2(Si2O7)2O2(OH)2F2Tric. 1
9.BE.55Bykovaite(Ba,Na,K)2(Na,Ti,Mn)4(Ti,Nb)2(Si2O7)2O2(H2O,F,OH)2 · 3.5H2OMon. 2/m
9.BE.55Nechelyustovite(Ba,Sr,K)2(Na,Ti,Mn)4(Ti,Nb)2(Si2O7)2O2(O,H2O,F)2 · 4.5H2OMon. 2/m : B2/m
9.BE.60Delindeite(Na,K)2(Ba,Ca)2(Ti,Fe,Al)3(Si2O7)2O2(OH)2 · 2H2OMon.
9.BE.65BusseniteNa2Ba2Fe2+Ti(Si2O7)(CO3)(OH)3FTric. 1 : P1
9.BE.67JinshajiangiteBaNaFe2+4Ti2(Si2O7)2O2(OH)2FTric. 1 : P1
9.BE.67PerraultiteBaNaMn2+4Ti2(Si2O7)2O2(OH)2FMon. 2/m : B2/m
9.BE.70Karnasurtite-(Ce)(Ce,La,Th)(Ti,Nb)(Al,Fe)(Si2O7)(OH)4 · 3H2O
9.BE.70Perrierite-(Ce)Ce4MgFe3+2Ti2(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70Chevkinite-(Ce)(Ce,La,Ca,Th)4(Fe2+,Mg)(Fe2+,Ti,Fe3+)2(Ti,Fe3+)2(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70Polyakovite-(Ce)(Ce,Ca)4(Mg,Fe2+)(Cr3+,Fe3+)2(Ti,Nb)2(Si2O7)2O8Mon. 2/m : B2/m
9.BE.70RengeiteSr4ZrTi4(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70MatsubaraiteSr4Ti5(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70Dingdaohengite-(Ce)(Ce,La)4Fe2+(Ti,Fe2+,Mg,Fe2+)2Ti2(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70Maoniupingite-(Ce)(Ce,Ca)4(Fe3+,Ti,Fe2+,◻)(Ti,Fe3+,Fe2+,Nb)4(Si2O7)2O8Mon. 2/m : B2/m
9.BE.70Perrierite-(La)(La,Ce,Ca)4(Fe,Mn2+,Mg)Fe3+2(Ti,Fe3+)2(Si2O7)2O8Mon. 2/m : P21/b
9.BE.70UKI-2008-(SiO:SrTiZr)Sr4ZrTi4(Si2O7)2O8Orth. mmm (2/m 2/m 2/m) : Pbca
9.BE.70Hezuolinite(Sr,REE)4Zr(Ti,Fe3+)4(Si2O7)2O8Mon. 2/m : B2/m
9.BE.80KentrolitePb2Mn3+2(Si2O7)O2Orth. mmm (2/m 2/m 2/m) : Pbcm
9.BE.87Stavelotite-(La)(La,Nd,Ca)3Mn2+3Cu(Mn3+,Fe3+,Mn4+)26(Si2O7)6O30Trig. 3 : P31
9.BE.90Biraite-(Ce)Ce2Fe2+(Si2O7)(CO3)Mon. 2/m : P21/b
9.BE.92Cervandonite-(Ce)(Ce,Nd,La)(Fe3+,Fe2+,Ti,Al)3O2(Si2O7)(As3+O3)(OH)Trig. 3m : R3m
9.BE.95BatisiviteBaV3+8Ti6(Si2O7)O22Tric. 1 : P1

Related Minerals - Hey's Chemical Index of Minerals GroupingHide

14.21.2Ringwoodite(Mg,Fe2+)2SiO4Iso. m3m (4/m 3 2/m) : Ia3d
14.21.4ClinoferrosiliteFe2+SiO3Mon. 2/m : P21/b
14.21.5Anthophyllite☐{Mg2}{Mg5}(Si8O22)(OH)2Orth. mmm (2/m 2/m 2/m) : Pnma
14.21.7 Magnesiocummingtonite☐{Mg2}{Mg5}(Si8O22)(OH)2
14.21.8Grunerite☐{Fe2+2}{Fe2+5}(Si8O22)(OH)2Mon. 2/m : B2/m
14.21.9MinnesotaiteFe2+3Si4O10(OH)2Tric. 1 : P1
14.21.11Jimthompsonite(Mg,Fe)5Si6O16(OH)2Orth. mmm (2/m 2/m 2/m) : Pbca
14.21.12Clinojimthompsonite(Mg,Fe)5Si6O16(OH)2Mon. 2/m : B2/b

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for WadsleyiteHide

Reference List:
Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Ringwood, A.F., Major, A. (1966) Synthesis of Mg2SiO4-Fe2SiO4 spinel solid solutions. Earth and Planetary Science Letters: 1: 241-245.
Akimoto, S. (1968) High-pressure transformations in Co2SiO4 olivine and some geohysical implications. Physics of the Earth and Planetary Interiors: 1: 498-504.
Ringwood, A.F., Major, A. (1970) The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures. Physics of the Earth and Planetary Interiors: 3: 89-108.
Akimoto, S. (1970) High pressure synthesis of a "modified" spinel and some geophysical implications. Physics of the Earth and Planetary Interiors: 3: 189-195.
Price, G.D., Putnis, A., Agrell, S.O., Smith, D.G.W. (1983) Wadsleyite, natural ß-(Mg,Fe)2SiO4 from the Peace River meteorite. Canadian Mineralogist: 21: 29-35.
Dunn, P.J., Grice, J.D., Fleischer, M., Pabst, A. (1983) New mineral names. American Mineralogist: 68: 1038-1041.
Kudoh, Y., Inoue, T., Arashi, H. (1996) Structure and crystal chemistry of hydrous wadsleyite Mg1.75SiH0.5O4: possible hydrous magnesium silicate in the mantle transition zone. Physics and Chemistry of Minerals: 23: 461-469.
Reynard, B., Takir, F., Guyot, F., Gwanmesia, G.D., Liebermann, R.C., Gillet, P. (1996) High-temperature Raman spectroscopic and X-ray diffraction study of β–Mg2SiO4: Insights into its high-temperature thermodynamic properties and the β– to α– phase-transformation mechanism and kinetics. American Mineralogist: 81: 585-594.
Smyth, J.R., Kawamoto, T., Jacobsen, S.D., Swope, R.J., Hervig, R.L., Holloway, J.R. (1997) Crystal structure of monoclinic hydrous wadsleyite β-(Mg,Fe)2SiO4. American Mineralogist: 82: 270-275.
Sinogeikin, S.V., Katsura, T., Bass, J.D. (1998) Sound velocities and elastic properties of Fe-bearing wadsleyite and ringwoodite. Journal of Geophysical Research: 103: 20819-20825.
Demouchy, S., Deloule, E., Frost, D.J., Keppler, H. (2005) Pressure and temperature-dependence of water solubility in Fe-free wadsleyite. American Mineralogist: 90: 1084-1091.
Kleppe, A.K., Jephcoat, A.P., Smyth, J.R. (2006) High-pressure Raman spectroscopic studies of hydrous wadsleyite II. American Mineralogist: 91: 1102-1109.
Holl, C.M., Smyth, J.R., Jacobsen, S.D., Frost, D.J. (2008) Effects of hydration on the structure and compressibility of wadsleyite, β-(Mg2SiO4). American Mineralogist: 93: 598-607.
Nishihara, Y., Shinmei, T., Karato, S.I. (2008) Effect of chemical environment on the hydrogen-related defect chemistry in wadsleyite. American Mineralogist: 93: 831-843.
Tschauner, O., Asimow, P.D., et al. (2009) Ultrafast growth of wadsleyite in shock-produced melts and its implications for early solar system impact processes. PNAS 2009: 0905751106v1-pnas.0905751106.
Sano-Furukawa, A., Kuribayashi, T., Komatsu, K., Yagi, T., Ohtani, E. (2011) Investigation of hydrogen sites of wadsleyite: a neutron diffraction study. Physics of The Earth and Planetary Interiors: 189: 56-62.
Trots, D.M., Kurnosov, A., Ballaran, T.F., Frost, D.J. (2012) High-temperature structural behaviors of anhydrous wadsleyite and forsterite. American Mineralogist: 97: 1582-1590.
Blanchard, M., Roberge, M., Balan, E., Fiquet, G., Bureau, H. (2013) Infrared signatures of OH-defects in wadsleyite: A first-principles study. American Mineralogist: 98: 2132-2143.
Yang, X., Keppler, H., Dubrovinsky, L., Kurnosov, A. (2014) In-situ infrared spectra of hydroxyl in wadsleyite and ringwoodite at high pressure and high temperature. American Mineralogist: 99: 724-729.
Kawazoe, T., Buchen, J., Marquardt, H. (2015) Synthesis of large wadsleyite single crystals by solid-state recrystallization. American Mineralogist: 100: 2336-2339.
Kawazoe, T., Chaudhari, A., Smyth, J.R., McCammon, C. (2016) Coupled substitution of Fe3+ and H+ for Si in wadsleyite: a study by polarized infrared and Mössbauer spectroscopies and single-crystal X-ray diffraction. American Mineralogist: 101: 1236-1239.
Zhang, L., Smyth, J.R., Allaz, J., Kawazoe, T., Jacobsen, S.D., Jin, Z. (2016) Transition Metals in the Transition Zone: Crystal Chemistry of Minor Element Substitution in Wadsleyite. American Mineralogist: 101: 2322-2330.

Internet Links for WadsleyiteHide

Localities for WadsleyiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (eg from pseudomorphs.)

All localities listed without proper references should be considered as questionable.
  • Eastern Antarctica
    • American Highland
      • Grove Mts
    • Queen Maud Land
      • Queen Fabiola Mts (Yamato Mts)
Ozawa, S., Ohtani, E., Suzuki, A., Miyahara, M., Terada, K., & Kimura, M. (2007, December). Shock metamorphism of L6 chondrites Sahara 98222 and Yamato 74445: the PT conditions and the shock age. In AGU Fall Meeting Abstracts.
  • Queensland
    • Barcoo Shire
      • Windorah
        • Tenham Station
Tomioka, N. and Fujino, K. (1997) Natural (Mg,Fe)SiO3-ilmenite and -perovskite in the Tenham meteorite. Science: 277: 1084–1086.; Jambor, J.L. and Roberts, A.C. (1998) New mineral names. American Mineralogist: 83: 400-403.; Lunar and Planetary Science XXXIV (2003).
Canada (TL)
  • Alberta
    • Peace River
PRICE, G.D., PUTNIS, A., AGRELL, S.O. & SMITH, D.G.W. (1983): Wadsleyite, natural bbb-(Mg,Fe)2SiO4 from the Peace River meteorite. Canadian Mineralogist 21, 29-35.; Grady, M.M., Pratesi, G. & Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge University Press: Cambridge, United Kingdom. 373 pages.
  • Anhui
    • Anqing
      • Qianshan Co.
Am. Min. , V 84, pp. 564-569, 1999.
    • Bozhou
      • Qiaocheng District
        • Xiaoyanzhuang
Kuiren Wang, Ji'an Hong, and Meyer, H.O.A. (1995): Acta Mineralogica Sinica 15(1), 9-14
  • Jiangsu
    • Taizhou
      • Gaogang District
        • Sixiangkou
Chen, M., El Goresy, A. & Gillet, P. Ringwoodite lamellae in olivine: clues to olivine–ringwoodite phase transition mechanisms in shocked meteorites and subducting slabs. Proc. Natl Acad. Sci. USA 101, 15033–15037 (2004)
  • Grand Est
    • Haute-Marne
      • Chassigny
Malavergne, V., Guyot, F., Benzerara, K., & Martinez, I. (2001). Description of new shock‐induced phases in the Shergotty, Zagami, Nakhla and Chassigny meteorites. Meteoritics & Planetary Science, 36(10), 1297-1305.
  • Hesse
    • Hersfeld-Rotenburg
      • Nentershausen
        • Süß
          • Richelsdorf Smelter
S. Weiß: "Mineralfundstellen, Deutschland West", Weise (Munich), 1992
  • Yobe
    • Bogga Dingare
Weisberg, M.K. & Kimura, M. (2010). Petrology and Raman spectroscopy of high pressure phases in the Gujba CB chondrite and the shock history of the CB parent body. Meteoritics & Planetary Science Volume 45, Issue 5, pages 873–884. (May 2010)
North Africa
  • Sahara Desert
Ozawa, S., Ohtani, E., Suzuki, A., Miyahara, M., Terada, K., & Kimura, M. (2007, December). Shock metamorphism of L6 chondrites Sahara 98222 and Yamato 74445: the PT conditions and the shock age. In AGU Fall Meeting Abstracts.
  • Dhofar
D.D. Badjukov et al. , Lunar and Planetary Science, XXXVI (2005), 1684.pdf
  • New Mexico
    • De Baca Co.
Acosta, T.E., Scott, E.R.D. & Sharma, S.K. (2012) Micro-Raman Mapping of Mineral Phases in the Strongly Shocked Taiban Ordinary Chondrite: 43rd Lunar and Planetary Science Conference. LPI Contribution No. 1659, id.2725.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: March 22, 2019 12:41:46 Page generated: March 12, 2019 18:18:52
Go to top of page