Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Mineralogical ClassificationIMA 2013-076 = graţianite

19th May 2014 13:13 UTCMarco E. Ciriotti Manager

Reference:

▪ Ciobanu, C.L., Brugger, J., Cook, N.J., Mills, S.J., Elliott, P., Damian, G., Damian, F. (2014): Graţianite, MnBi2S4, a new mineral from the Bǎiţa Bihor skarn, Romania. American Mineralogist, 99, 1163-1170.


Abstract:

The new mineral graţianite, MnBi2S4, is described from the Bǎi̧a Bihor skarn deposit, Bihor County, Romania. Graţianite occurs as thin lamellae, intimately intergrown with cosalite and bismuthinite, or as flower-shaped blebs within chalcopyrite, where it is associated with cosalite and tetradymite. Graţianite displays weak to modest bireflectance in air and oil, respectively, and strong anisotropy. The mean empirical composition based on 20 electron probe microanalyses is: (Mn0.541Fe0.319Pb0.070Cu0.040Cd0.009 Ag0.001)S0.980(Bi1.975Sb0.018)S1.993(S4.008Se0.012Te0.007)S4.027, corresponding to the ideal formula MnBi2S4. Graţianite crystallizes in the monoclinic system (space group C2/m). Single-crystal X-ray studies of material extracted by the focused ion beam-scanning electron microscopy (FIB-SEM) technique, and carried out on the MX2 macromolecular beamline of the Australian Synchrotron determined the following cell dimensions: a = 12.6774(25) Å, b = 3.9140(8) Å, c = 14.7581(30) Å, beta = 115.31(3)°, V = 662.0(2) Å3, and Z = 4. The six strongest X-ray reflections and their relative intensities are: 3.448 Å (100), 2.731 Å (77), 2.855 Å (64), 3.637 Å (55), 3.644 Å (54), and 3.062 Å (51).

Graţianite is the monoclinic analog of berthierite (FeSb2S4), garavellite and clerite (Nickel-Strunz class 02.HA.20). It is isostructural with synthetic sulfides and selenides in the MnBi2S4–MnSb2S4 and MnBi2Se4–MnSb2Se4 series, and with grumiplucite (HgBi2S4) and kudriavite, <(Cd,Pb)Bi2S4>, 3P members of the pavonite homologous series. The mineral is named for Graţian Cioflica (1927–2002), formerly Professor in Mineralogy and Ore Deposits at the University of Bucharest, Romania.

The Băi̧a Bihor skarn, like others within the same belt, is geochemically complex. The availability of Cu, Zn, and Pb, but also Ag, Bi, Mo, and B, as well as a wide range of minor elements, has created an environment allowing for crystallization of an unusually diverse range of discrete minerals. Graţianite is part of the peculiar associations of Bi–Pb-sulfosalts and Bi-chalcogenides that are genetically related to Au-enrichment. This study demonstrates the versatility of FIB-SEM techniques for in situ extraction of small volumes of well-characterized material, coupled with single-crystal X-ray analysis using synchrotron radiation, for the characterization of new minerals.
 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: May 7, 2024 20:29:56
Go to top of page