Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Mineralogical ClassificationCrystal structure, thermal behaviour and parageneses of koninckite

27th Nov 2015 12:45 UTCMarco E. Ciriotti Manager

Reference:

▪ Plášil, J., Majzlan, J., Wierzbicka-Wieczorek, M., Kiefer, B. (2015): Crystal structure, thermal behaviour and parageneses of koninckite, FePO4·2.75H2O. Mineralogical Magazine, 79, 1159-1173.


Abstract:

The crystal structure of the mineral koninckite was solved from synchrotron powder X-ray diffraction (XRD) data and refined using density-functional theory (DFT) calculations. Koninckite is tetragonal, with the space group P41212, a = 11.9800(5) Å, c = 14.618(1) Å, V = 2097.9(2) Å3, Z = 8. Its structure is a heteropolyhedral framework with zeolite-like tunnels along [001]. Owing to the severe peak overlap in the powder XRD data and the probable intergrowth of enantiomorphic domains in koninckite, the DFT calculations were applied to provide precise atomic positions (including hydrogen). Additionally, the DFT calculations suggest strongly that koninckite is an antiferromagnetic semiconductor, at least at low temperatures. The DFT computations were used to locate H2O molecules in the channels and to complete the structural description. Thermogravimetric analysis and powder XRD data at variable temperatures show that the structure of koninckite dehydrates and eventually collapses between 160–180°C. Negative thermal expansion was observed between 80 and 150°C. A list of the known occurrences of koninckite suggests that this mineral is not as rare as assumed previously; koninckite is often fine-grained, inconspicuous, and thereby easy to overlook. Koninckite is yet another natural example of an Fe-phosphate zeolitic material.
 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: May 8, 2024 23:33:50
Go to top of page