Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Milton, Jack E., Hickey, Kenneth A., Gleeson, Sarah A., Falck, Hendrik, Allaz, Julien (2017) In Situ Monazite Dating of Sediment-Hosted Stratiform Copper Mineralization in the Redstone Copper Belt, Northwest Territories, Canada: Cupriferous Fluid Flow Late in the Evolution of a Neoproterozoic Sedimentary Basin. Economic Geology, 112 (7) 1773-1806 doi:10.5382/econgeo.2017.4529

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleIn Situ Monazite Dating of Sediment-Hosted Stratiform Copper Mineralization in the Redstone Copper Belt, Northwest Territories, Canada: Cupriferous Fluid Flow Late in the Evolution of a Neoproterozoic Sedimentary Basin
JournalEconomic Geology
AuthorsMilton, Jack E.Author
Hickey, Kenneth A.Author
Gleeson, Sarah A.Author
Falck, HendrikAuthor
Allaz, JulienAuthor
Year2017 (November 1)Volume112
Page(s)1773-1806Issue7
PublisherSociety of Economic Geologists
DOIdoi:10.5382/econgeo.2017.4529Search in ResearchGate
Mindat Ref. ID224658Long-form Identifiermindat:1:5:224658:5
GUIDf4423dee-e442-46c9-a223-74eae8700def
Full ReferenceMilton, Jack E., Hickey, Kenneth A., Gleeson, Sarah A., Falck, Hendrik, Allaz, Julien (2017) In Situ Monazite Dating of Sediment-Hosted Stratiform Copper Mineralization in the Redstone Copper Belt, Northwest Territories, Canada: Cupriferous Fluid Flow Late in the Evolution of a Neoproterozoic Sedimentary Basin. Economic Geology, 112 (7) 1773-1806 doi:10.5382/econgeo.2017.4529
Plain TextMilton, Jack E., Hickey, Kenneth A., Gleeson, Sarah A., Falck, Hendrik, Allaz, Julien (2017) In Situ Monazite Dating of Sediment-Hosted Stratiform Copper Mineralization in the Redstone Copper Belt, Northwest Territories, Canada: Cupriferous Fluid Flow Late in the Evolution of a Neoproterozoic Sedimentary Basin. Economic Geology, 112 (7) 1773-1806 doi:10.5382/econgeo.2017.4529
In(2017, November) Economic Geology Vol. 112 (7) Society of Economic Geologists
Abstract/NotesAbstract
The 300-km-long Redstone copper belt in the Mackenzie Mountains, Northwest Territories, Canada, is composed of a series of sediment-hosted stratiform copper (SSC) deposits hosted in Neoproterozoic fault-bounded intracontinental rift basins. Mineralization at Coates Lake, the largest of these deposits, is concentrated within microbial laminite layers in the transition zone between underlying continental red beds of the Redstone River Formation and overlying marine carbonates of the Coppercap Formation. Disseminated cupriferous sulfides (chalcopyrite, bornite, and chalcocite) form part of a late diagenetic mineral association with dolomite, K-feldspar, albite, quartz, monazite, apatite, and pyrite that partially replaced detrital and early diagenetic minerals, including calcite cements, sulfate, and earlier generations of pyrite. Bornite (± minor chalcopyrite), calcite, dolomite, quartz, K-feldspar, and albite were also deposited in rare bedding-parallel veins adjacent to the lowermost mineralized microbial laminite layer in the transition zone.
The absolute timing of mineralization was constrained by in situ U-Th-Pb chemical dating of monazite from four samples hosting disseminated SSC-type mineralization. The monazite have rounded, Th-U-heavy rare earth element-rich, detrital cores surrounded by Th-U-poor, light rare earth element-S-Sr-rich rims. The rim stage of monazite growth is intergrown with and enveloped by cupriferous sulfide and is paragenetically constrained as being part of the disseminated SSC-type mineralizing event. Eleven detrital cores yielded dates between 1843 and 1025 Ma, older than the depositional age of transition zone strata previously constrained to be between 775 and 732 Ma. Ten monazite rims yielded dates between 661 and 607 Ma. A weighted average date of 635 ± 13 Ma provides a maximum estimate, and is our preferred interpretation, for the absolute age of all copper mineralization at the Coates Lake deposit. Mineralization formed approximately 100 m.y. after deposition of the host rocks, during the thermal sag phase of continental rifting.
Stratigraphic reconstructions, coupled with estimates of sediment compaction, indicate that at 635 Ma the transition zone was buried by ~4 km of sediments and overlaid another ~1.7 km of sediments that formed the Redstone River and Thundercloud Formations. Mudstone and carbonate-rich units above the transition zone acted as low permeability caps that led to suprahydrostatic fluid pressures in the underlying sediments. The bedding-parallel veins indicate transient supralithostatic fluid pressures. Free convection of pore fluids began within the transition zone and underlying units once they became hydrologically isolated from overlying strata. Mineralization formed as oxidized saline pore fluids circulated through the red beds (± underlying basaltic flows and basal sedimentary detritus), stripping copper and carrying it up into the transition zone. The salinity of the pore fluids may have, at least in part, originated from cryogenic brines generated by the Sturtian (717–662 Ma) global glaciation event.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: May 4, 2024 00:40:04
Go to top of page