Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Luo, Kai, Zhou, Jia-Xi, Huang, Zhi-Long, Caulfield, John, Zhao, Jian-Xin, Feng, Yue-Xing, Ouyang, Hegen (2020) New insights into the evolution of Mississippi Valley-Type hydrothermal system: A case study of the Wusihe Pb-Zn deposit, South China, using quartz in-situ trace elements and sulfides in situ S-Pb isotopes. American Mineralogist, 105 (1) 35-51 doi:10.2138/am-2020-7021

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleNew insights into the evolution of Mississippi Valley-Type hydrothermal system: A case study of the Wusihe Pb-Zn deposit, South China, using quartz in-situ trace elements and sulfides in situ S-Pb isotopes
JournalAmerican Mineralogist
AuthorsLuo, KaiAuthor
Zhou, Jia-XiAuthor
Huang, Zhi-LongAuthor
Caulfield, JohnAuthor
Zhao, Jian-XinAuthor
Feng, Yue-XingAuthor
Ouyang, HegenAuthor
Year2020 (January 1)Volume105
Page(s)35-51Issue1
PublisherMineralogical Society of America
DOIdoi:10.2138/am-2020-7021Search in ResearchGate
Mindat Ref. ID398879Long-form Identifiermindat:1:5:398879:8
GUID555c6eed-d586-4d48-b737-e0f005c6317a
Full ReferenceLuo, Kai, Zhou, Jia-Xi, Huang, Zhi-Long, Caulfield, John, Zhao, Jian-Xin, Feng, Yue-Xing, Ouyang, Hegen (2020) New insights into the evolution of Mississippi Valley-Type hydrothermal system: A case study of the Wusihe Pb-Zn deposit, South China, using quartz in-situ trace elements and sulfides in situ S-Pb isotopes. American Mineralogist, 105 (1) 35-51 doi:10.2138/am-2020-7021
Plain TextLuo, Kai, Zhou, Jia-Xi, Huang, Zhi-Long, Caulfield, John, Zhao, Jian-Xin, Feng, Yue-Xing, Ouyang, Hegen (2020) New insights into the evolution of Mississippi Valley-Type hydrothermal system: A case study of the Wusihe Pb-Zn deposit, South China, using quartz in-situ trace elements and sulfides in situ S-Pb isotopes. American Mineralogist, 105 (1) 35-51 doi:10.2138/am-2020-7021
In(2020, January) American Mineralogist Vol. 105 (1) Mineralogical Society of America
Abstract/NotesAbstract
Unraveling the evolution of Mississippi Valley-type (MVT) hydrothermal system is crucial for understanding ore genesis and exploration. In this paper, we take the Wusihe Pb-Zn deposit in the western Yangtze Block (South China) as a case study, using detailed ore deposit geology, quartz in situ trace elements, and sulfides in situ S-Pb isotopes, to propose a new integrated model for the evolution of MVT hydrothermal system. Four hydrothermal stages were identified in the Wusihe ore district: (I) lamellar pyrite-sphalerite; (II) disseminated, stock-work, and brecciated sphalerite-galena; (III) massive galena, and (IV) veined calcite-bitumen. Within the most representative stage (stage II), Al concentrations in quartz (Q) increase from 8.46–354 ppm (mean 134 ppm) of Q1 to 171–3049 ppm (mean 1062 ppm) of Q2, and then decrease to 3.18–149 ppm (mean 25.4 ppm) of Q3. This trend indicates the role of acid-producing processes that resulted from sulfide precipitation and acid consumption by carbonate buffering. The occurrence of authigenic non-altered K-feldspar provides further evidence that the ore-forming fluids were weakly acidic with pH values of > ~5.5. Moreover, new bulk δ34S values of sulfides (+1.8 to +14.3‰) are overall lower than those previously reported (+7.1 to +20.9‰), implying that in addition to thermochemical sulfate reduction (TSR), bacterial sulfate reduction (BSR) may play an important role in the formation of S2–. In situ δ34S values show a larger range (–4.3 to +26.6‰), and significantly, varies within single grains (up to +12.3‰), suggesting mixing of two isotopically distinct S2– end-members produced by TSR and BSR. The diagenetic and hydrothermal early phase (stage I) sulfides were formed within a nearly closed system of BSR, whereas the formation of late phase (stage II and stage III) sulfides was caused by the input of hydrothermal fluids that promoted TSR. New galena in situ Pb isotopic ratios (206Pb/204Pb = 18.02–18.19, 207Pb/204Pb = 15.66–15.69, and 208Pb/204Pb = 38.14–38.39) suggest that the sources of mineralizing metals in the Wusihe deposit are mainly Proterozoic basement rocks. Hence, a multi-process model (i.e., basin-mountain coupling, fluid mixing, local sulfate reduction, in situ acid-producing and involvement of black shales and carbonate sequences) was responsible for the formation of the Wusihe deposit, while S2– was produced by both TSR and BSR, providing new insights into the evolution of MVT hydrothermal system.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: May 10, 2024 10:59:04
Go to top of page