Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Sokolova, Elena, Hawthorne, Frank C., Cámara, Fernando, Della Ventura, Giancarlo, Uvarova, Yulia A. (2019) From structure topology to chemical composition. XXVII. Revision of the crystal chemistry of the perraultite-type minerals of the seidozerite supergroup: Jinshajiangite, surkhobite, and bobshannonite. The Canadian Mineralogist, 58 (1) 19-43 doi:10.3749/canmin.1900070

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleFrom structure topology to chemical composition. XXVII. Revision of the crystal chemistry of the perraultite-type minerals of the seidozerite supergroup: Jinshajiangite, surkhobite, and bobshannonite
JournalThe Canadian Mineralogist
AuthorsSokolova, ElenaAuthor
Hawthorne, Frank C.Author
Cámara, FernandoAuthor
Della Ventura, GiancarloAuthor
Uvarova, Yulia A.Author
Year2019 (January 16)Volume58
Page(s)19-43Issue1
PublisherMineralogical Association of Canada
DOIdoi:10.3749/canmin.1900070Search in ResearchGate
Mindat Ref. ID65644Long-form Identifiermindat:1:5:65644:1
GUID8a001f98-36dc-497e-9fee-fe4fd6ad7be9
Full ReferenceSokolova, Elena, Hawthorne, Frank C., Cámara, Fernando, Della Ventura, Giancarlo, Uvarova, Yulia A. (2019) From structure topology to chemical composition. XXVII. Revision of the crystal chemistry of the perraultite-type minerals of the seidozerite supergroup: Jinshajiangite, surkhobite, and bobshannonite. The Canadian Mineralogist, 58 (1) 19-43 doi:10.3749/canmin.1900070
Plain TextSokolova, Elena, Hawthorne, Frank C., Cámara, Fernando, Della Ventura, Giancarlo, Uvarova, Yulia A. (2019) From structure topology to chemical composition. XXVII. Revision of the crystal chemistry of the perraultite-type minerals of the seidozerite supergroup: Jinshajiangite, surkhobite, and bobshannonite. The Canadian Mineralogist, 58 (1) 19-43 doi:10.3749/canmin.1900070
In(2019, January) The Canadian Mineralogist Vol. 58 (1) Mineralogical Association of Canada
Abstract/NotesABSTRACT
The crystal structures of the three perraultite-type minerals (bafertisite group, seidozerite supergroup)—jinshajiangite from Norra Kärr, Sweden, ideally NaBaFe2+4Ti2(Si2O7)2O2(OH)2F, Z = 4; surkhobite (holotype) from the Darai-Pioz massif, Tajikistan, ideally NaBaMn4Ti2(Si2O7)2O2(OH)2F, Z = 4; and bobshannonite (holotype) from Mont Saint-Hilaire, Canada, ideally Na2KBa(Mn7Na)Nb4(Si2O7)4O4(OH)4O2, Z = 2—were refined in space group C to R1 = 2.73, 2.85, and 2.02% on the basis of 2746, 2657, and 4963 unique reflections [Fo > 4σFo], respectively. Refinement was done using data from twinned crystals (jinshajiangite: three twin components; surkhobite and bobshannonite: two twin components). The parameters of a C-centered triclinic unit cell are as follows: jinshajiangite: a = 10.720(5), b = 13.823(7), c = 11.044(6) Å, α = 108.222(6), β = 99.28(1), γ = 89.989(6)°, V = 1532.0(2.2) Å3; surkhobite: a = 10.728(6), b = 13.845(8), c = 11.072(6) Å, α = 108.185(6), β = 99.219(5), γ = 90.001(8)°, V = 1540.0(2.5) Å3; and bobshannonite: a = 10.831(7), b = 13.903(9), c = 11.149(8) Å, α = 108.145(6), β = 99.215(9), γ = 90.007(7)°, V = 1572.6(3.2) Å3. New electron microprobe data are reported for the holotype surkhobite and new IR data for jinshajiangite. In the perraultite-type structure (structure type B1BG, B – basic, BG – bafertisite group), there is one type of TS (Titanium-Silicate) block and one type of I (Intermediate) block; they alternate along c. The TS block consists of HOH sheets (H-heteropolyhedral, O-octahedral). In the O sheet, the ideal composition of the five [6]MO sites is Fe2+4apfu (jinshajiangite), Mn4apfu (surkhobite), and (Mn7Na) (bobshannonite). There is no order of Fe2+ and Mn in the O sheet. In the H sheet, the ideal composition of the two [6]MH sites is Ti2apfu (jinshajiangite, surkhobite) and Nb4apfu (bobshannonite). The four [4]Si sites are occupied solely by Si. The MH octahedra and Si2O7 groups constitute the H sheet. The TS blocks link via common vertices of MH octahedra. The I block contains AP(1,2) and BP(1,2) cation sites. In the I block of jinshajiangite and surkhobite, the AP(1) site is occupied by Ba and the AP(2) site by K > Ba; the ideal composition of the two AP(1,2) sites is Ba apfu. In the I block of bobshannonite, Ba and K are ordered at the AP(1) and AP(2) sites, Ba:K ∼ 1:1 , ideally BaK apfu. The two BP(1,2) sites are each occupied by Na > Ca, ideally Na apfu (jinshajiangite, surkhobite) and solely by Na, ideally Na2apfu (bobshannonite). There is no order of Na and Ca at the BP(1,2) sites in jinshajiangite and surkhobite [currently defined as a Ca-ordered analogue of perraultite, ideally NaBaMn4Ti2(Si2O7)2O2(OH)2F, Z = 4]. The ideal formulae of surkhobite, KBa3Ca2Na2Mn16Ti8(Si2O7)8O8(OH)4(F,O,OH)8 (current IMA formula) and of bobshannonite, Na2KBa(Mn,Na)8(Nb,Ti)4(Si2O7)4O4(OH)4(O,F)2 (current IMA formula) have been revised as follows: NaBaMn4Ti2(Si2O7)2O2(OH)2F, Z = 4 (surkhobite) and Na2KBa(Mn7Na)Nb4(Si2O7)4O4(OH)4O2, Z = 2 (bobshannonite). The revised ideal formula of surkhobite is identical to the ideal formula of perraultite and hence surkhobite should be discredited.

Mineral Pages

MineralCitation Details
Perraultite
Surkhobite


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: May 13, 2024 23:44:23
Go to top of page