Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Hamilton, Victoria E. (2010) Thermal infrared (vibrational) spectroscopy of Mg–Fe olivines: A review and applications to determining the composition of planetary surfaces. Geochemistry, 70 (1) 7-33 doi:10.1016/j.chemer.2009.12.005

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleThermal infrared (vibrational) spectroscopy of Mg–Fe olivines: A review and applications to determining the composition of planetary surfaces
JournalGeochemistry
AuthorsHamilton, Victoria E.Author
Year2010 (March)Volume70
Page(s)7-33Issue1
PublisherElsevier BV
DOIdoi:10.1016/j.chemer.2009.12.005Search in ResearchGate
Mindat Ref. ID670526Long-form Identifiermindat:1:5:670526:2
GUID82a1ff23-5f3d-412e-b897-d91f385e4a82
Full ReferenceHamilton, Victoria E. (2010) Thermal infrared (vibrational) spectroscopy of Mg–Fe olivines: A review and applications to determining the composition of planetary surfaces. Geochemistry, 70 (1) 7-33 doi:10.1016/j.chemer.2009.12.005
Plain TextHamilton, Victoria E. (2010) Thermal infrared (vibrational) spectroscopy of Mg–Fe olivines: A review and applications to determining the composition of planetary surfaces. Geochemistry, 70 (1) 7-33 doi:10.1016/j.chemer.2009.12.005
In(2010, March) Geochemistry Vol. 70 (1) Elsevier BV

References Listed

These are the references the publisher has listed as being connected to the article. Please check the article itself for the full list of references which may differ. Not all references are currently linkable within the Digital Library.

Bandfield (2002) J. Geophys. Res. Global mineral distributions on Mars , 107
Berkley, J.L., Keil, K., and Prinz, M., 1980. Comparative petrology and origin of Governador Valadares and other nakhlites. Proceedings of the 11th Lunar Planetary Science Conference, pp. 1089–1102.
Bradley (2004) Interplanetary dust particles , 1
Burns (1972) Am. Miner. Cation determinative curves for Mg–Fe–Mn olivines from vibrational spectra 57, 967
Christensen (1992) The martian surface layer , 686
Not Yet Imported: Data Series - other : 10.3133/ds231

If you would like this item imported into the Digital Library, please contact us quoting Journal ID
Deer (1992)
Donahue (1997) The Venus atmosphere and ionosphere and their interaction with the solar wind: an overview , 3
Dotto (2000) Astron. Astrophys. ISO results on bright Main Belt asteroids: PHT-S observations 358, 1133
Duke (1964) Am. Miner. Infrared investigation of the olivine group minerals 49, 1388
Dunn (2007) J. Geophys. Res. Thermal emission spectra of terrestrial alkaline volcanic rocks: applications to Martian remote sensing , 112
Edwards (2008) J. Geophys. Res. Evidence for extensive olivine-rich basalt bedrock outcrops in Ganges and Eos chasmas, Mars , 113
Estep (1971) Proc. Sec. Lunar Sci. Conf. Infrared vibrational spectroscopic studies of minerals from Apollo 11 and Apollo 12 lunar samples 3, 2137
Estep (1972) Geochim. Cosmochim. Acta Infrared and Raman spectroscopic studies of structural variations in minerals from Apollo 11, 12, 14, and 15 samples 3, 3047
Fegley (1997) Geochemistry of surface–atmosphere interactions on Venus , 591
Fischer, E.M., 1995. Quantitative Compositional Analysis of the Lunar Surface from Reflectance Spectroscopy: Iron, Aluminum and a Model for Removing the Optical Effects of Space Weathering. Ph.D. Thesis, Brown University.
Glotch (2006) J. Geophys. Res. Determination and interpretation of surface and atmospheric Miniature Thermal Emission Spectrometer spectral end-members at the Meridiani Planum landing site , 111
Hamilton (2005) Lunar Planet. Sci. One spectrometer, two spectra: complementary hemispherical reflectance and Thermal Emission Spectroscopy using a single FTIR instrument XXXVI
Hapke (1993)
Helbert (2005) Lunar Planet. Sci. MERTIS—a thermal infrared imaging spectrometer for the Bepi-Columbo mission XXXVI
Henning (1997) Astron. Astrophys. Low-temperature infrared properties of cosmic dust analogues 327, 743
Heras, A.M., Morris, P.W., Vandenbussche, B., and Müller, T.G., 2000, Asteroid 4 Vesta as seen with the ISO Short Wavelength Spectrometer: Thermal Emission Spectroscopy and analysis of dust, disks, and regoliths, pp. 205–212.
Iishi (1978) Am. Miner. Lattice dynamics of forsterite 63, 1198
Jäger (1998) Astron. Astrophys. Steps toward interstellar silicate mineralogy: IV. The crystalline revolution 339, 904
Johnson (2002) J. Geophys. Res. Thermal infrared spectroscopy of experimentally shocked anorthosite and pyroxenite: implications for remote sensing of Mars , 107
Koeppen (2008) J. Geophys. Res. The global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data , 113
Lehmann (1961) Ber. Deutsche Keram. Ges. Ultrarotspektroskopische Untersuchungen zur Mischkristallreihe Forsterit–Fayalit 38, 512
Lyon (1962)
Mason (1981) Antarct. Meteor. Newslett. ALH A77005 petrographic description 4, 12
McSween (2006) J. Geophys. Res. Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars , 111
Meyer, C., 2003. Mars Meteorite Compendium (JSC #27672 Rev. C), http://www-curator.jsc.nasa.gov/curator/antmet/mmc/mmc.htm: Houston, TX, Office of the Curator, NASA-JSC.
Michalski (2003) Geophys. Res. Lett. Thermal emission spectroscopy of the silica polymorphs and considerations for remote sensing of Mars , 30
Michalski (2006) J. Geophys. Res. Emission spectroscopy of clay minerals and evidence for poorly crystalline aluminosilicates on Mars from Thermal Emission Spectrometer data , 11
Milam (2007) J. Geophys. Res. Plagioclase compositions derived from Thermal Emission Spectra of compositionally complex mixtures: Implications for Martian feldspar mineralogy , 112
Miyamoto (1986) Memoirs of the National Institute of Polar Research Diffuse reflectance from 0.25 to 25μm of the Yamato-691 enstatite chondrite 46, 123
Moersch (1991) Bull. Am. Astron. Soc. Modeling particle size effects on the emissivity spectra of minerals in the thermal infrared 23, 1183
Mustard (2007) J. Geophys. Res. Mineralogy of the Nili Fossae region with OMEGA/MEx data: 1) Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian , 112
Osawa (2001) Antarct. Meteor. Res. Mid-infrared transmission spectra of individual Antarctic micrometoerites and carbonaceous chondrites 14, 71
Not Yet Imported: Lunar Reconnaissance Orbiter Mission - book-chapter : 10.1007/978-1-4419-6391-8_7

If you would like this item imported into the Digital Library, please contact us quoting Book ID 9781441963901
Piatek, J.L., 1997. Vibrational Spectroscopy of Clay Minerals: Implications for Remote Sensing of Terrestrial Planetoids. M.S. Thesis, Arizona State University, 78pp.
Pieters (2008) J. Geophys. Res. Martian dunite NWA 2737: integrated spectroscopic analyses of brown olivine , 113
Presley (1997) J. Geophys. Res. Thermal conductivity measurements of particulate materials. Part II: Results 102, 6566
Prinz (1974) Meteoritics The Chassigny meteorite: a relatively iron-rich cumulate dunite 9, 393
Rogers (2008) J. Geophys. Res. Mineralogical composition of sands in Meridiani Planum determined from Mars Exploration Rover data and comparison to orbital measurements , 113
Rogers (2005) J. Geophys. Res. Compositional heterogeneity of the ancient Martian crust: surface analysis of Ares Vallis bedrock with THEMIS and TES data , 110
Ruff, S.W., 1998. Quantitative Thermal Infrared Emission Spectroscopy Applied to Granitoid Petrology. Ph.D. Thesis, Arizona State University, 234 p.
Ruff (2006) J. Geophys. Res. The rocks of Gusev Crater as viewed by the Mini-TES instrument , 111
Salisbury (1991)
Staid, M.I., Johnson, J.R., and Gaddis, L.R., 2004. Analysis of Mars Thermal Emission Spectrometer data using large mineral reference libraries. Lunar Planet. Sci. XXXV, Abstract no. 1778, Lunar and Planetary Institute, Houston (CD-ROM).
Tornabene (2008) J. Geophys. Res. Surface and crater-exposed lithologic units of the Isidis Basin as mapped by coanalysis of THEMIS and TES derived data products , 113


See Also

These are possibly similar items as determined by title/reference text matching only.

 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: April 29, 2024 17:17:42
Go to top of page