Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Union Bay Occurrence (near peak 2535), Ketchikan District, Wrangell-Petersburg Borough, Alaska, USA

This page is currently not sponsored. Click here to sponsor this page.
DisplayPhotosMapsSearch
 
Latitude & Longitude (WGS84): 55° 45' 44'' North , 132° 3' 7'' West
Latitude & Longitude (decimal): 55.7622222222, -132.051944444


Location: This is a generic site for the entire Union Bay mafic-ultramafic complex, which crops out over an area of about 6 by 7 miles. Many early reports describe the complex and the mineral deposits in it as a single entity. This site is near the center of the dunite core of the complex, where several chromite occurrences have been reported. It is at peak 2535, which is about 0.5 mile north-northeast of the center of section 34, T. 70 S., R. 87 E. Since 2001, there has been considerable exploration of several prospects within the complex for platinum-group elements; these are described separately (CR005-012). In addition, a large block of claims was staked for iron in the the 1960's; the deposit at those claims is described in ARDF record CR004.
Geology: This site includes the entire Union Bay mafic-ultramafic intrusive complex, which outcrops over an area of about 6 by 7 miles. The complex is the largest of numerous small, Cretaceous mafic-ultramafic intrusive bodies scattered in a belt along the length of southeastern Alaska (Ruckmick and Noble, 1959; Lanphere and Eberlein, 1966; Brew and Morell, 1983; Gehrels and Berg, 1992). Many of these plutons are concentrically zoned, an unusual characteristic that has led to their classification as 'Alaska-type,' or 'Alaskan,' complexes (Noble and Taylor, 1960; Taylor and Noble, 1960; Wyllie, 1967; Jackson and Thayer, 1972). As mapped by Ruckmick and Noble (1959) and reinterpreted by Himmelberg and Loney (1995), the Union Bay complex consists of an outer layer of gabbro that is succeeded inward by magnetite clinopyroxenite, wehrlite, and a core of dunite. The dunite forms a vertical pipe about a mile in diameter. It is bordered on the east by narrow, nearly-vertical shells of wehrlite and clinoproxenite, and on the west by a thick, layered sequence of wehrlite, clinopyroxenite, and gabbro that forms either a large recumbent fold or a lopolith. The complex intrudes probably Upper Jurassic and Lower Cretaceous argillite, tuff, and graywacke of the Gravina sequence (Gehrels and Berg, 1992). The bedded rocks are thermally metamorphosed to schist and gneiss for about 1,000 feet from the intrusive contact. Himmelberg and Loney (1995) suggest that the complex was emplaced during the last stages of Cretaceous regional folding, when the dunite underwent plastic deformation that resulted in a preferred orientation of the olivine. Clark and Greenwood (1972 [PP 800-C, p. C21-27]) report a major increase in the volume of the dunite core due to its serpentinization. Early workers called attention to magnetite scattered through the clinopyroxenite and to small pods and lenses of chromite in the dunite, but no deposits of significant size were identified prior to the 1960's (Budddington and Chapin, 1929; Kennedy and Walton, 1946; Twenhofel, 1953; Kaufman, 1958; Condon, 1961). Columbia Iron Mining Company searched for iron ore in the area from 1954 to 1970 (Noel 1966; Fischer, 1975; Maas and others, 1995). They patented 18 claims at the west end of the complex (CR004), and identified a resource of about 1 billion tons of material with 18 to 20 percent total iron and about 2 percent titanium. Clark and Greenwood (1972 [PP 800-C, p. C157-160]) carried out the first systematic survey to ascertain the platinum-group-element (PGE) content of the complex from 50 samples they collected of the various rocks. Their samples averaged 0.093 part per million (ppm) platinum and 0.023 ppm palladium; the maximum value was 1,600 ppm platinum, 0.200 ppm palladium, 0.062 ppm rhodium, and 0.215 ppm iridium. Anaconda Minerals did a reconnaissance survey of the complex but concluded there was no likelihood of an economic platinum-group-element deposit in it (Anaconda Collection, American Heritage Center, University of Wyoming, files 6804.01, 7503.09, and 7503.12). In the early 1990's, Maas and others (1995) collected placer samples in several streams on the north side of the complex and reported considerable anomalous platinum and palladium in the concentrates. They identified ferroan platinum, native osmium, osmium-iridium, and hollingworthite (a rhenium-platinium-palladium arsenide) in the concentrates and suggested that the source was the clinopyroxenite and wehrlite on the north side of the complex. In 2000, Freegold Ventures Limited began exploring for PGE in the complex and they have located a number of prospects that they are currently working on in a joint venture with Lonmin PLC (www.freegoldventures.com/s/Home.asp; March 1, 2004). These prospects are described in detail as separate sites (CR005-012). Van Treeck and Newberry (2003) studied these PGE deposits in detail and concluded that the PGE minerals are hydrothermal in origin and are associated with veins and lenses of magnetite that cut the mafic and ultramafic rocks of the complex. An early generation of hydrothermal magnetite associated with diopside dikes was formed from 575 to 700 degrees C; the PGE minerals are associated with an intermediate stage of hydrothermal activity marked by the deposition of magnetite and hornblende alteration that occurred between 475 to 575 degrees C; and a later generation of magnetite rimmed by interlayered chlorite and serpentine formed at less than 475 degrees C. They identified the following PGE minerals: ferroplatinum, erlichmanite, iridosmine, platiniridium, and several unnamed rhenium-arsenic-sulfur, rhenium-iron, platinum-antimony, and platinum-iridium-sulfur minerals. The source of the hydrothermal fluids is unknown but the absence of quartz suggests that the fluids are related to the mafic and ultramafic rocks.
Workings: The Union Bay mafic-ultramafic complex has been sampled sporadically by government and industry geologists and engineers since at least the 1930's for chromite, magnetite, and platinum-group-elements. However, the sampling was more reconnaissance than systematic in nature until exploration of the complex for PGE began in 2001. The work on the several prospects that are currently (2004) being explored (CR004-007 and CR010-012) includes systematic outcrop sampling and diamond drilling.
Age: Chromite, magnetite, and PGE associated with the emplacement of a Cretaceous mafic-ultramafic complex.
Alteration: Most of the early workers did not specifically note alteration apart from that associated with the intrusion of the complex. See CR005-012 for a modern interpretation of the alteration associated with the PGE deposits currently (2004) being explored in the complex.
Reserves: In the 1960s, a resource of 1 billion tons of material that contains 18 to 20 percent iron and about 2 percent titanium was identified near the west end of the complex.

Commodities (Major) - Cr, Fe, Ir, Os, Pd, Pt, Rh
Development Status: None
Deposit Model: Chromite, magnetite, and PGE associated with an Alaska-type mafic-ultramafic co

Mineral List


2 valid minerals.

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Early Cretaceous
100.5 - 145 Ma
Ultramafic rocks of southeast Alaska

Age: Early Cretaceous (100.5 - 145 Ma)

Description: Ultramafic complex. Pipe and lopolith of hornblende pyroxenite, pyroxenite, olivine pyroxenite, peridotite, and dunite. Pipe and lopolith are concentrically zoned, with dunite in the center and pyroxenite or hornblende pyroxenite in periphery. Pyroxenite contains significant primary magnetite.

Lithology: Igneous

Reference: Wilson, F.H., Hults, C.P., Mull, C.G, and Karl, S.M. (compilers). Geologic map of Alaska. doi: 10.3133/sim3340. U.S. Geological Survey Scientific Investigations Map 3340, pamphlet 196. [21]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License



This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.

References

Brew, D.A., and Morell, R.P., 1983, Intrusive rocks and plutonic belts of southeastern Alaska: Geological Society of America Memoir 159, p. 171-193. Buddington, A.F., and Chapin, Theodore, 1929, Geology and mineral deposits of southeastern Alaska: U.S. Geological Survey Bulletin 800, 398 p. Cannon, Bart, 1993, Electron microprobe analysis of Alaskan PGE samples: Cannon Microprobe, Seattle Washington, 4 p. (Unpublished report held by the Bureau of Land Management, Mineral Information Center, Juneau, Alaska.) Clark, A.L., and Greenwood, W.R., 1972, Geochemistry and distribution of platinum-group metals in mafic to ultramafic complexes of southern and southeastern Alaska: U.S. Geological Survey Professional Paper 800-C, p. C157-C160. Clark, A.L., and Greenwood, W.R., 1972, Petrographic evidence of volume increase related to serpentinization, Union Bay, Alaska, in Geological Survey Research 1972: U.S. Geological Survey professional Paper 800-C, p. C21-C27. Condon, W.H., 1961, Geology of the Craig quadrangle, Alaska: U.S. Geological Survey Bulletin 1108-B, p. B1-B43. Fischer, R.P., 1975, Vanadium resources in titaniferous magnetite deposits: U.S. Geological Survey Professional Paper 926-B, p. B1-B10. Gehrels, G.E., and Berg, H.C., 1992, Geologic map of southeastern Alaska: U.S. Geological Survey Miscellaneous Investigations Series Map I-1867, 1 sheet, scale 1:600,000, 24 p. Glover, A.E., 1951, Union Bay reconnaissance (Cleveland Peninsula): Alaska Territorial Department of Mines Mineral Investigation 119-2, 4 p. Himmelberg, G.R., and Loney, R.A., 1995; Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, southeastern Alaska: U. S. Geological Survey Professional Paper 1564, 47 p. Holdsworth, P.R., 1954, Investigations of claim staking (Union Bay area): Alaska Division of Geological and Geophysical Surveys Property Examination PE 119-23, 6 p. Jackson, E.D., and Thayer, T.P., 1972, Some criteria for distinguishing between stratiform, concentric, and alpine peridotite-gabbro complexes: International Geological Congress, 24th, Montreal, 1972, Proceedings, Section 2, p. 289-296. Kaufman, A., 1958, Southeastern Alaska's Mineral industry: U.S. Bureau of Mines Information Circular 7844, 37 p. Kennedy, G.C., and Walton, M.S., Jr., 1946, Geology and associated mineral deposits of some ultrabasic rock bodies in southeastern Alaska: U.S. Geological Survey Bulletin 947-D, p. 65-84. Lanphere, M. A., and Eberlein, G. D., 1966, Potassium-argon ages of magnetite-bearing ultramafic complexes in southeastern Alaska (abs.): Geological Society of America Special Paper 87, p. 94. Maas, K.M., Bittenbender, P E., and Still, J.C., 1995, Mineral investigations in the Ketchikan mining district, southeastern Alaska: U.S. Bureau of Mines Open-File Report 11-95, 606 p. Murray, C.G., 1972, Zoned ultramafic complex of the Alaskan type: feeder pipes of andesitic volcanoes: Geological Society of America Memoir 132, p. 313-335. Noble, J.A., and Taylor, H.P. Jr., 1960, Correlation of the ultramafic complexes of southeastern Alaska with those of other parts of North America and the world: Internnational Geological Congress, 21st, Copenhagen, 1960, Report, Part 13, p. 188-197. Noel, G.A., 1966, The productive mineral deposits of southeastern Alaska: Alaska Division of Mines and Minerals, Report for the year 1966, p. 51-57, 60-68. Ruckmick, J.C., and Noble, J.A., 1959, Origin of the ultramafic complex at Union Bay, southeastern Alaska: Geological Society of America Bulletin, v. 70, 981-1018. Taylor, H.P., 1967, The zoned ultramafic complexes of southeastern Alaska, in Wyllie, P.J., ed., UIltramafic and Related Rocks: New York, J. Wiley and Sons, p. 97-121. Taylor, H.P., Jr., 1969, Origin of magnetite in zoned ultramafic complexes of southeastern Alaska, in Wilson, H.D.B., ed., Magmatic Ore Deposits: Economic Geology Monograph 4, p. 209-230. Taylor, H.P,. and Noble, J.A., 1960, Origin of the ultramafic complexes in southeastern Alaska: International Geological Congress, 21st, Copenhagen, Report, p. 175-187. Van Treeck, C.J., and Newberry, Rainer, 2003, The Union Bay platinum prospect, SE Alaska, a hydrothermal PGE deposit (abs.): Canadian Insitute of Mining, Metallurgy, and Petroleum, Conference Montreal, May 4-7, 2003, 1 p. Wyllie, P.J., 1967, Zoned ultramafic complexes, in Ultramafic and related rocks: New York, John Wiley and Sons, p. 83-84.

 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: April 26, 2024 01:16:45 Page updated: October 12, 2017 17:38:50
Go to top of page