Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Mineralogical ClassificationCrystal chemistry of tyrolite

1st Aug 2006 20:39 UTCMarco E. Ciriotti Manager

Reference:

• Krivovichev, S.V., Chernysov, D.Yu., Döbelin, N., Armbruster, Th., Kahlenberg, V., Kaindl, R., Ferraris, G., Tessadri, R., Kaltenhauser, G. (2006): Crystal chemistry and polytypism of tyrolite. American Mineralogist, 91, 1378-1384.



Abstract:

The crystal structures of the 1M and 2M polytypes of tyrolite have been solved from single-crystal X-ray diffraction data. The structure of tyrolite-1M has been refined to R1 = 0.086 on the basis of 2522 unique observed reflections collected using synchrotron radiation at the Swiss-Norwegian beamline BM01 of the European Synchrotron Research Facility (SNBL at the ESRF). The structure of tyrolite-2M has been refined to R1 = 0.144 on the basis of 2666 unique observed reflections obtained from a non-merohedrally twinned crystal using in-house X-ray radiation and a STOE IPDS II imageplate diffractometer. The structures are based upon complex nanolayers consisting of Cu, As, and Ca coordination polyhedra. The core of the nanolayer is a copper arsenate substructure consisting of A and B sublayers. The B sublayer consists of chains of edge-sharing Cu octahedra running along the b axis. The A sublayer contains trimeric units of Cu octahedra sharing corners with AsO4 tetrahedra. Two adjacent A sublayers are linked by the octahedral chains of the B sublayer resulting in formation of the 18 Ã… thick ABA slab. The ABA slab is sandwiched between sublayers of Ca2+ cations and H2O molecules. Adjacent nanolayers are connected by hydrogen bonds to the interlayer species (carbonate anions and H2O molecules). The structures of tyrolite-1M and tyrolite-2M differ by the stacking sequence of the nanolayers only. The adjacent nanolayers in tyrolite-2M are shifted by b/2 = 2.8 Ã… in comparison to the relative position of the nanolayers in tyrolite-1M. The structural formula of tyrolite can be written as
(H2O)x where x = 0-1.

4th Aug 2006 10:38 UTCUwe Kolitsch Manager

Updated.
 
and/or  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: May 4, 2024 02:21:22
Go to top of page